vme_machdep.c revision 1.18 1 /* $NetBSD: vme_machdep.c,v 1.18 1999/04/14 10:28:23 pk Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/param.h>
40 #include <sys/extent.h>
41 #include <sys/systm.h>
42 #include <sys/device.h>
43 #include <sys/malloc.h>
44
45 #include <sys/proc.h>
46 #include <sys/user.h>
47 #include <sys/syslog.h>
48
49 #include <vm/vm.h>
50
51 #define _SPARC_BUS_DMA_PRIVATE
52 #include <machine/bus.h>
53 #include <sparc/sparc/iommuvar.h>
54 #include <machine/autoconf.h>
55 #include <machine/pmap.h>
56 #include <machine/oldmon.h>
57 #include <machine/cpu.h>
58 #include <machine/ctlreg.h>
59
60 #include <dev/vme/vmevar.h>
61
62 #include <sparc/sparc/asm.h>
63 #include <sparc/sparc/vaddrs.h>
64 #include <sparc/sparc/cpuvar.h>
65 #include <sparc/dev/vmereg.h>
66
67 struct vmebus_softc {
68 struct device sc_dev; /* base device */
69 bus_space_tag_t sc_bustag;
70 bus_dma_tag_t sc_dmatag;
71 struct vmebusreg *sc_reg; /* VME control registers */
72 struct vmebusvec *sc_vec; /* VME interrupt vector */
73 struct rom_range *sc_range; /* ROM range property */
74 int sc_nrange;
75 volatile u_int32_t *sc_ioctags; /* VME IO-cache tag registers */
76 volatile u_int32_t *sc_iocflush;/* VME IO-cache flush registers */
77 int (*sc_vmeintr) __P((void *));
78 struct bootpath *sc_bp;
79 };
80 struct vmebus_softc *vmebus_sc;/*XXX*/
81
82 /* autoconfiguration driver */
83 static int vmematch_iommu __P((struct device *, struct cfdata *, void *));
84 static void vmeattach_iommu __P((struct device *, struct device *, void *));
85 static int vmematch_mainbus __P((struct device *, struct cfdata *, void *));
86 static void vmeattach_mainbus __P((struct device *, struct device *, void *));
87 #if defined(SUN4)
88 int vmeintr4 __P((void *));
89 #endif
90 #if defined(SUN4M)
91 int vmeintr4m __P((void *));
92 static int sparc_vme_error __P((void));
93 #endif
94
95
96 static int sparc_vme_probe __P((void *, bus_space_tag_t, vme_addr_t,
97 size_t, vme_size_t, vme_mod_t,
98 int (*) __P((void *, void *)), void *));
99 static int sparc_vme_map __P((void *, vme_addr_t, vme_size_t, vme_mod_t,
100 bus_space_tag_t, bus_space_handle_t *));
101 static void sparc_vme_unmap __P((void *));
102 static int sparc_vme_mmap_cookie __P((void *, vme_addr_t, vme_mod_t,
103 bus_space_tag_t, bus_space_handle_t *));
104 static int sparc_vme_intr_map __P((void *, int, int, vme_intr_handle_t *));
105 static void * sparc_vme_intr_establish __P((void *, vme_intr_handle_t,
106 int (*) __P((void *)), void *));
107 static void sparc_vme_intr_disestablish __P((void *, void *));
108
109 static int vmebus_translate __P((struct vmebus_softc *, vme_mod_t,
110 vme_addr_t, bus_type_t *, bus_addr_t *));
111 static void sparc_vme_bus_establish __P((void *, struct device *));
112 #if defined(SUN4M)
113 static void sparc_vme4m_barrier __P(( bus_space_tag_t, bus_space_handle_t,
114 bus_size_t, bus_size_t, int));
115
116 #endif
117
118 /*
119 * DMA functions.
120 */
121 #if defined(SUN4)
122 static int sparc_vme4_dmamap_load __P((bus_dma_tag_t, bus_dmamap_t, void *,
123 bus_size_t, struct proc *, int));
124 static void sparc_vme4_dmamap_unload __P((bus_dma_tag_t, bus_dmamap_t));
125 static void sparc_vme4_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t,
126 bus_addr_t, bus_size_t, int));
127
128 static int sparc_vme4_dmamem_alloc __P((bus_dma_tag_t, bus_size_t,
129 bus_size_t, bus_size_t, bus_dma_segment_t *,
130 int, int *, int));
131 static void sparc_vme4_dmamem_free __P((bus_dma_tag_t,
132 bus_dma_segment_t *, int));
133 #endif
134
135 #if defined(SUN4M)
136 static int sparc_vme4m_dmamap_create __P((bus_dma_tag_t, bus_size_t, int,
137 bus_size_t, bus_size_t, int, bus_dmamap_t *));
138
139 static int sparc_vme4m_dmamap_load __P((bus_dma_tag_t, bus_dmamap_t, void *,
140 bus_size_t, struct proc *, int));
141 static void sparc_vme4m_dmamap_unload __P((bus_dma_tag_t, bus_dmamap_t));
142 static void sparc_vme4m_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t,
143 bus_addr_t, bus_size_t, int));
144
145 static int sparc_vme4m_dmamem_alloc __P((bus_dma_tag_t, bus_size_t,
146 bus_size_t, bus_size_t, bus_dma_segment_t *,
147 int, int *, int));
148 static void sparc_vme4m_dmamem_free __P((bus_dma_tag_t,
149 bus_dma_segment_t *, int));
150 #endif
151
152 static int sparc_vme_dmamem_map __P((bus_dma_tag_t, bus_dma_segment_t *,
153 int, size_t, caddr_t *, int));
154 #if 0
155 static void sparc_vme_dmamap_destroy __P((bus_dma_tag_t, bus_dmamap_t));
156 static void sparc_vme_dmamem_unmap __P((bus_dma_tag_t, caddr_t, size_t));
157 static int sparc_vme_dmamem_mmap __P((bus_dma_tag_t,
158 bus_dma_segment_t *, int, int, int, int));
159 #endif
160
161 struct cfattach vme_mainbus_ca = {
162 sizeof(struct vmebus_softc), vmematch_mainbus, vmeattach_mainbus
163 };
164
165 struct cfattach vme_iommu_ca = {
166 sizeof(struct vmebus_softc), vmematch_iommu, vmeattach_iommu
167 };
168
169 int (*vmeerr_handler) __P((void));
170
171 /* If the PROM does not provide the `ranges' property, we make up our own */
172 struct rom_range vmebus_translations[] = {
173 #define _DS (VMEMOD_D|VMEMOD_S)
174 { VMEMOD_A16|_DS, 0, PMAP_VME16, 0xffff0000, 0 },
175 { VMEMOD_A24|_DS, 0, PMAP_VME16, 0xff000000, 0 },
176 { VMEMOD_A32|_DS, 0, PMAP_VME16, 0x00000000, 0 },
177 { VMEMOD_A16|VMEMOD_D32|_DS, 0, PMAP_VME32, 0xffff0000, 0 },
178 { VMEMOD_A24|VMEMOD_D32|_DS, 0, PMAP_VME32, 0xff000000, 0 },
179 { VMEMOD_A32|VMEMOD_D32|_DS, 0, PMAP_VME32, 0x00000000, 0 }
180 #undef _DS
181 };
182
183 /*
184 * DMA on sun4 VME devices use the last MB of virtual space, which
185 * is mapped by hardware onto the first MB of VME space.
186 */
187 struct extent *vme_dvmamap;
188
189 struct sparc_bus_space_tag sparc_vme_bus_tag = {
190 NULL, /* cookie */
191 NULL, /* parent bus tag */
192 NULL, /* bus_map */
193 NULL, /* bus_unmap */
194 NULL, /* bus_subregion */
195 NULL /* barrier */
196 };
197
198 struct vme_chipset_tag sparc_vme_chipset_tag = {
199 NULL,
200 sparc_vme_probe,
201 sparc_vme_map,
202 sparc_vme_unmap,
203 sparc_vme_mmap_cookie,
204 sparc_vme_intr_map,
205 sparc_vme_intr_establish,
206 sparc_vme_intr_disestablish,
207 sparc_vme_bus_establish
208 };
209
210
211 #if defined(SUN4)
212 struct sparc_bus_dma_tag sparc_vme4_dma_tag = {
213 NULL, /* cookie */
214 _bus_dmamap_create,
215 _bus_dmamap_destroy,
216 sparc_vme4_dmamap_load,
217 _bus_dmamap_load_mbuf,
218 _bus_dmamap_load_uio,
219 _bus_dmamap_load_raw,
220 sparc_vme4_dmamap_unload,
221 sparc_vme4_dmamap_sync,
222
223 sparc_vme4_dmamem_alloc,
224 sparc_vme4_dmamem_free,
225 sparc_vme_dmamem_map,
226 _bus_dmamem_unmap,
227 _bus_dmamem_mmap
228 };
229 #endif
230
231 #if defined(SUN4M)
232 struct sparc_bus_dma_tag sparc_vme4m_dma_tag = {
233 NULL, /* cookie */
234 sparc_vme4m_dmamap_create,
235 _bus_dmamap_destroy,
236 sparc_vme4m_dmamap_load,
237 _bus_dmamap_load_mbuf,
238 _bus_dmamap_load_uio,
239 _bus_dmamap_load_raw,
240 sparc_vme4m_dmamap_unload,
241 sparc_vme4m_dmamap_sync,
242
243 sparc_vme4m_dmamem_alloc,
244 sparc_vme4m_dmamem_free,
245 sparc_vme_dmamem_map,
246 _bus_dmamem_unmap,
247 _bus_dmamem_mmap
248 };
249 #endif
250
251
252 void
253 sparc_vme_bus_establish(cookie, dev)
254 void *cookie;
255 struct device *dev;
256 {
257 struct vmebus_softc *sc = (struct vmebus_softc *)cookie;
258 struct bootpath *bp = sc->sc_bp;
259 char *name;
260
261 name = dev->dv_cfdata->cf_driver->cd_name;
262 #ifdef DEBUG
263 printf("sparc_vme_bus_establish: %s%d\n", name, dev->dv_unit);
264 #endif
265 if (bp != NULL && strcmp(bp->name, name) == 0 &&
266 dev->dv_unit == bp->val[1]) {
267 bp->dev = dev;
268 #ifdef DEBUG
269 printf("sparc_vme_bus_establish: on the boot path\n");
270 #endif
271 sc->sc_bp++;
272 bootpath_store(1, sc->sc_bp);
273 }
274 }
275
276
277 int
278 vmematch_mainbus(parent, cf, aux)
279 struct device *parent;
280 struct cfdata *cf;
281 void *aux;
282 {
283 struct mainbus_attach_args *ma = aux;
284
285 if (!CPU_ISSUN4)
286 return (0);
287
288 return (strcmp(cf->cf_driver->cd_name, ma->ma_name) == 0);
289 }
290
291 int
292 vmematch_iommu(parent, cf, aux)
293 struct device *parent;
294 struct cfdata *cf;
295 void *aux;
296 {
297 struct iommu_attach_args *ia = aux;
298
299 return (strcmp(cf->cf_driver->cd_name, ia->iom_name) == 0);
300 }
301
302
303 void
304 vmeattach_mainbus(parent, self, aux)
305 struct device *parent, *self;
306 void *aux;
307 {
308 #if defined(SUN4)
309 struct mainbus_attach_args *ma = aux;
310 struct vmebus_softc *sc = (struct vmebus_softc *)self;
311 struct vme_busattach_args vba;
312
313 if (self->dv_unit > 0) {
314 printf(" unsupported\n");
315 return;
316 }
317
318 sc->sc_bustag = ma->ma_bustag;
319 sc->sc_dmatag = ma->ma_dmatag;
320
321 if (ma->ma_bp != NULL && strcmp(ma->ma_bp->name, "vme") == 0) {
322 sc->sc_bp = ma->ma_bp + 1;
323 bootpath_store(1, sc->sc_bp);
324 }
325
326 /* VME interrupt entry point */
327 sc->sc_vmeintr = vmeintr4;
328
329 /*XXX*/ sparc_vme_chipset_tag.cookie = self;
330 /*XXX*/ sparc_vme4_dma_tag._cookie = self;
331
332 sparc_vme_bus_tag.parent = ma->ma_bustag;
333 vba.vba_bustag = &sparc_vme_bus_tag;
334 vba.vba_chipset_tag = &sparc_vme_chipset_tag;
335 vba.vba_dmatag = &sparc_vme4_dma_tag;
336
337 /* Fall back to our own `range' construction */
338 sc->sc_range = vmebus_translations;
339 sc->sc_nrange =
340 sizeof(vmebus_translations)/sizeof(vmebus_translations[0]);
341
342 vme_dvmamap = extent_create("vmedvma", VME4_DVMA_BASE, VME4_DVMA_END,
343 M_DEVBUF, 0, 0, EX_NOWAIT);
344 if (vme_dvmamap == NULL)
345 panic("vme: unable to allocate DVMA map");
346
347 printf("\n");
348 (void)config_search(vmesearch, self, &vba);
349
350 bootpath_store(1, NULL);
351 #endif
352 return;
353 }
354
355 /* sun4m vmebus */
356 void
357 vmeattach_iommu(parent, self, aux)
358 struct device *parent, *self;
359 void *aux;
360 {
361 #if defined(SUN4M)
362 struct vmebus_softc *sc = (struct vmebus_softc *)self;
363 struct iommu_attach_args *ia = aux;
364 struct vme_busattach_args vba;
365 bus_space_handle_t bh;
366 int node;
367 int cline;
368
369 if (self->dv_unit > 0) {
370 printf(" unsupported\n");
371 return;
372 }
373
374 sc->sc_bustag = ia->iom_bustag;
375 sc->sc_dmatag = ia->iom_dmatag;
376
377 /* VME interrupt entry point */
378 sc->sc_vmeintr = vmeintr4m;
379
380 /*XXX*/ sparc_vme_chipset_tag.cookie = self;
381 /*XXX*/ sparc_vme4m_dma_tag._cookie = self;
382 sparc_vme_bus_tag.sparc_bus_barrier = sparc_vme4m_barrier;
383
384 vba.vba_bustag = &sparc_vme_bus_tag;
385 vba.vba_chipset_tag = &sparc_vme_chipset_tag;
386 vba.vba_dmatag = &sparc_vme4m_dma_tag;
387
388 node = ia->iom_node;
389
390 /*
391 * Map VME control space
392 */
393 if (ia->iom_nreg < 2) {
394 printf("%s: only %d register sets\n", self->dv_xname,
395 ia->iom_nreg);
396 return;
397 }
398
399 if (bus_space_map2(ia->iom_bustag,
400 (bus_type_t)ia->iom_reg[0].ior_iospace,
401 (bus_addr_t)ia->iom_reg[0].ior_pa,
402 (bus_size_t)ia->iom_reg[0].ior_size,
403 BUS_SPACE_MAP_LINEAR,
404 0, &bh) != 0) {
405 panic("%s: can't map vmebusreg", self->dv_xname);
406 }
407 sc->sc_reg = (struct vmebusreg *)bh;
408
409 if (bus_space_map2(ia->iom_bustag,
410 (bus_type_t)ia->iom_reg[1].ior_iospace,
411 (bus_addr_t)ia->iom_reg[1].ior_pa,
412 (bus_size_t)ia->iom_reg[1].ior_size,
413 BUS_SPACE_MAP_LINEAR,
414 0, &bh) != 0) {
415 panic("%s: can't map vmebusvec", self->dv_xname);
416 }
417 sc->sc_vec = (struct vmebusvec *)bh;
418
419 /*
420 * Map VME IO cache tags and flush control.
421 */
422 if (bus_space_map2(ia->iom_bustag,
423 (bus_type_t)ia->iom_reg[1].ior_iospace,
424 (bus_addr_t)ia->iom_reg[1].ior_pa + VME_IOC_TAGOFFSET,
425 VME_IOC_SIZE,
426 BUS_SPACE_MAP_LINEAR,
427 0, &bh) != 0) {
428 panic("%s: can't map IOC tags", self->dv_xname);
429 }
430 sc->sc_ioctags = (u_int32_t *)bh;
431
432 if (bus_space_map2(ia->iom_bustag,
433 (bus_type_t)ia->iom_reg[1].ior_iospace,
434 (bus_addr_t)ia->iom_reg[1].ior_pa+VME_IOC_FLUSHOFFSET,
435 VME_IOC_SIZE,
436 BUS_SPACE_MAP_LINEAR,
437 0, &bh) != 0) {
438 panic("%s: can't map IOC flush registers", self->dv_xname);
439 }
440 sc->sc_iocflush = (u_int32_t *)bh;
441
442 /*XXX*/ sparc_vme_bus_tag.cookie = sc->sc_reg;
443
444 /*
445 * Get "range" property.
446 */
447 if (getprop(node, "ranges", sizeof(struct rom_range),
448 &sc->sc_nrange, (void **)&sc->sc_range) != 0) {
449 panic("%s: can't get ranges property", self->dv_xname);
450 }
451
452 vmebus_sc = sc;
453 vmeerr_handler = sparc_vme_error;
454
455 /*
456 * Invalidate all IO-cache entries.
457 */
458 for (cline = VME_IOC_SIZE/VME_IOC_LINESZ; cline > 0;) {
459 sc->sc_ioctags[--cline] = 0;
460 }
461
462 /* Enable IO-cache */
463 sc->sc_reg->vmebus_cr |= VMEBUS_CR_C;
464
465 printf(": version 0x%x\n",
466 sc->sc_reg->vmebus_cr & VMEBUS_CR_IMPL);
467
468 (void)config_search(vmesearch, self, &vba);
469 #endif
470 }
471
472 #if defined(SUN4M)
473 static int
474 sparc_vme_error()
475 {
476 struct vmebus_softc *sc = vmebus_sc;
477 u_int32_t afsr, afpa;
478 char bits[64];
479
480 afsr = sc->sc_reg->vmebus_afsr,
481 afpa = sc->sc_reg->vmebus_afar;
482 printf("VME error:\n\tAFSR %s\n",
483 bitmask_snprintf(afsr, VMEBUS_AFSR_BITS, bits, sizeof(bits)));
484 printf("\taddress: 0x%x%x\n", afsr, afpa);
485 return (0);
486 }
487 #endif
488
489 int
490 vmebus_translate(sc, mod, addr, btp, bap)
491 struct vmebus_softc *sc;
492 vme_mod_t mod;
493 vme_addr_t addr;
494 bus_type_t *btp;
495 bus_addr_t *bap;
496 {
497 int i;
498
499 for (i = 0; i < sc->sc_nrange; i++) {
500
501 if (sc->sc_range[i].cspace != mod)
502 continue;
503
504 /* We've found the connection to the parent bus */
505 *bap = sc->sc_range[i].poffset + addr;
506 *btp = sc->sc_range[i].pspace;
507 return (0);
508 }
509 return (ENOENT);
510 }
511
512 int
513 sparc_vme_probe(cookie, tag, addr, offset, size, mod, callback, arg)
514 void *cookie;
515 bus_space_tag_t tag;
516 vme_addr_t addr;
517 size_t offset;
518 vme_size_t size;
519 int mod;
520 int (*callback) __P((void *, void *));
521 void *arg;
522 {
523 struct vmebus_softc *sc = (struct vmebus_softc *)cookie;
524 bus_type_t iospace;
525 bus_addr_t paddr;
526
527 if (vmebus_translate(sc, mod, addr, &iospace, &paddr) != 0)
528 return (0);
529
530 return (bus_space_probe(sc->sc_bustag, iospace, paddr, size, offset,
531 0, callback, arg));
532 }
533
534 int
535 sparc_vme_map(cookie, addr, size, mod, tag, hp)
536 void *cookie;
537 vme_addr_t addr;
538 vme_size_t size;
539 int mod;
540 bus_space_tag_t tag;
541 bus_space_handle_t *hp;
542 {
543 struct vmebus_softc *sc = (struct vmebus_softc *)cookie;
544 bus_type_t iospace;
545 bus_addr_t paddr;
546 int error;
547
548 error = vmebus_translate(sc, mod, addr, &iospace, &paddr);
549 if (error != 0)
550 return (error);
551
552 return (bus_space_map2(sc->sc_bustag, iospace, paddr, size, 0, 0, hp));
553 }
554
555 int
556 sparc_vme_mmap_cookie(cookie, addr, mod, tag, hp)
557 void *cookie;
558 vme_addr_t addr;
559 int mod;
560 bus_space_tag_t tag;
561 bus_space_handle_t *hp;
562 {
563 struct vmebus_softc *sc = (struct vmebus_softc *)cookie;
564 bus_type_t iospace;
565 bus_addr_t paddr;
566 int error;
567
568 error = vmebus_translate(sc, mod, addr, &iospace, &paddr);
569 if (error != 0)
570 return (error);
571
572 return (bus_space_mmap(sc->sc_bustag, iospace, paddr, 0, hp));
573 }
574
575 #if defined(SUN4M)
576 void
577 sparc_vme4m_barrier(t, h, offset, size, flags)
578 bus_space_tag_t t;
579 bus_space_handle_t h;
580 bus_size_t offset;
581 bus_size_t size;
582 int flags;
583 {
584 struct vmebusreg *vbp = (struct vmebusreg *)t->cookie;
585
586 /* Read async fault status to flush write-buffers */
587 (*(volatile int *)&vbp->vmebus_afsr);
588 }
589 #endif
590
591
592
593 /*
594 * VME Interrupt Priority Level to sparc Processor Interrupt Level.
595 */
596 static int vme_ipl_to_pil[] = {
597 0,
598 2,
599 3,
600 5,
601 7,
602 9,
603 11,
604 13
605 };
606
607
608 /*
609 * All VME device interrupts go through vmeintr(). This function reads
610 * the VME vector from the bus, then dispatches the device interrupt
611 * handler. All handlers for devices that map to the same Processor
612 * Interrupt Level (according to the table above) are on a linked list
613 * of `sparc_vme_intr_handle' structures. The head of which is passed
614 * down as the argument to `vmeintr(void *arg)'.
615 */
616 struct sparc_vme_intr_handle {
617 struct intrhand ih;
618 struct sparc_vme_intr_handle *next;
619 int vec; /* VME interrupt vector */
620 int pri; /* VME interrupt priority */
621 struct vmebus_softc *sc;/*XXX*/
622 };
623
624 #if defined(SUN4)
625 int
626 vmeintr4(arg)
627 void *arg;
628 {
629 struct sparc_vme_intr_handle *ihp = (vme_intr_handle_t)arg;
630 int level, vec;
631 int i = 0;
632
633 level = (ihp->pri << 1) | 1;
634
635 vec = ldcontrolb((caddr_t)(AC_VMEINTVEC | level));
636
637 if (vec == -1) {
638 printf("vme: spurious interrupt\n");
639 return 1; /* XXX - pretend we handled it, for now */
640 }
641
642 for (; ihp; ihp = ihp->next)
643 if (ihp->vec == vec && ihp->ih.ih_fun)
644 i += (ihp->ih.ih_fun)(ihp->ih.ih_arg);
645 return (i);
646 }
647 #endif
648
649 #if defined(SUN4M)
650 int
651 vmeintr4m(arg)
652 void *arg;
653 {
654 struct sparc_vme_intr_handle *ihp = (vme_intr_handle_t)arg;
655 int level, vec;
656 int i = 0;
657
658 level = (ihp->pri << 1) | 1;
659
660 #if 0
661 int pending;
662
663 /* Flush VME <=> Sbus write buffers */
664 (*(volatile int *)&ihp->sc->sc_reg->vmebus_afsr);
665
666 pending = *((int*)ICR_SI_PEND);
667 if ((pending & SINTR_VME(ihp->pri)) == 0) {
668 printf("vmeintr: non pending at pri %x(p 0x%x)\n",
669 ihp->pri, pending);
670 return (0);
671 }
672 #endif
673 #if 0
674 /* Why gives this a bus timeout sometimes? */
675 vec = ihp->sc->sc_vec->vmebusvec[level];
676 #else
677 /* so, arrange to catch the fault... */
678 {
679 extern struct user *proc0paddr;
680 extern int fkbyte __P((caddr_t, struct pcb *));
681 caddr_t addr = (caddr_t)&ihp->sc->sc_vec->vmebusvec[level];
682 struct pcb *xpcb;
683 u_long saveonfault;
684 int s;
685
686 s = splhigh();
687 if (curproc == NULL)
688 xpcb = (struct pcb *)proc0paddr;
689 else
690 xpcb = &curproc->p_addr->u_pcb;
691
692 saveonfault = (u_long)xpcb->pcb_onfault;
693 vec = fkbyte(addr, xpcb);
694 xpcb->pcb_onfault = (caddr_t)saveonfault;
695
696 splx(s);
697 }
698 #endif
699
700 if (vec == -1) {
701 printf("vme: spurious interrupt: ");
702 printf("SI: 0x%x, VME AFSR: 0x%x, VME AFAR 0x%x\n",
703 *((int*)ICR_SI_PEND),
704 ihp->sc->sc_reg->vmebus_afsr,
705 ihp->sc->sc_reg->vmebus_afar);
706 return (1); /* XXX - pretend we handled it, for now */
707 }
708
709 for (; ihp; ihp = ihp->next)
710 if (ihp->vec == vec && ihp->ih.ih_fun)
711 i += (ihp->ih.ih_fun)(ihp->ih.ih_arg);
712 return (i);
713 }
714 #endif
715
716 int
717 sparc_vme_intr_map(cookie, vec, pri, ihp)
718 void *cookie;
719 int vec;
720 int pri;
721 vme_intr_handle_t *ihp;
722 {
723 struct sparc_vme_intr_handle *ih;
724
725 ih = (vme_intr_handle_t)
726 malloc(sizeof(struct sparc_vme_intr_handle), M_DEVBUF, M_NOWAIT);
727 ih->pri = pri;
728 ih->vec = vec;
729 ih->sc = cookie;/*XXX*/
730 *ihp = ih;
731 return (0);
732 }
733
734 void *
735 sparc_vme_intr_establish(cookie, vih, func, arg)
736 void *cookie;
737 vme_intr_handle_t vih;
738 int (*func) __P((void *));
739 void *arg;
740 {
741 struct vmebus_softc *sc = (struct vmebus_softc *)cookie;
742 struct sparc_vme_intr_handle *svih =
743 (struct sparc_vme_intr_handle *)vih;
744 struct intrhand *ih;
745 int level;
746
747 /* Translate VME priority to processor IPL */
748 level = vme_ipl_to_pil[svih->pri];
749
750 svih->ih.ih_fun = func;
751 svih->ih.ih_arg = arg;
752 svih->next = NULL;
753
754 /* ensure the interrupt subsystem will call us at this level */
755 for (ih = intrhand[level]; ih != NULL; ih = ih->ih_next)
756 if (ih->ih_fun == sc->sc_vmeintr)
757 break;
758
759 if (ih == NULL) {
760 ih = (struct intrhand *)
761 malloc(sizeof(struct intrhand), M_DEVBUF, M_NOWAIT);
762 if (ih == NULL)
763 panic("vme_addirq");
764 bzero(ih, sizeof *ih);
765 ih->ih_fun = sc->sc_vmeintr;
766 ih->ih_arg = vih;
767 intr_establish(level, ih);
768 } else {
769 svih->next = (vme_intr_handle_t)ih->ih_arg;
770 ih->ih_arg = vih;
771 }
772 return (NULL);
773 }
774
775 void
776 sparc_vme_unmap(cookie)
777 void * cookie;
778 {
779 /* Not implemented */
780 panic("sparc_vme_unmap");
781 }
782
783 void
784 sparc_vme_intr_disestablish(cookie, a)
785 void *cookie;
786 void *a;
787 {
788 /* Not implemented */
789 panic("sparc_vme_intr_disestablish");
790 }
791
792
793
794 /*
795 * VME DMA functions.
796 */
797
798 #if defined(SUN4)
799 int
800 sparc_vme4_dmamap_load(t, map, buf, buflen, p, flags)
801 bus_dma_tag_t t;
802 bus_dmamap_t map;
803 void *buf;
804 bus_size_t buflen;
805 struct proc *p;
806 int flags;
807 {
808 bus_addr_t dvmaddr;
809 bus_size_t sgsize;
810 vaddr_t vaddr;
811 pmap_t pmap;
812 int pagesz = PAGE_SIZE;
813 int error;
814
815 error = extent_alloc(vme_dvmamap, round_page(buflen), NBPG,
816 map->_dm_boundary,
817 (flags & BUS_DMA_NOWAIT) == 0
818 ? EX_WAITOK
819 : EX_NOWAIT,
820 (u_long *)&dvmaddr);
821 if (error != 0)
822 return (error);
823
824 vaddr = (vaddr_t)buf;
825 map->dm_mapsize = buflen;
826 map->dm_nsegs = 1;
827 map->dm_segs[0].ds_addr = dvmaddr + (vaddr & PGOFSET);
828 map->dm_segs[0].ds_len = buflen;
829
830 pmap = (p == NULL) ? pmap_kernel() : p->p_vmspace->vm_map.pmap;
831
832 for (; buflen > 0; ) {
833 paddr_t pa;
834 /*
835 * Get the physical address for this page.
836 */
837 pa = pmap_extract(pmap, vaddr);
838
839 /*
840 * Compute the segment size, and adjust counts.
841 */
842 sgsize = pagesz - ((u_long)vaddr & (pagesz - 1));
843 if (buflen < sgsize)
844 sgsize = buflen;
845
846 #ifdef notyet
847 if (have_iocache)
848 curaddr |= PG_IOC;
849 #endif
850 pmap_enter(pmap_kernel(), dvmaddr,
851 (pa & ~(pagesz-1)) | PMAP_NC,
852 VM_PROT_READ|VM_PROT_WRITE, 1, 0);
853
854 dvmaddr += pagesz;
855 vaddr += sgsize;
856 buflen -= sgsize;
857 }
858
859 /* Adjust DVMA address to VME view */
860 map->dm_segs[0].ds_addr -= VME4_DVMA_BASE;
861 return (0);
862 }
863
864 void
865 sparc_vme4_dmamap_unload(t, map)
866 bus_dma_tag_t t;
867 bus_dmamap_t map;
868 {
869 bus_addr_t addr;
870 bus_size_t len;
871
872 /* Go from VME to CPU view */
873 map->dm_segs[0].ds_addr += VME4_DVMA_BASE;
874
875 addr = map->dm_segs[0].ds_addr & ~PGOFSET;
876 len = round_page(map->dm_segs[0].ds_len);
877
878 /* Remove double-mapping in DVMA space */
879 pmap_remove(pmap_kernel(), addr, addr + len);
880
881 /* Release DVMA space */
882 if (extent_free(vme_dvmamap, addr, len, EX_NOWAIT) != 0)
883 printf("warning: %ld of DVMA space lost\n", len);
884
885 /* Mark the mappings as invalid. */
886 map->dm_mapsize = 0;
887 map->dm_nsegs = 0;
888 }
889
890 int
891 sparc_vme4_dmamem_alloc(t, size, alignment, boundary, segs, nsegs, rsegs, flags)
892 bus_dma_tag_t t;
893 bus_size_t size, alignment, boundary;
894 bus_dma_segment_t *segs;
895 int nsegs;
896 int *rsegs;
897 int flags;
898 {
899 bus_addr_t dvmaddr;
900 struct pglist *mlist;
901 vm_page_t m;
902 paddr_t pa;
903 int error;
904
905 size = round_page(size);
906 error = _bus_dmamem_alloc_common(t, size, alignment, boundary,
907 segs, nsegs, rsegs, flags);
908 if (error != 0)
909 return (error);
910
911 if (extent_alloc(vme_dvmamap, size, alignment, boundary,
912 (flags & BUS_DMA_NOWAIT) == 0 ? EX_WAITOK : EX_NOWAIT,
913 (u_long *)&dvmaddr) != 0)
914 return (ENOMEM);
915
916 /*
917 * Compute the location, size, and number of segments actually
918 * returned by the VM code.
919 */
920 segs[0].ds_addr = dvmaddr - VME4_DVMA_BASE;
921 segs[0].ds_len = size;
922 *rsegs = 1;
923
924 /* Map memory into DVMA space */
925 mlist = segs[0]._ds_mlist;
926 for (m = TAILQ_FIRST(mlist); m != NULL; m = TAILQ_NEXT(m,pageq)) {
927 pa = VM_PAGE_TO_PHYS(m);
928
929 #ifdef notyet
930 if (have_iocache)
931 pa |= PG_IOC;
932 #endif
933 pmap_enter(pmap_kernel(), dvmaddr, pa | PMAP_NC,
934 VM_PROT_READ|VM_PROT_WRITE, 1, 0);
935 dvmaddr += PAGE_SIZE;
936 }
937
938 return (0);
939 }
940
941 void
942 sparc_vme4_dmamem_free(t, segs, nsegs)
943 bus_dma_tag_t t;
944 bus_dma_segment_t *segs;
945 int nsegs;
946 {
947 bus_addr_t addr;
948 bus_size_t len;
949
950 addr = segs[0].ds_addr + VME4_DVMA_BASE;
951 len = round_page(segs[0].ds_len);
952
953 /* Remove DVMA kernel map */
954 pmap_remove(pmap_kernel(), addr, addr + len);
955
956 /* Release DVMA address range */
957 if (extent_free(vme_dvmamap, addr, len, EX_NOWAIT) != 0)
958 printf("warning: %ld of DVMA space lost\n", len);
959
960 /*
961 * Return the list of pages back to the VM system.
962 */
963 _bus_dmamem_free_common(t, segs, nsegs);
964 }
965
966 void
967 sparc_vme4_dmamap_sync(t, map, offset, len, ops)
968 bus_dma_tag_t t;
969 bus_dmamap_t map;
970 bus_addr_t offset;
971 bus_size_t len;
972 int ops;
973 {
974
975 /*
976 * XXX Should perform cache flushes as necessary (e.g. 4/200 W/B).
977 * Currently the cache is flushed in bus_dma_load()...
978 */
979 }
980 #endif /* SUN4 */
981
982 #if defined(SUN4M)
983 static int
984 sparc_vme4m_dmamap_create (t, size, nsegments, maxsegsz, boundary, flags, dmamp)
985 bus_dma_tag_t t;
986 bus_size_t size;
987 int nsegments;
988 bus_size_t maxsegsz;
989 bus_size_t boundary;
990 int flags;
991 bus_dmamap_t *dmamp;
992 {
993 struct vmebus_softc *sc = (struct vmebus_softc *)t->_cookie;
994 int error;
995
996 /* XXX - todo: allocate DVMA addresses from assigned ranges:
997 upper 8MB for A32 space; upper 1MB for A24 space */
998 error = bus_dmamap_create(sc->sc_dmatag, size, nsegments, maxsegsz,
999 boundary, flags, dmamp);
1000 if (error != 0)
1001 return (error);
1002
1003 #if 0
1004 /* VME DVMA addresses must always be 8K aligned */
1005 (*dmamp)->_dm_align = 8192;
1006 #endif
1007
1008 return (0);
1009 }
1010
1011 int
1012 sparc_vme4m_dmamap_load(t, map, buf, buflen, p, flags)
1013 bus_dma_tag_t t;
1014 bus_dmamap_t map;
1015 void *buf;
1016 bus_size_t buflen;
1017 struct proc *p;
1018 int flags;
1019 {
1020 struct vmebus_softc *sc = (struct vmebus_softc *)t->_cookie;
1021 volatile u_int32_t *ioctags;
1022 int error;
1023
1024 buflen = (buflen + VME_IOC_PAGESZ - 1) & ~(VME_IOC_PAGESZ - 1);
1025 error = bus_dmamap_load(sc->sc_dmatag, map, buf, buflen, p, flags);
1026 if (error != 0)
1027 return (error);
1028
1029 /* allocate IO cache entries for this range */
1030 ioctags = sc->sc_ioctags + VME_IOC_LINE(map->dm_segs[0].ds_addr);
1031 for (;buflen > 0;) {
1032 *ioctags = VME_IOC_IC | VME_IOC_W;
1033 ioctags += VME_IOC_LINESZ/sizeof(*ioctags);
1034 buflen -= VME_IOC_PAGESZ;
1035 }
1036 return (0);
1037 }
1038
1039
1040 void
1041 sparc_vme4m_dmamap_unload(t, map)
1042 bus_dma_tag_t t;
1043 bus_dmamap_t map;
1044 {
1045 struct vmebus_softc *sc = (struct vmebus_softc *)t->_cookie;
1046 volatile u_int32_t *flushregs;
1047 int len;
1048
1049 /* Flush VME IO cache */
1050 len = map->dm_segs[0].ds_len;
1051 flushregs = sc->sc_iocflush + VME_IOC_LINE(map->dm_segs[0].ds_addr);
1052 for (;len > 0;) {
1053 *flushregs = 0;
1054 flushregs += VME_IOC_LINESZ/sizeof(*flushregs);
1055 len -= VME_IOC_PAGESZ;
1056 }
1057 /* Read a tag to synchronize the IOC flushes */
1058 (*sc->sc_ioctags);
1059
1060 bus_dmamap_unload(sc->sc_dmatag, map);
1061 }
1062
1063 int
1064 sparc_vme4m_dmamem_alloc(t, size, alignmnt, boundary, segs, nsegs, rsegs, flags)
1065 bus_dma_tag_t t;
1066 bus_size_t size, alignmnt, boundary;
1067 bus_dma_segment_t *segs;
1068 int nsegs;
1069 int *rsegs;
1070 int flags;
1071 {
1072 struct vmebus_softc *sc = (struct vmebus_softc *)t->_cookie;
1073 int error;
1074
1075 error = bus_dmamem_alloc(sc->sc_dmatag, size, alignmnt, boundary,
1076 segs, nsegs, rsegs, flags);
1077 if (error != 0)
1078 return (error);
1079
1080 return (0);
1081 }
1082
1083 void
1084 sparc_vme4m_dmamem_free(t, segs, nsegs)
1085 bus_dma_tag_t t;
1086 bus_dma_segment_t *segs;
1087 int nsegs;
1088 {
1089 struct vmebus_softc *sc = (struct vmebus_softc *)t->_cookie;
1090
1091 bus_dmamem_free(sc->sc_dmatag, segs, nsegs);
1092 }
1093
1094 void
1095 sparc_vme4m_dmamap_sync(t, map, offset, len, ops)
1096 bus_dma_tag_t t;
1097 bus_dmamap_t map;
1098 bus_addr_t offset;
1099 bus_size_t len;
1100 int ops;
1101 {
1102
1103 /*
1104 * XXX Should perform cache flushes as necessary.
1105 */
1106 }
1107 #endif /* SUN4M */
1108
1109 int
1110 sparc_vme_dmamem_map(t, segs, nsegs, size, kvap, flags)
1111 bus_dma_tag_t t;
1112 bus_dma_segment_t *segs;
1113 int nsegs;
1114 size_t size;
1115 caddr_t *kvap;
1116 int flags;
1117 {
1118 struct vmebus_softc *sc = (struct vmebus_softc *)t->_cookie;
1119
1120 return (bus_dmamem_map(sc->sc_dmatag, segs, nsegs, size, kvap, flags));
1121 }
1122