vme_machdep.c revision 1.17 1 /* $NetBSD: vme_machdep.c,v 1.17 1999/03/26 23:41:34 mycroft Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/param.h>
40 #include <sys/extent.h>
41 #include <sys/systm.h>
42 #include <sys/device.h>
43 #include <sys/malloc.h>
44
45 #include <sys/proc.h>
46 #include <sys/user.h>
47 #include <sys/syslog.h>
48
49 #include <vm/vm.h>
50
51 #define _SPARC_BUS_DMA_PRIVATE
52 #include <machine/bus.h>
53 #include <sparc/sparc/iommuvar.h>
54 #include <machine/autoconf.h>
55 #include <machine/pmap.h>
56 #include <machine/oldmon.h>
57 #include <machine/cpu.h>
58 #include <machine/ctlreg.h>
59
60 #include <dev/vme/vmevar.h>
61
62 #include <sparc/sparc/asm.h>
63 #include <sparc/sparc/vaddrs.h>
64 #include <sparc/sparc/cpuvar.h>
65 #include <sparc/dev/vmereg.h>
66
67 struct vmebus_softc {
68 struct device sc_dev; /* base device */
69 bus_space_tag_t sc_bustag;
70 bus_dma_tag_t sc_dmatag;
71 struct vmebusreg *sc_reg; /* VME control registers */
72 struct vmebusvec *sc_vec; /* VME interrupt vector */
73 struct rom_range *sc_range; /* ROM range property */
74 int sc_nrange;
75 volatile u_int32_t *sc_ioctags; /* VME IO-cache tag registers */
76 volatile u_int32_t *sc_iocflush;/* VME IO-cache flush registers */
77 int (*sc_vmeintr) __P((void *));
78 struct bootpath *sc_bp;
79 };
80 struct vmebus_softc *vmebus_sc;/*XXX*/
81
82 /* autoconfiguration driver */
83 static int vmematch_iommu __P((struct device *, struct cfdata *, void *));
84 static void vmeattach_iommu __P((struct device *, struct device *, void *));
85 static int vmematch_mainbus __P((struct device *, struct cfdata *, void *));
86 static void vmeattach_mainbus __P((struct device *, struct device *, void *));
87 #if defined(SUN4)
88 int vmeintr4 __P((void *));
89 #endif
90 #if defined(SUN4M)
91 int vmeintr4m __P((void *));
92 static int sparc_vme_error __P((void));
93 #endif
94
95
96 static int sparc_vme_probe __P((void *, bus_space_tag_t, vme_addr_t,
97 size_t, vme_size_t, vme_mod_t,
98 int (*) __P((void *, void *)), void *));
99 static int sparc_vme_map __P((void *, vme_addr_t, vme_size_t, vme_mod_t,
100 bus_space_tag_t, bus_space_handle_t *));
101 static void sparc_vme_unmap __P((void *));
102 static int sparc_vme_mmap_cookie __P((void *, vme_addr_t, vme_mod_t,
103 bus_space_tag_t, bus_space_handle_t *));
104 static int sparc_vme_intr_map __P((void *, int, int, vme_intr_handle_t *));
105 static void * sparc_vme_intr_establish __P((void *, vme_intr_handle_t,
106 int (*) __P((void *)), void *));
107 static void sparc_vme_intr_disestablish __P((void *, void *));
108
109 static int vmebus_translate __P((struct vmebus_softc *, vme_mod_t,
110 vme_addr_t, bus_type_t *, bus_addr_t *));
111 static void sparc_vme_bus_establish __P((void *, struct device *));
112 #if defined(SUN4M)
113 static void sparc_vme4m_barrier __P(( bus_space_tag_t, bus_space_handle_t,
114 bus_size_t, bus_size_t, int));
115
116 #endif
117
118 /*
119 * DMA functions.
120 */
121 #if defined(SUN4)
122 static int sparc_vme4_dmamap_load __P((bus_dma_tag_t, bus_dmamap_t, void *,
123 bus_size_t, struct proc *, int));
124 static void sparc_vme4_dmamap_unload __P((bus_dma_tag_t, bus_dmamap_t));
125 static void sparc_vme4_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t,
126 bus_addr_t, bus_size_t, int));
127
128 static int sparc_vme4_dmamem_alloc __P((bus_dma_tag_t, bus_size_t,
129 bus_size_t, bus_size_t, bus_dma_segment_t *,
130 int, int *, int));
131 static void sparc_vme4_dmamem_free __P((bus_dma_tag_t,
132 bus_dma_segment_t *, int));
133 #endif
134
135 #if defined(SUN4M)
136 static int sparc_vme4m_dmamap_create __P((bus_dma_tag_t, bus_size_t, int,
137 bus_size_t, bus_size_t, int, bus_dmamap_t *));
138
139 static int sparc_vme4m_dmamap_load __P((bus_dma_tag_t, bus_dmamap_t, void *,
140 bus_size_t, struct proc *, int));
141 static void sparc_vme4m_dmamap_unload __P((bus_dma_tag_t, bus_dmamap_t));
142 static void sparc_vme4m_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t,
143 bus_addr_t, bus_size_t, int));
144
145 static int sparc_vme4m_dmamem_alloc __P((bus_dma_tag_t, bus_size_t,
146 bus_size_t, bus_size_t, bus_dma_segment_t *,
147 int, int *, int));
148 static void sparc_vme4m_dmamem_free __P((bus_dma_tag_t,
149 bus_dma_segment_t *, int));
150 #endif
151
152 static int sparc_vme_dmamem_map __P((bus_dma_tag_t, bus_dma_segment_t *,
153 int, size_t, caddr_t *, int));
154 #if 0
155 static void sparc_vme_dmamap_destroy __P((bus_dma_tag_t, bus_dmamap_t));
156 static void sparc_vme_dmamem_unmap __P((bus_dma_tag_t, caddr_t, size_t));
157 static int sparc_vme_dmamem_mmap __P((bus_dma_tag_t,
158 bus_dma_segment_t *, int, int, int, int));
159 #endif
160
161 struct cfattach vme_mainbus_ca = {
162 sizeof(struct vmebus_softc), vmematch_mainbus, vmeattach_mainbus
163 };
164
165 struct cfattach vme_iommu_ca = {
166 sizeof(struct vmebus_softc), vmematch_iommu, vmeattach_iommu
167 };
168
169 int (*vmeerr_handler) __P((void));
170
171 /* If the PROM does not provide the `ranges' property, we make up our own */
172 struct rom_range vmebus_translations[] = {
173 #define _DS (VMEMOD_D|VMEMOD_S)
174 { VMEMOD_A16|_DS, 0, PMAP_VME16, 0xffff0000, 0 },
175 { VMEMOD_A24|_DS, 0, PMAP_VME16, 0xff000000, 0 },
176 { VMEMOD_A32|_DS, 0, PMAP_VME16, 0x00000000, 0 },
177 { VMEMOD_A16|VMEMOD_D32|_DS, 0, PMAP_VME32, 0xffff0000, 0 },
178 { VMEMOD_A24|VMEMOD_D32|_DS, 0, PMAP_VME32, 0xff000000, 0 },
179 { VMEMOD_A32|VMEMOD_D32|_DS, 0, PMAP_VME32, 0x00000000, 0 }
180 #undef _DS
181 };
182
183 /*
184 * DMA on sun4 VME devices use the last MB of virtual space, which
185 * is mapped by hardware onto the first MB of VME space.
186 */
187 struct extent *vme_dvmamap;
188
189 struct sparc_bus_space_tag sparc_vme_bus_tag = {
190 NULL, /* cookie */
191 NULL, /* parent bus tag */
192 NULL, /* bus_map */
193 NULL, /* bus_unmap */
194 NULL, /* bus_subregion */
195 NULL /* barrier */
196 };
197
198 struct vme_chipset_tag sparc_vme_chipset_tag = {
199 NULL,
200 sparc_vme_probe,
201 sparc_vme_map,
202 sparc_vme_unmap,
203 sparc_vme_mmap_cookie,
204 sparc_vme_intr_map,
205 sparc_vme_intr_establish,
206 sparc_vme_intr_disestablish,
207 sparc_vme_bus_establish
208 };
209
210
211 #if defined(SUN4)
212 struct sparc_bus_dma_tag sparc_vme4_dma_tag = {
213 NULL, /* cookie */
214 _bus_dmamap_create,
215 _bus_dmamap_destroy,
216 sparc_vme4_dmamap_load,
217 _bus_dmamap_load_mbuf,
218 _bus_dmamap_load_uio,
219 _bus_dmamap_load_raw,
220 sparc_vme4_dmamap_unload,
221 sparc_vme4_dmamap_sync,
222
223 sparc_vme4_dmamem_alloc,
224 sparc_vme4_dmamem_free,
225 sparc_vme_dmamem_map,
226 _bus_dmamem_unmap,
227 _bus_dmamem_mmap
228 };
229 #endif
230
231 #if defined(SUN4M)
232 struct sparc_bus_dma_tag sparc_vme4m_dma_tag = {
233 NULL, /* cookie */
234 sparc_vme4m_dmamap_create,
235 _bus_dmamap_destroy,
236 sparc_vme4m_dmamap_load,
237 _bus_dmamap_load_mbuf,
238 _bus_dmamap_load_uio,
239 _bus_dmamap_load_raw,
240 sparc_vme4m_dmamap_unload,
241 sparc_vme4m_dmamap_sync,
242
243 sparc_vme4m_dmamem_alloc,
244 sparc_vme4m_dmamem_free,
245 sparc_vme_dmamem_map,
246 _bus_dmamem_unmap,
247 _bus_dmamem_mmap
248 };
249 #endif
250
251
252 void
253 sparc_vme_bus_establish(cookie, dev)
254 void *cookie;
255 struct device *dev;
256 {
257 struct vmebus_softc *sc = (struct vmebus_softc *)cookie;
258 struct bootpath *bp = sc->sc_bp;
259 char *name;
260
261 name = dev->dv_cfdata->cf_driver->cd_name;
262 #ifdef DEBUG
263 printf("sparc_vme_bus_establish: %s%d\n", name, dev->dv_unit);
264 #endif
265 if (bp != NULL && strcmp(bp->name, name) == 0 &&
266 dev->dv_unit == bp->val[1]) {
267 bp->dev = dev;
268 #ifdef DEBUG
269 printf("sparc_vme_bus_establish: on the boot path\n");
270 #endif
271 sc->sc_bp++;
272 bootpath_store(1, sc->sc_bp);
273 }
274 }
275
276
277 int
278 vmematch_mainbus(parent, cf, aux)
279 struct device *parent;
280 struct cfdata *cf;
281 void *aux;
282 {
283 struct mainbus_attach_args *ma = aux;
284
285 if (!CPU_ISSUN4)
286 return (0);
287
288 return (strcmp(cf->cf_driver->cd_name, ma->ma_name) == 0);
289 }
290
291 int
292 vmematch_iommu(parent, cf, aux)
293 struct device *parent;
294 struct cfdata *cf;
295 void *aux;
296 {
297 struct iommu_attach_args *ia = aux;
298
299 return (strcmp(cf->cf_driver->cd_name, ia->iom_name) == 0);
300 }
301
302
303 void
304 vmeattach_mainbus(parent, self, aux)
305 struct device *parent, *self;
306 void *aux;
307 {
308 #if defined(SUN4)
309 struct mainbus_attach_args *ma = aux;
310 struct vmebus_softc *sc = (struct vmebus_softc *)self;
311 struct vme_busattach_args vba;
312
313 if (self->dv_unit > 0) {
314 printf(" unsupported\n");
315 return;
316 }
317
318 sc->sc_bustag = ma->ma_bustag;
319 sc->sc_dmatag = ma->ma_dmatag;
320
321 if (ma->ma_bp != NULL && strcmp(ma->ma_bp->name, "vme") == 0) {
322 sc->sc_bp = ma->ma_bp + 1;
323 bootpath_store(1, sc->sc_bp);
324 }
325
326 /* VME interrupt entry point */
327 sc->sc_vmeintr = vmeintr4;
328
329 /*XXX*/ sparc_vme_chipset_tag.cookie = self;
330 /*XXX*/ sparc_vme4_dma_tag._cookie = self;
331
332 vba.vba_bustag = &sparc_vme_bus_tag;
333 vba.vba_chipset_tag = &sparc_vme_chipset_tag;
334 vba.vba_dmatag = &sparc_vme4_dma_tag;
335
336 /* Fall back to our own `range' construction */
337 sc->sc_range = vmebus_translations;
338 sc->sc_nrange =
339 sizeof(vmebus_translations)/sizeof(vmebus_translations[0]);
340
341 vme_dvmamap = extent_create("vmedvma", VME4_DVMA_BASE, VME4_DVMA_END,
342 M_DEVBUF, 0, 0, EX_NOWAIT);
343 if (vme_dvmamap == NULL)
344 panic("vme: unable to allocate DVMA map");
345
346 printf("\n");
347 (void)config_search(vmesearch, self, &vba);
348
349 bootpath_store(1, NULL);
350 #endif
351 return;
352 }
353
354 /* sun4m vmebus */
355 void
356 vmeattach_iommu(parent, self, aux)
357 struct device *parent, *self;
358 void *aux;
359 {
360 #if defined(SUN4M)
361 struct vmebus_softc *sc = (struct vmebus_softc *)self;
362 struct iommu_attach_args *ia = aux;
363 struct vme_busattach_args vba;
364 bus_space_handle_t bh;
365 int node;
366 int cline;
367
368 if (self->dv_unit > 0) {
369 printf(" unsupported\n");
370 return;
371 }
372
373 sc->sc_bustag = ia->iom_bustag;
374 sc->sc_dmatag = ia->iom_dmatag;
375
376 /* VME interrupt entry point */
377 sc->sc_vmeintr = vmeintr4m;
378
379 /*XXX*/ sparc_vme_chipset_tag.cookie = self;
380 /*XXX*/ sparc_vme4m_dma_tag._cookie = self;
381 sparc_vme_bus_tag.sparc_bus_barrier = sparc_vme4m_barrier;
382
383 vba.vba_bustag = &sparc_vme_bus_tag;
384 vba.vba_chipset_tag = &sparc_vme_chipset_tag;
385 vba.vba_dmatag = &sparc_vme4m_dma_tag;
386
387 node = ia->iom_node;
388
389 /*
390 * Map VME control space
391 */
392 if (ia->iom_nreg < 2) {
393 printf("%s: only %d register sets\n", self->dv_xname,
394 ia->iom_nreg);
395 return;
396 }
397
398 if (bus_space_map2(ia->iom_bustag,
399 (bus_type_t)ia->iom_reg[0].ior_iospace,
400 (bus_addr_t)ia->iom_reg[0].ior_pa,
401 (bus_size_t)ia->iom_reg[0].ior_size,
402 BUS_SPACE_MAP_LINEAR,
403 0, &bh) != 0) {
404 panic("%s: can't map vmebusreg", self->dv_xname);
405 }
406 sc->sc_reg = (struct vmebusreg *)bh;
407
408 if (bus_space_map2(ia->iom_bustag,
409 (bus_type_t)ia->iom_reg[1].ior_iospace,
410 (bus_addr_t)ia->iom_reg[1].ior_pa,
411 (bus_size_t)ia->iom_reg[1].ior_size,
412 BUS_SPACE_MAP_LINEAR,
413 0, &bh) != 0) {
414 panic("%s: can't map vmebusvec", self->dv_xname);
415 }
416 sc->sc_vec = (struct vmebusvec *)bh;
417
418 /*
419 * Map VME IO cache tags and flush control.
420 */
421 if (bus_space_map2(ia->iom_bustag,
422 (bus_type_t)ia->iom_reg[1].ior_iospace,
423 (bus_addr_t)ia->iom_reg[1].ior_pa + VME_IOC_TAGOFFSET,
424 VME_IOC_SIZE,
425 BUS_SPACE_MAP_LINEAR,
426 0, &bh) != 0) {
427 panic("%s: can't map IOC tags", self->dv_xname);
428 }
429 sc->sc_ioctags = (u_int32_t *)bh;
430
431 if (bus_space_map2(ia->iom_bustag,
432 (bus_type_t)ia->iom_reg[1].ior_iospace,
433 (bus_addr_t)ia->iom_reg[1].ior_pa+VME_IOC_FLUSHOFFSET,
434 VME_IOC_SIZE,
435 BUS_SPACE_MAP_LINEAR,
436 0, &bh) != 0) {
437 panic("%s: can't map IOC flush registers", self->dv_xname);
438 }
439 sc->sc_iocflush = (u_int32_t *)bh;
440
441 /*XXX*/ sparc_vme_bus_tag.cookie = sc->sc_reg;
442
443 /*
444 * Get "range" property.
445 */
446 if (getprop(node, "ranges", sizeof(struct rom_range),
447 &sc->sc_nrange, (void **)&sc->sc_range) != 0) {
448 panic("%s: can't get ranges property", self->dv_xname);
449 }
450
451 vmebus_sc = sc;
452 vmeerr_handler = sparc_vme_error;
453
454 /*
455 * Invalidate all IO-cache entries.
456 */
457 for (cline = VME_IOC_SIZE/VME_IOC_LINESZ; cline > 0;) {
458 sc->sc_ioctags[--cline] = 0;
459 }
460
461 /* Enable IO-cache */
462 sc->sc_reg->vmebus_cr |= VMEBUS_CR_C;
463
464 printf(": version 0x%x\n",
465 sc->sc_reg->vmebus_cr & VMEBUS_CR_IMPL);
466
467 (void)config_search(vmesearch, self, &vba);
468 #endif
469 }
470
471 #if defined(SUN4M)
472 static int
473 sparc_vme_error()
474 {
475 struct vmebus_softc *sc = vmebus_sc;
476 u_int32_t afsr, afpa;
477 char bits[64];
478
479 afsr = sc->sc_reg->vmebus_afsr,
480 afpa = sc->sc_reg->vmebus_afar;
481 printf("VME error:\n\tAFSR %s\n",
482 bitmask_snprintf(afsr, VMEBUS_AFSR_BITS, bits, sizeof(bits)));
483 printf("\taddress: 0x%x%x\n", afsr, afpa);
484 return (0);
485 }
486 #endif
487
488 int
489 vmebus_translate(sc, mod, addr, btp, bap)
490 struct vmebus_softc *sc;
491 vme_mod_t mod;
492 vme_addr_t addr;
493 bus_type_t *btp;
494 bus_addr_t *bap;
495 {
496 int i;
497
498 for (i = 0; i < sc->sc_nrange; i++) {
499
500 if (sc->sc_range[i].cspace != mod)
501 continue;
502
503 /* We've found the connection to the parent bus */
504 *bap = sc->sc_range[i].poffset + addr;
505 *btp = sc->sc_range[i].pspace;
506 return (0);
507 }
508 return (ENOENT);
509 }
510
511 int
512 sparc_vme_probe(cookie, tag, addr, offset, size, mod, callback, arg)
513 void *cookie;
514 bus_space_tag_t tag;
515 vme_addr_t addr;
516 size_t offset;
517 vme_size_t size;
518 int mod;
519 int (*callback) __P((void *, void *));
520 void *arg;
521 {
522 struct vmebus_softc *sc = (struct vmebus_softc *)cookie;
523 bus_type_t iospace;
524 bus_addr_t paddr;
525
526 if (vmebus_translate(sc, mod, addr, &iospace, &paddr) != 0)
527 return (0);
528
529 return (bus_space_probe(sc->sc_bustag, iospace, paddr, size, offset,
530 0, callback, arg));
531 }
532
533 int
534 sparc_vme_map(cookie, addr, size, mod, tag, hp)
535 void *cookie;
536 vme_addr_t addr;
537 vme_size_t size;
538 int mod;
539 bus_space_tag_t tag;
540 bus_space_handle_t *hp;
541 {
542 struct vmebus_softc *sc = (struct vmebus_softc *)cookie;
543 bus_type_t iospace;
544 bus_addr_t paddr;
545 int error;
546
547 error = vmebus_translate(sc, mod, addr, &iospace, &paddr);
548 if (error != 0)
549 return (error);
550
551 return (bus_space_map2(sc->sc_bustag, iospace, paddr, size, 0, 0, hp));
552 }
553
554 int
555 sparc_vme_mmap_cookie(cookie, addr, mod, tag, hp)
556 void *cookie;
557 vme_addr_t addr;
558 int mod;
559 bus_space_tag_t tag;
560 bus_space_handle_t *hp;
561 {
562 struct vmebus_softc *sc = (struct vmebus_softc *)cookie;
563 bus_type_t iospace;
564 bus_addr_t paddr;
565 int error;
566
567 error = vmebus_translate(sc, mod, addr, &iospace, &paddr);
568 if (error != 0)
569 return (error);
570
571 return (bus_space_mmap(sc->sc_bustag, iospace, paddr, 0, hp));
572 }
573
574 #if defined(SUN4M)
575 void
576 sparc_vme4m_barrier(t, h, offset, size, flags)
577 bus_space_tag_t t;
578 bus_space_handle_t h;
579 bus_size_t offset;
580 bus_size_t size;
581 int flags;
582 {
583 struct vmebusreg *vbp = (struct vmebusreg *)t->cookie;
584
585 /* Read async fault status to flush write-buffers */
586 (*(volatile int *)&vbp->vmebus_afsr);
587 }
588 #endif
589
590
591
592 /*
593 * VME Interrupt Priority Level to sparc Processor Interrupt Level.
594 */
595 static int vme_ipl_to_pil[] = {
596 0,
597 2,
598 3,
599 5,
600 7,
601 9,
602 11,
603 13
604 };
605
606
607 /*
608 * All VME device interrupts go through vmeintr(). This function reads
609 * the VME vector from the bus, then dispatches the device interrupt
610 * handler. All handlers for devices that map to the same Processor
611 * Interrupt Level (according to the table above) are on a linked list
612 * of `sparc_vme_intr_handle' structures. The head of which is passed
613 * down as the argument to `vmeintr(void *arg)'.
614 */
615 struct sparc_vme_intr_handle {
616 struct intrhand ih;
617 struct sparc_vme_intr_handle *next;
618 int vec; /* VME interrupt vector */
619 int pri; /* VME interrupt priority */
620 struct vmebus_softc *sc;/*XXX*/
621 };
622
623 #if defined(SUN4)
624 int
625 vmeintr4(arg)
626 void *arg;
627 {
628 struct sparc_vme_intr_handle *ihp = (vme_intr_handle_t)arg;
629 int level, vec;
630 int i = 0;
631
632 level = (ihp->pri << 1) | 1;
633
634 vec = ldcontrolb((caddr_t)(AC_VMEINTVEC | level));
635
636 if (vec == -1) {
637 printf("vme: spurious interrupt\n");
638 return 1; /* XXX - pretend we handled it, for now */
639 }
640
641 for (; ihp; ihp = ihp->next)
642 if (ihp->vec == vec && ihp->ih.ih_fun)
643 i += (ihp->ih.ih_fun)(ihp->ih.ih_arg);
644 return (i);
645 }
646 #endif
647
648 #if defined(SUN4M)
649 int
650 vmeintr4m(arg)
651 void *arg;
652 {
653 struct sparc_vme_intr_handle *ihp = (vme_intr_handle_t)arg;
654 int level, vec;
655 int i = 0;
656
657 level = (ihp->pri << 1) | 1;
658
659 #if 0
660 int pending;
661
662 /* Flush VME <=> Sbus write buffers */
663 (*(volatile int *)&ihp->sc->sc_reg->vmebus_afsr);
664
665 pending = *((int*)ICR_SI_PEND);
666 if ((pending & SINTR_VME(ihp->pri)) == 0) {
667 printf("vmeintr: non pending at pri %x(p 0x%x)\n",
668 ihp->pri, pending);
669 return (0);
670 }
671 #endif
672 #if 0
673 /* Why gives this a bus timeout sometimes? */
674 vec = ihp->sc->sc_vec->vmebusvec[level];
675 #else
676 /* so, arrange to catch the fault... */
677 {
678 extern struct user *proc0paddr;
679 extern int fkbyte __P((caddr_t, struct pcb *));
680 caddr_t addr = (caddr_t)&ihp->sc->sc_vec->vmebusvec[level];
681 struct pcb *xpcb;
682 u_long saveonfault;
683 int s;
684
685 s = splhigh();
686 if (curproc == NULL)
687 xpcb = (struct pcb *)proc0paddr;
688 else
689 xpcb = &curproc->p_addr->u_pcb;
690
691 saveonfault = (u_long)xpcb->pcb_onfault;
692 vec = fkbyte(addr, xpcb);
693 xpcb->pcb_onfault = (caddr_t)saveonfault;
694
695 splx(s);
696 }
697 #endif
698
699 if (vec == -1) {
700 printf("vme: spurious interrupt: ");
701 printf("SI: 0x%x, VME AFSR: 0x%x, VME AFAR 0x%x\n",
702 *((int*)ICR_SI_PEND),
703 ihp->sc->sc_reg->vmebus_afsr,
704 ihp->sc->sc_reg->vmebus_afar);
705 return (1); /* XXX - pretend we handled it, for now */
706 }
707
708 for (; ihp; ihp = ihp->next)
709 if (ihp->vec == vec && ihp->ih.ih_fun)
710 i += (ihp->ih.ih_fun)(ihp->ih.ih_arg);
711 return (i);
712 }
713 #endif
714
715 int
716 sparc_vme_intr_map(cookie, vec, pri, ihp)
717 void *cookie;
718 int vec;
719 int pri;
720 vme_intr_handle_t *ihp;
721 {
722 struct sparc_vme_intr_handle *ih;
723
724 ih = (vme_intr_handle_t)
725 malloc(sizeof(struct sparc_vme_intr_handle), M_DEVBUF, M_NOWAIT);
726 ih->pri = pri;
727 ih->vec = vec;
728 ih->sc = cookie;/*XXX*/
729 *ihp = ih;
730 return (0);
731 }
732
733 void *
734 sparc_vme_intr_establish(cookie, vih, func, arg)
735 void *cookie;
736 vme_intr_handle_t vih;
737 int (*func) __P((void *));
738 void *arg;
739 {
740 struct vmebus_softc *sc = (struct vmebus_softc *)cookie;
741 struct sparc_vme_intr_handle *svih =
742 (struct sparc_vme_intr_handle *)vih;
743 struct intrhand *ih;
744 int level;
745
746 /* Translate VME priority to processor IPL */
747 level = vme_ipl_to_pil[svih->pri];
748
749 svih->ih.ih_fun = func;
750 svih->ih.ih_arg = arg;
751 svih->next = NULL;
752
753 /* ensure the interrupt subsystem will call us at this level */
754 for (ih = intrhand[level]; ih != NULL; ih = ih->ih_next)
755 if (ih->ih_fun == sc->sc_vmeintr)
756 break;
757
758 if (ih == NULL) {
759 ih = (struct intrhand *)
760 malloc(sizeof(struct intrhand), M_DEVBUF, M_NOWAIT);
761 if (ih == NULL)
762 panic("vme_addirq");
763 bzero(ih, sizeof *ih);
764 ih->ih_fun = sc->sc_vmeintr;
765 ih->ih_arg = vih;
766 intr_establish(level, ih);
767 } else {
768 svih->next = (vme_intr_handle_t)ih->ih_arg;
769 ih->ih_arg = vih;
770 }
771 return (NULL);
772 }
773
774 void
775 sparc_vme_unmap(cookie)
776 void * cookie;
777 {
778 /* Not implemented */
779 panic("sparc_vme_unmap");
780 }
781
782 void
783 sparc_vme_intr_disestablish(cookie, a)
784 void *cookie;
785 void *a;
786 {
787 /* Not implemented */
788 panic("sparc_vme_intr_disestablish");
789 }
790
791
792
793 /*
794 * VME DMA functions.
795 */
796
797 #if defined(SUN4)
798 int
799 sparc_vme4_dmamap_load(t, map, buf, buflen, p, flags)
800 bus_dma_tag_t t;
801 bus_dmamap_t map;
802 void *buf;
803 bus_size_t buflen;
804 struct proc *p;
805 int flags;
806 {
807 bus_addr_t dvmaddr;
808 bus_size_t sgsize;
809 vaddr_t vaddr;
810 pmap_t pmap;
811 int pagesz = PAGE_SIZE;
812 int error;
813
814 error = extent_alloc(vme_dvmamap, round_page(buflen), NBPG,
815 map->_dm_boundary,
816 (flags & BUS_DMA_NOWAIT) == 0
817 ? EX_WAITOK
818 : EX_NOWAIT,
819 (u_long *)&dvmaddr);
820 if (error != 0)
821 return (error);
822
823 vaddr = (vaddr_t)buf;
824 map->dm_mapsize = buflen;
825 map->dm_nsegs = 1;
826 map->dm_segs[0].ds_addr = dvmaddr + (vaddr & PGOFSET);
827 map->dm_segs[0].ds_len = buflen;
828
829 pmap = (p == NULL) ? pmap_kernel() : p->p_vmspace->vm_map.pmap;
830
831 for (; buflen > 0; ) {
832 paddr_t pa;
833 /*
834 * Get the physical address for this page.
835 */
836 pa = pmap_extract(pmap, vaddr);
837
838 /*
839 * Compute the segment size, and adjust counts.
840 */
841 sgsize = pagesz - ((u_long)vaddr & (pagesz - 1));
842 if (buflen < sgsize)
843 sgsize = buflen;
844
845 #ifdef notyet
846 if (have_iocache)
847 curaddr |= PG_IOC;
848 #endif
849 pmap_enter(pmap_kernel(), dvmaddr,
850 (pa & ~(pagesz-1)) | PMAP_NC,
851 VM_PROT_READ|VM_PROT_WRITE, 1, 0);
852
853 dvmaddr += pagesz;
854 vaddr += sgsize;
855 buflen -= sgsize;
856 }
857
858 /* Adjust DVMA address to VME view */
859 map->dm_segs[0].ds_addr -= VME4_DVMA_BASE;
860 return (0);
861 }
862
863 void
864 sparc_vme4_dmamap_unload(t, map)
865 bus_dma_tag_t t;
866 bus_dmamap_t map;
867 {
868 bus_addr_t addr;
869 bus_size_t len;
870
871 /* Go from VME to CPU view */
872 map->dm_segs[0].ds_addr += VME4_DVMA_BASE;
873
874 addr = map->dm_segs[0].ds_addr & ~PGOFSET;
875 len = round_page(map->dm_segs[0].ds_len);
876
877 /* Remove double-mapping in DVMA space */
878 pmap_remove(pmap_kernel(), addr, addr + len);
879
880 /* Release DVMA space */
881 if (extent_free(vme_dvmamap, addr, len, EX_NOWAIT) != 0)
882 printf("warning: %ld of DVMA space lost\n", len);
883
884 /* Mark the mappings as invalid. */
885 map->dm_mapsize = 0;
886 map->dm_nsegs = 0;
887 }
888
889 int
890 sparc_vme4_dmamem_alloc(t, size, alignment, boundary, segs, nsegs, rsegs, flags)
891 bus_dma_tag_t t;
892 bus_size_t size, alignment, boundary;
893 bus_dma_segment_t *segs;
894 int nsegs;
895 int *rsegs;
896 int flags;
897 {
898 bus_addr_t dvmaddr;
899 struct pglist *mlist;
900 vm_page_t m;
901 paddr_t pa;
902 int error;
903
904 size = round_page(size);
905 error = _bus_dmamem_alloc_common(t, size, alignment, boundary,
906 segs, nsegs, rsegs, flags);
907 if (error != 0)
908 return (error);
909
910 if (extent_alloc(vme_dvmamap, size, alignment, boundary,
911 (flags & BUS_DMA_NOWAIT) == 0 ? EX_WAITOK : EX_NOWAIT,
912 (u_long *)&dvmaddr) != 0)
913 return (ENOMEM);
914
915 /*
916 * Compute the location, size, and number of segments actually
917 * returned by the VM code.
918 */
919 segs[0].ds_addr = dvmaddr - VME4_DVMA_BASE;
920 segs[0].ds_len = size;
921 *rsegs = 1;
922
923 /* Map memory into DVMA space */
924 mlist = segs[0]._ds_mlist;
925 for (m = TAILQ_FIRST(mlist); m != NULL; m = TAILQ_NEXT(m,pageq)) {
926 pa = VM_PAGE_TO_PHYS(m);
927
928 #ifdef notyet
929 if (have_iocache)
930 pa |= PG_IOC;
931 #endif
932 pmap_enter(pmap_kernel(), dvmaddr, pa | PMAP_NC,
933 VM_PROT_READ|VM_PROT_WRITE, 1, 0);
934 dvmaddr += PAGE_SIZE;
935 }
936
937 return (0);
938 }
939
940 void
941 sparc_vme4_dmamem_free(t, segs, nsegs)
942 bus_dma_tag_t t;
943 bus_dma_segment_t *segs;
944 int nsegs;
945 {
946 bus_addr_t addr;
947 bus_size_t len;
948
949 addr = segs[0].ds_addr + VME4_DVMA_BASE;
950 len = round_page(segs[0].ds_len);
951
952 /* Remove DVMA kernel map */
953 pmap_remove(pmap_kernel(), addr, addr + len);
954
955 /* Release DVMA address range */
956 if (extent_free(vme_dvmamap, addr, len, EX_NOWAIT) != 0)
957 printf("warning: %ld of DVMA space lost\n", len);
958
959 /*
960 * Return the list of pages back to the VM system.
961 */
962 _bus_dmamem_free_common(t, segs, nsegs);
963 }
964
965 void
966 sparc_vme4_dmamap_sync(t, map, offset, len, ops)
967 bus_dma_tag_t t;
968 bus_dmamap_t map;
969 bus_addr_t offset;
970 bus_size_t len;
971 int ops;
972 {
973
974 /*
975 * XXX Should perform cache flushes as necessary (e.g. 4/200 W/B).
976 * Currently the cache is flushed in bus_dma_load()...
977 */
978 }
979 #endif /* SUN4 */
980
981 #if defined(SUN4M)
982 static int
983 sparc_vme4m_dmamap_create (t, size, nsegments, maxsegsz, boundary, flags, dmamp)
984 bus_dma_tag_t t;
985 bus_size_t size;
986 int nsegments;
987 bus_size_t maxsegsz;
988 bus_size_t boundary;
989 int flags;
990 bus_dmamap_t *dmamp;
991 {
992 struct vmebus_softc *sc = (struct vmebus_softc *)t->_cookie;
993 int error;
994
995 /* XXX - todo: allocate DVMA addresses from assigned ranges:
996 upper 8MB for A32 space; upper 1MB for A24 space */
997 error = bus_dmamap_create(sc->sc_dmatag, size, nsegments, maxsegsz,
998 boundary, flags, dmamp);
999 if (error != 0)
1000 return (error);
1001
1002 #if 0
1003 /* VME DVMA addresses must always be 8K aligned */
1004 (*dmamp)->_dm_align = 8192;
1005 #endif
1006
1007 return (0);
1008 }
1009
1010 int
1011 sparc_vme4m_dmamap_load(t, map, buf, buflen, p, flags)
1012 bus_dma_tag_t t;
1013 bus_dmamap_t map;
1014 void *buf;
1015 bus_size_t buflen;
1016 struct proc *p;
1017 int flags;
1018 {
1019 struct vmebus_softc *sc = (struct vmebus_softc *)t->_cookie;
1020 volatile u_int32_t *ioctags;
1021 int error;
1022
1023 buflen = (buflen + VME_IOC_PAGESZ - 1) & ~(VME_IOC_PAGESZ - 1);
1024 error = bus_dmamap_load(sc->sc_dmatag, map, buf, buflen, p, flags);
1025 if (error != 0)
1026 return (error);
1027
1028 /* allocate IO cache entries for this range */
1029 ioctags = sc->sc_ioctags + VME_IOC_LINE(map->dm_segs[0].ds_addr);
1030 for (;buflen > 0;) {
1031 *ioctags = VME_IOC_IC | VME_IOC_W;
1032 ioctags += VME_IOC_LINESZ/sizeof(*ioctags);
1033 buflen -= VME_IOC_PAGESZ;
1034 }
1035 return (0);
1036 }
1037
1038
1039 void
1040 sparc_vme4m_dmamap_unload(t, map)
1041 bus_dma_tag_t t;
1042 bus_dmamap_t map;
1043 {
1044 struct vmebus_softc *sc = (struct vmebus_softc *)t->_cookie;
1045 volatile u_int32_t *flushregs;
1046 int len;
1047
1048 /* Flush VME IO cache */
1049 len = map->dm_segs[0].ds_len;
1050 flushregs = sc->sc_iocflush + VME_IOC_LINE(map->dm_segs[0].ds_addr);
1051 for (;len > 0;) {
1052 *flushregs = 0;
1053 flushregs += VME_IOC_LINESZ/sizeof(*flushregs);
1054 len -= VME_IOC_PAGESZ;
1055 }
1056 /* Read a tag to synchronize the IOC flushes */
1057 (*sc->sc_ioctags);
1058
1059 bus_dmamap_unload(sc->sc_dmatag, map);
1060 }
1061
1062 int
1063 sparc_vme4m_dmamem_alloc(t, size, alignmnt, boundary, segs, nsegs, rsegs, flags)
1064 bus_dma_tag_t t;
1065 bus_size_t size, alignmnt, boundary;
1066 bus_dma_segment_t *segs;
1067 int nsegs;
1068 int *rsegs;
1069 int flags;
1070 {
1071 struct vmebus_softc *sc = (struct vmebus_softc *)t->_cookie;
1072 int error;
1073
1074 error = bus_dmamem_alloc(sc->sc_dmatag, size, alignmnt, boundary,
1075 segs, nsegs, rsegs, flags);
1076 if (error != 0)
1077 return (error);
1078
1079 return (0);
1080 }
1081
1082 void
1083 sparc_vme4m_dmamem_free(t, segs, nsegs)
1084 bus_dma_tag_t t;
1085 bus_dma_segment_t *segs;
1086 int nsegs;
1087 {
1088 struct vmebus_softc *sc = (struct vmebus_softc *)t->_cookie;
1089
1090 bus_dmamem_free(sc->sc_dmatag, segs, nsegs);
1091 }
1092
1093 void
1094 sparc_vme4m_dmamap_sync(t, map, offset, len, ops)
1095 bus_dma_tag_t t;
1096 bus_dmamap_t map;
1097 bus_addr_t offset;
1098 bus_size_t len;
1099 int ops;
1100 {
1101
1102 /*
1103 * XXX Should perform cache flushes as necessary.
1104 */
1105 }
1106 #endif /* SUN4M */
1107
1108 int
1109 sparc_vme_dmamem_map(t, segs, nsegs, size, kvap, flags)
1110 bus_dma_tag_t t;
1111 bus_dma_segment_t *segs;
1112 int nsegs;
1113 size_t size;
1114 caddr_t *kvap;
1115 int flags;
1116 {
1117 struct vmebus_softc *sc = (struct vmebus_softc *)t->_cookie;
1118
1119 return (bus_dmamem_map(sc->sc_dmatag, segs, nsegs, size, kvap, flags));
1120 }
1121