vme_machdep.c revision 1.23 1 /* $NetBSD: vme_machdep.c,v 1.23 2000/05/09 22:39:36 pk Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/param.h>
40 #include <sys/extent.h>
41 #include <sys/systm.h>
42 #include <sys/device.h>
43 #include <sys/malloc.h>
44 #include <sys/errno.h>
45
46 #include <sys/proc.h>
47 #include <sys/user.h>
48 #include <sys/syslog.h>
49
50 #include <vm/vm.h>
51
52 #define _SPARC_BUS_DMA_PRIVATE
53 #include <machine/bus.h>
54 #include <sparc/sparc/iommuvar.h>
55 #include <machine/autoconf.h>
56 #include <machine/pmap.h>
57 #include <machine/oldmon.h>
58 #include <machine/cpu.h>
59 #include <machine/ctlreg.h>
60
61 #include <dev/vme/vmereg.h>
62 #include <dev/vme/vmevar.h>
63
64 #include <sparc/sparc/asm.h>
65 #include <sparc/sparc/vaddrs.h>
66 #include <sparc/sparc/cpuvar.h>
67 #include <sparc/dev/vmereg.h>
68
69 struct sparcvme_softc {
70 struct device sc_dev; /* base device */
71 bus_space_tag_t sc_bustag;
72 bus_dma_tag_t sc_dmatag;
73 struct vmebusreg *sc_reg; /* VME control registers */
74 struct vmebusvec *sc_vec; /* VME interrupt vector */
75 struct rom_range *sc_range; /* ROM range property */
76 int sc_nrange;
77 volatile u_int32_t *sc_ioctags; /* VME IO-cache tag registers */
78 volatile u_int32_t *sc_iocflush;/* VME IO-cache flush registers */
79 int (*sc_vmeintr) __P((void *));
80 };
81 struct sparcvme_softc *sparcvme_sc;/*XXX*/
82
83 /* autoconfiguration driver */
84 static int vmematch_iommu __P((struct device *, struct cfdata *, void *));
85 static void vmeattach_iommu __P((struct device *, struct device *, void *));
86 static int vmematch_mainbus __P((struct device *, struct cfdata *, void *));
87 static void vmeattach_mainbus __P((struct device *, struct device *, void *));
88 #if defined(SUN4)
89 int vmeintr4 __P((void *));
90 #endif
91 #if defined(SUN4M)
92 int vmeintr4m __P((void *));
93 static int sparc_vme_error __P((void));
94 #endif
95
96
97 static int sparc_vme_probe __P((void *, vme_addr_t, vme_size_t,
98 vme_am_t, vme_datasize_t,
99 int (*) __P((void *, bus_space_tag_t, bus_space_handle_t)), void *));
100 static int sparc_vme_map __P((void *, vme_addr_t, vme_size_t, vme_am_t,
101 vme_datasize_t, vme_swap_t,
102 bus_space_tag_t *, bus_space_handle_t *,
103 vme_mapresc_t *));
104 static void sparc_vme_unmap __P((void *, vme_mapresc_t));
105 static int sparc_vme_intr_map __P((void *, int, int, vme_intr_handle_t *));
106 static void * sparc_vme_intr_establish __P((void *, vme_intr_handle_t, int,
107 int (*) __P((void *)), void *));
108 static void sparc_vme_intr_disestablish __P((void *, void *));
109
110 static int vmebus_translate __P((struct sparcvme_softc *, vme_am_t,
111 vme_addr_t, bus_type_t *, bus_addr_t *));
112 #if defined(SUN4M)
113 static void sparc_vme4m_barrier __P(( bus_space_tag_t, bus_space_handle_t,
114 bus_size_t, bus_size_t, int));
115
116 #endif
117
118 /*
119 * DMA functions.
120 */
121 #if defined(SUN4)
122 static int sparc_vme4_dmamap_load __P((bus_dma_tag_t, bus_dmamap_t, void *,
123 bus_size_t, struct proc *, int));
124 static void sparc_vme4_dmamap_unload __P((bus_dma_tag_t, bus_dmamap_t));
125 static void sparc_vme4_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t,
126 bus_addr_t, bus_size_t, int));
127 #endif
128
129 #if defined(SUN4M)
130 static int sparc_vme4m_dmamap_create __P((bus_dma_tag_t, bus_size_t, int,
131 bus_size_t, bus_size_t, int, bus_dmamap_t *));
132
133 static int sparc_vme4m_dmamap_load __P((bus_dma_tag_t, bus_dmamap_t, void *,
134 bus_size_t, struct proc *, int));
135 static void sparc_vme4m_dmamap_unload __P((bus_dma_tag_t, bus_dmamap_t));
136 static void sparc_vme4m_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t,
137 bus_addr_t, bus_size_t, int));
138 #endif
139
140 static int sparc_vme_dmamem_map __P((bus_dma_tag_t, bus_dma_segment_t *,
141 int, size_t, caddr_t *, int));
142 #if 0
143 static void sparc_vme_dmamap_destroy __P((bus_dma_tag_t, bus_dmamap_t));
144 static void sparc_vme_dmamem_unmap __P((bus_dma_tag_t, caddr_t, size_t));
145 static int sparc_vme_dmamem_mmap __P((bus_dma_tag_t,
146 bus_dma_segment_t *, int, int, int, int));
147 #endif
148
149 int sparc_vme_mmap_cookie __P((vme_addr_t, vme_am_t, bus_space_handle_t *));
150
151 struct cfattach vme_mainbus_ca = {
152 sizeof(struct sparcvme_softc), vmematch_mainbus, vmeattach_mainbus
153 };
154
155 struct cfattach vme_iommu_ca = {
156 sizeof(struct sparcvme_softc), vmematch_iommu, vmeattach_iommu
157 };
158
159 int (*vmeerr_handler) __P((void));
160
161 #define VMEMOD_D32 0x40 /* ??? */
162
163 /* If the PROM does not provide the `ranges' property, we make up our own */
164 struct rom_range vmebus_translations[] = {
165 #define _DS (VME_AM_MBO | VME_AM_SUPER | VME_AM_DATA)
166 { VME_AM_A16|_DS, 0, PMAP_VME16, 0xffff0000, 0 },
167 { VME_AM_A24|_DS, 0, PMAP_VME16, 0xff000000, 0 },
168 { VME_AM_A32|_DS, 0, PMAP_VME16, 0x00000000, 0 },
169 { VME_AM_A16|VMEMOD_D32|_DS, 0, PMAP_VME32, 0xffff0000, 0 },
170 { VME_AM_A24|VMEMOD_D32|_DS, 0, PMAP_VME32, 0xff000000, 0 },
171 { VME_AM_A32|VMEMOD_D32|_DS, 0, PMAP_VME32, 0x00000000, 0 }
172 #undef _DS
173 };
174
175 /*
176 * DMA on sun4 VME devices use the last MB of virtual space, which
177 * is mapped by hardware onto the first MB of VME space.
178 */
179 struct extent *vme_dvmamap;
180
181 struct sparc_bus_space_tag sparc_vme_bus_tag = {
182 NULL, /* cookie */
183 NULL, /* parent bus tag */
184 NULL, /* bus_map */
185 NULL, /* bus_unmap */
186 NULL, /* bus_subregion */
187 NULL /* barrier */
188 };
189
190 struct vme_chipset_tag sparc_vme_chipset_tag = {
191 NULL,
192 sparc_vme_map,
193 sparc_vme_unmap,
194 sparc_vme_probe,
195 sparc_vme_intr_map,
196 sparc_vme_intr_establish,
197 sparc_vme_intr_disestablish,
198 0, 0, 0 /* bus specific DMA stuff */
199 };
200
201
202 #if defined(SUN4)
203 struct sparc_bus_dma_tag sparc_vme4_dma_tag = {
204 NULL, /* cookie */
205 _bus_dmamap_create,
206 _bus_dmamap_destroy,
207 sparc_vme4_dmamap_load,
208 _bus_dmamap_load_mbuf,
209 _bus_dmamap_load_uio,
210 _bus_dmamap_load_raw,
211 sparc_vme4_dmamap_unload,
212 sparc_vme4_dmamap_sync,
213
214 _bus_dmamem_alloc,
215 _bus_dmamem_free,
216 sparc_vme_dmamem_map,
217 _bus_dmamem_unmap,
218 _bus_dmamem_mmap
219 };
220 #endif
221
222 #if defined(SUN4M)
223 struct sparc_bus_dma_tag sparc_vme4m_dma_tag = {
224 NULL, /* cookie */
225 sparc_vme4m_dmamap_create,
226 _bus_dmamap_destroy,
227 sparc_vme4m_dmamap_load,
228 _bus_dmamap_load_mbuf,
229 _bus_dmamap_load_uio,
230 _bus_dmamap_load_raw,
231 sparc_vme4m_dmamap_unload,
232 sparc_vme4m_dmamap_sync,
233
234 _bus_dmamem_alloc,
235 _bus_dmamem_free,
236 sparc_vme_dmamem_map,
237 _bus_dmamem_unmap,
238 _bus_dmamem_mmap
239 };
240 #endif
241
242
243 int
244 vmematch_mainbus(parent, cf, aux)
245 struct device *parent;
246 struct cfdata *cf;
247 void *aux;
248 {
249 struct mainbus_attach_args *ma = aux;
250
251 if (!CPU_ISSUN4)
252 return (0);
253
254 return (strcmp("vme", ma->ma_name) == 0);
255 }
256
257 int
258 vmematch_iommu(parent, cf, aux)
259 struct device *parent;
260 struct cfdata *cf;
261 void *aux;
262 {
263 struct iommu_attach_args *ia = aux;
264
265 return (strcmp("vme", ia->iom_name) == 0);
266 }
267
268
269 void
270 vmeattach_mainbus(parent, self, aux)
271 struct device *parent, *self;
272 void *aux;
273 {
274 #if defined(SUN4)
275 struct mainbus_attach_args *ma = aux;
276 struct sparcvme_softc *sc = (struct sparcvme_softc *)self;
277 struct vmebus_attach_args vba;
278
279 if (self->dv_unit > 0) {
280 printf(" unsupported\n");
281 return;
282 }
283
284 sc->sc_bustag = ma->ma_bustag;
285 sc->sc_dmatag = ma->ma_dmatag;
286
287 /* VME interrupt entry point */
288 sc->sc_vmeintr = vmeintr4;
289
290 /*XXX*/ sparc_vme_chipset_tag.cookie = self;
291 /*XXX*/ sparc_vme4_dma_tag._cookie = self;
292
293 #if 0
294 sparc_vme_bus_tag.parent = ma->ma_bustag;
295 vba.vba_bustag = &sparc_vme_bus_tag;
296 #endif
297 vba.va_vct = &sparc_vme_chipset_tag;
298 vba.va_bdt = &sparc_vme4_dma_tag;
299 vba.va_slaveconfig = 0;
300
301 /* Fall back to our own `range' construction */
302 sc->sc_range = vmebus_translations;
303 sc->sc_nrange =
304 sizeof(vmebus_translations)/sizeof(vmebus_translations[0]);
305
306 vme_dvmamap = extent_create("vmedvma", VME4_DVMA_BASE, VME4_DVMA_END,
307 M_DEVBUF, 0, 0, EX_NOWAIT);
308 if (vme_dvmamap == NULL)
309 panic("vme: unable to allocate DVMA map");
310
311 printf("\n");
312 (void)config_found(self, &vba, 0);
313
314 #endif
315 return;
316 }
317
318 /* sun4m vmebus */
319 void
320 vmeattach_iommu(parent, self, aux)
321 struct device *parent, *self;
322 void *aux;
323 {
324 #if defined(SUN4M)
325 struct sparcvme_softc *sc = (struct sparcvme_softc *)self;
326 struct iommu_attach_args *ia = aux;
327 struct vmebus_attach_args vba;
328 bus_space_handle_t bh;
329 int node;
330 int cline;
331
332 if (self->dv_unit > 0) {
333 printf(" unsupported\n");
334 return;
335 }
336
337 sc->sc_bustag = ia->iom_bustag;
338 sc->sc_dmatag = ia->iom_dmatag;
339
340 /* VME interrupt entry point */
341 sc->sc_vmeintr = vmeintr4m;
342
343 /*XXX*/ sparc_vme_chipset_tag.cookie = self;
344 /*XXX*/ sparc_vme4m_dma_tag._cookie = self;
345 sparc_vme_bus_tag.sparc_bus_barrier = sparc_vme4m_barrier;
346
347 #if 0
348 vba.vba_bustag = &sparc_vme_bus_tag;
349 #endif
350 vba.va_vct = &sparc_vme_chipset_tag;
351 vba.va_bdt = &sparc_vme4m_dma_tag;
352 vba.va_slaveconfig = 0;
353
354 node = ia->iom_node;
355
356 /*
357 * Map VME control space
358 */
359 if (ia->iom_nreg < 2) {
360 printf("%s: only %d register sets\n", self->dv_xname,
361 ia->iom_nreg);
362 return;
363 }
364
365 if (bus_space_map2(ia->iom_bustag,
366 (bus_type_t)ia->iom_reg[0].ior_iospace,
367 (bus_addr_t)ia->iom_reg[0].ior_pa,
368 (bus_size_t)ia->iom_reg[0].ior_size,
369 BUS_SPACE_MAP_LINEAR,
370 0, &bh) != 0) {
371 panic("%s: can't map vmebusreg", self->dv_xname);
372 }
373 sc->sc_reg = (struct vmebusreg *)bh;
374
375 if (bus_space_map2(ia->iom_bustag,
376 (bus_type_t)ia->iom_reg[1].ior_iospace,
377 (bus_addr_t)ia->iom_reg[1].ior_pa,
378 (bus_size_t)ia->iom_reg[1].ior_size,
379 BUS_SPACE_MAP_LINEAR,
380 0, &bh) != 0) {
381 panic("%s: can't map vmebusvec", self->dv_xname);
382 }
383 sc->sc_vec = (struct vmebusvec *)bh;
384
385 /*
386 * Map VME IO cache tags and flush control.
387 */
388 if (bus_space_map2(ia->iom_bustag,
389 (bus_type_t)ia->iom_reg[1].ior_iospace,
390 (bus_addr_t)ia->iom_reg[1].ior_pa + VME_IOC_TAGOFFSET,
391 VME_IOC_SIZE,
392 BUS_SPACE_MAP_LINEAR,
393 0, &bh) != 0) {
394 panic("%s: can't map IOC tags", self->dv_xname);
395 }
396 sc->sc_ioctags = (u_int32_t *)bh;
397
398 if (bus_space_map2(ia->iom_bustag,
399 (bus_type_t)ia->iom_reg[1].ior_iospace,
400 (bus_addr_t)ia->iom_reg[1].ior_pa+VME_IOC_FLUSHOFFSET,
401 VME_IOC_SIZE,
402 BUS_SPACE_MAP_LINEAR,
403 0, &bh) != 0) {
404 panic("%s: can't map IOC flush registers", self->dv_xname);
405 }
406 sc->sc_iocflush = (u_int32_t *)bh;
407
408 /*XXX*/ sparc_vme_bus_tag.cookie = sc->sc_reg;
409
410 /*
411 * Get "range" property.
412 */
413 if (getprop(node, "ranges", sizeof(struct rom_range),
414 &sc->sc_nrange, (void **)&sc->sc_range) != 0) {
415 panic("%s: can't get ranges property", self->dv_xname);
416 }
417
418 sparcvme_sc = sc;
419 vmeerr_handler = sparc_vme_error;
420
421 /*
422 * Invalidate all IO-cache entries.
423 */
424 for (cline = VME_IOC_SIZE/VME_IOC_LINESZ; cline > 0;) {
425 sc->sc_ioctags[--cline] = 0;
426 }
427
428 /* Enable IO-cache */
429 sc->sc_reg->vmebus_cr |= VMEBUS_CR_C;
430
431 printf(": version 0x%x\n",
432 sc->sc_reg->vmebus_cr & VMEBUS_CR_IMPL);
433
434 (void)config_found(self, &vba, 0);
435 #endif
436 }
437
438 #if defined(SUN4M)
439 static int
440 sparc_vme_error()
441 {
442 struct sparcvme_softc *sc = sparcvme_sc;
443 u_int32_t afsr, afpa;
444 char bits[64];
445
446 afsr = sc->sc_reg->vmebus_afsr;
447 afpa = sc->sc_reg->vmebus_afar;
448 printf("VME error:\n\tAFSR %s\n",
449 bitmask_snprintf(afsr, VMEBUS_AFSR_BITS, bits, sizeof(bits)));
450 printf("\taddress: 0x%x%x\n", afsr, afpa);
451 return (0);
452 }
453 #endif
454
455 int
456 vmebus_translate(sc, mod, addr, btp, bap)
457 struct sparcvme_softc *sc;
458 vme_am_t mod;
459 vme_addr_t addr;
460 bus_type_t *btp;
461 bus_addr_t *bap;
462 {
463 int i;
464
465 for (i = 0; i < sc->sc_nrange; i++) {
466
467 if (sc->sc_range[i].cspace != mod)
468 continue;
469
470 /* We've found the connection to the parent bus */
471 *bap = sc->sc_range[i].poffset + addr;
472 *btp = sc->sc_range[i].pspace;
473 return (0);
474 }
475 return (ENOENT);
476 }
477
478 struct vmeprobe_myarg {
479 int (*cb) __P((void *, bus_space_tag_t, bus_space_handle_t));
480 void *cbarg;
481 bus_space_tag_t tag;
482 int res; /* backwards */
483 };
484
485 static int vmeprobe_mycb __P((void *, void *));
486 static int
487 vmeprobe_mycb(bh, arg)
488 void *bh, *arg;
489 {
490 struct vmeprobe_myarg *a = arg;
491
492 a->res = (*a->cb)(a->cbarg, a->tag, (bus_space_handle_t)bh);
493 return (!a->res);
494 }
495
496 int
497 sparc_vme_probe(cookie, addr, len, mod, datasize, callback, arg)
498 void *cookie;
499 vme_addr_t addr;
500 vme_size_t len;
501 vme_am_t mod;
502 vme_datasize_t datasize;
503 int (*callback) __P((void *, bus_space_tag_t, bus_space_handle_t));
504 void *arg;
505 {
506 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
507 bus_type_t iospace;
508 bus_addr_t paddr;
509 bus_size_t size;
510 struct vmeprobe_myarg myarg;
511 int res, i;
512
513 if (vmebus_translate(sc, mod, addr, &iospace, &paddr) != 0)
514 return (EINVAL);
515
516 size = (datasize == VME_D8 ? 1 : (datasize == VME_D16 ? 2 : 4));
517
518 if (callback) {
519 myarg.cb = callback;
520 myarg.cbarg = arg;
521 myarg.tag = sc->sc_bustag;
522 myarg.res = 0;
523 res = bus_space_probe(sc->sc_bustag, iospace, paddr, size, 0,
524 0, vmeprobe_mycb, &myarg);
525 return (res ? 0 : (myarg.res ? myarg.res : EIO));
526 }
527
528 for (i = 0; i < len / size; i++) {
529 myarg.res = 0;
530 res = bus_space_probe(sc->sc_bustag, iospace, paddr, size, 0,
531 0, 0, 0);
532 if (res == 0)
533 return (EIO);
534 paddr += size;
535 }
536 return (0);
537 }
538
539 int
540 sparc_vme_map(cookie, addr, size, mod, datasize, swap, tp, hp, rp)
541 void *cookie;
542 vme_addr_t addr;
543 vme_size_t size;
544 vme_am_t mod;
545 vme_datasize_t datasize;
546 bus_space_tag_t *tp;
547 bus_space_handle_t *hp;
548 vme_mapresc_t *rp;
549 {
550 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
551 bus_type_t iospace;
552 bus_addr_t paddr;
553 int error;
554
555 error = vmebus_translate(sc, mod, addr, &iospace, &paddr);
556 if (error != 0)
557 return (error);
558
559 *tp = sc->sc_bustag;
560 return (bus_space_map2(sc->sc_bustag, iospace, paddr, size, 0, 0, hp));
561 }
562
563 int
564 sparc_vme_mmap_cookie(addr, mod, hp)
565 vme_addr_t addr;
566 vme_am_t mod;
567 bus_space_handle_t *hp;
568 {
569 struct sparcvme_softc *sc = sparcvme_sc;
570 bus_type_t iospace;
571 bus_addr_t paddr;
572 int error;
573
574 error = vmebus_translate(sc, mod, addr, &iospace, &paddr);
575 if (error != 0)
576 return (error);
577
578 return (bus_space_mmap(sc->sc_bustag, iospace, paddr, 0, hp));
579 }
580
581 #if defined(SUN4M)
582 void
583 sparc_vme4m_barrier(t, h, offset, size, flags)
584 bus_space_tag_t t;
585 bus_space_handle_t h;
586 bus_size_t offset;
587 bus_size_t size;
588 int flags;
589 {
590 struct vmebusreg *vbp = (struct vmebusreg *)t->cookie;
591
592 /* Read async fault status to flush write-buffers */
593 (*(volatile int *)&vbp->vmebus_afsr);
594 }
595 #endif
596
597
598
599 /*
600 * VME Interrupt Priority Level to sparc Processor Interrupt Level.
601 */
602 static int vme_ipl_to_pil[] = {
603 0,
604 2,
605 3,
606 5,
607 7,
608 9,
609 11,
610 13
611 };
612
613
614 /*
615 * All VME device interrupts go through vmeintr(). This function reads
616 * the VME vector from the bus, then dispatches the device interrupt
617 * handler. All handlers for devices that map to the same Processor
618 * Interrupt Level (according to the table above) are on a linked list
619 * of `sparc_vme_intr_handle' structures. The head of which is passed
620 * down as the argument to `vmeintr(void *arg)'.
621 */
622 struct sparc_vme_intr_handle {
623 struct intrhand ih;
624 struct sparc_vme_intr_handle *next;
625 int vec; /* VME interrupt vector */
626 int pri; /* VME interrupt priority */
627 struct sparcvme_softc *sc;/*XXX*/
628 };
629
630 #if defined(SUN4)
631 int
632 vmeintr4(arg)
633 void *arg;
634 {
635 struct sparc_vme_intr_handle *ihp = (vme_intr_handle_t)arg;
636 int level, vec;
637 int i = 0;
638
639 level = (ihp->pri << 1) | 1;
640
641 vec = ldcontrolb((caddr_t)(AC_VMEINTVEC | level));
642
643 if (vec == -1) {
644 printf("vme: spurious interrupt\n");
645 return 1; /* XXX - pretend we handled it, for now */
646 }
647
648 for (; ihp; ihp = ihp->next)
649 if (ihp->vec == vec && ihp->ih.ih_fun)
650 i += (ihp->ih.ih_fun)(ihp->ih.ih_arg);
651 return (i);
652 }
653 #endif
654
655 #if defined(SUN4M)
656 int
657 vmeintr4m(arg)
658 void *arg;
659 {
660 struct sparc_vme_intr_handle *ihp = (vme_intr_handle_t)arg;
661 int level, vec;
662 int i = 0;
663
664 level = (ihp->pri << 1) | 1;
665
666 #if 0
667 int pending;
668
669 /* Flush VME <=> Sbus write buffers */
670 (*(volatile int *)&ihp->sc->sc_reg->vmebus_afsr);
671
672 pending = *((int*)ICR_SI_PEND);
673 if ((pending & SINTR_VME(ihp->pri)) == 0) {
674 printf("vmeintr: non pending at pri %x(p 0x%x)\n",
675 ihp->pri, pending);
676 return (0);
677 }
678 #endif
679 #if 0
680 /* Why gives this a bus timeout sometimes? */
681 vec = ihp->sc->sc_vec->vmebusvec[level];
682 #else
683 /* so, arrange to catch the fault... */
684 {
685 extern struct user *proc0paddr;
686 extern int fkbyte __P((caddr_t, struct pcb *));
687 caddr_t addr = (caddr_t)&ihp->sc->sc_vec->vmebusvec[level];
688 struct pcb *xpcb;
689 u_long saveonfault;
690 int s;
691
692 s = splhigh();
693 if (curproc == NULL)
694 xpcb = (struct pcb *)proc0paddr;
695 else
696 xpcb = &curproc->p_addr->u_pcb;
697
698 saveonfault = (u_long)xpcb->pcb_onfault;
699 vec = fkbyte(addr, xpcb);
700 xpcb->pcb_onfault = (caddr_t)saveonfault;
701
702 splx(s);
703 }
704 #endif
705
706 if (vec == -1) {
707 printf("vme: spurious interrupt: ");
708 printf("SI: 0x%x, VME AFSR: 0x%x, VME AFAR 0x%x\n",
709 *((int*)ICR_SI_PEND),
710 ihp->sc->sc_reg->vmebus_afsr,
711 ihp->sc->sc_reg->vmebus_afar);
712 return (1); /* XXX - pretend we handled it, for now */
713 }
714
715 for (; ihp; ihp = ihp->next)
716 if (ihp->vec == vec && ihp->ih.ih_fun)
717 i += (ihp->ih.ih_fun)(ihp->ih.ih_arg);
718 return (i);
719 }
720 #endif
721
722 int
723 sparc_vme_intr_map(cookie, level, vec, ihp)
724 void *cookie;
725 int level;
726 int vec;
727 vme_intr_handle_t *ihp;
728 {
729 struct sparc_vme_intr_handle *ih;
730
731 ih = (vme_intr_handle_t)
732 malloc(sizeof(struct sparc_vme_intr_handle), M_DEVBUF, M_NOWAIT);
733 ih->pri = level;
734 ih->vec = vec;
735 ih->sc = cookie;/*XXX*/
736 *ihp = ih;
737 return (0);
738 }
739
740 void *
741 sparc_vme_intr_establish(cookie, vih, pri, func, arg)
742 void *cookie;
743 vme_intr_handle_t vih;
744 int pri;
745 int (*func) __P((void *));
746 void *arg;
747 {
748 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
749 struct sparc_vme_intr_handle *svih =
750 (struct sparc_vme_intr_handle *)vih;
751 struct intrhand *ih;
752 int level;
753
754 /* XXX pri == svih->pri ??? */
755
756 /* Translate VME priority to processor IPL */
757 level = vme_ipl_to_pil[svih->pri];
758
759 svih->ih.ih_fun = func;
760 svih->ih.ih_arg = arg;
761 svih->next = NULL;
762
763 /* ensure the interrupt subsystem will call us at this level */
764 for (ih = intrhand[level]; ih != NULL; ih = ih->ih_next)
765 if (ih->ih_fun == sc->sc_vmeintr)
766 break;
767
768 if (ih == NULL) {
769 ih = (struct intrhand *)
770 malloc(sizeof(struct intrhand), M_DEVBUF, M_NOWAIT);
771 if (ih == NULL)
772 panic("vme_addirq");
773 bzero(ih, sizeof *ih);
774 ih->ih_fun = sc->sc_vmeintr;
775 ih->ih_arg = vih;
776 intr_establish(level, ih);
777 } else {
778 svih->next = (vme_intr_handle_t)ih->ih_arg;
779 ih->ih_arg = vih;
780 }
781 return (NULL);
782 }
783
784 void
785 sparc_vme_unmap(cookie, resc)
786 void * cookie;
787 vme_mapresc_t resc;
788 {
789 /* Not implemented */
790 panic("sparc_vme_unmap");
791 }
792
793 void
794 sparc_vme_intr_disestablish(cookie, a)
795 void *cookie;
796 void *a;
797 {
798 /* Not implemented */
799 panic("sparc_vme_intr_disestablish");
800 }
801
802
803
804 /*
805 * VME DMA functions.
806 */
807
808 #if defined(SUN4)
809 int
810 sparc_vme4_dmamap_load(t, map, buf, buflen, p, flags)
811 bus_dma_tag_t t;
812 bus_dmamap_t map;
813 void *buf;
814 bus_size_t buflen;
815 struct proc *p;
816 int flags;
817 {
818 bus_addr_t dvmaddr;
819 bus_size_t sgsize;
820 vaddr_t vaddr;
821 pmap_t pmap;
822 int pagesz = PAGE_SIZE;
823 int error;
824
825 error = extent_alloc(vme_dvmamap, round_page(buflen), NBPG,
826 map->_dm_boundary,
827 (flags & BUS_DMA_NOWAIT) == 0
828 ? EX_WAITOK
829 : EX_NOWAIT,
830 (u_long *)&dvmaddr);
831 if (error != 0)
832 return (error);
833
834 vaddr = (vaddr_t)buf;
835 map->dm_mapsize = buflen;
836 map->dm_nsegs = 1;
837 map->dm_segs[0].ds_addr = dvmaddr + (vaddr & PGOFSET);
838 map->dm_segs[0].ds_len = buflen;
839
840 pmap = (p == NULL) ? pmap_kernel() : p->p_vmspace->vm_map.pmap;
841
842 for (; buflen > 0; ) {
843 paddr_t pa;
844 /*
845 * Get the physical address for this page.
846 */
847 (void) pmap_extract(pmap, vaddr, &pa);
848
849 /*
850 * Compute the segment size, and adjust counts.
851 */
852 sgsize = pagesz - ((u_long)vaddr & (pagesz - 1));
853 if (buflen < sgsize)
854 sgsize = buflen;
855
856 #ifdef notyet
857 if (have_iocache)
858 curaddr |= PG_IOC;
859 #endif
860 pmap_enter(pmap_kernel(), dvmaddr,
861 (pa & ~(pagesz-1)) | PMAP_NC,
862 VM_PROT_READ|VM_PROT_WRITE, PMAP_WIRED);
863
864 dvmaddr += pagesz;
865 vaddr += sgsize;
866 buflen -= sgsize;
867 }
868
869 /* Adjust DVMA address to VME view */
870 map->dm_segs[0].ds_addr -= VME4_DVMA_BASE;
871 return (0);
872 }
873
874 void
875 sparc_vme4_dmamap_unload(t, map)
876 bus_dma_tag_t t;
877 bus_dmamap_t map;
878 {
879 bus_dma_segment_t *segs = map->dm_segs;
880 int nsegs = map->dm_nsegs;
881 bus_addr_t dva;
882 bus_size_t len;
883 int i;
884
885 for (i = 0; i < nsegs; i++) {
886 /* Go from VME to CPU view */
887 dva = segs[i].ds_addr + VME4_DVMA_BASE;
888
889 dva &= ~PGOFSET;
890 len = round_page(segs[i].ds_len);
891
892 /* Remove double-mapping in DVMA space */
893 pmap_remove(pmap_kernel(), dva, dva + len);
894
895 /* Release DVMA space */
896 if (extent_free(vme_dvmamap, dva, len, EX_NOWAIT) != 0)
897 printf("warning: %ld of DVMA space lost\n", len);
898 }
899
900 /* Mark the mappings as invalid. */
901 map->dm_mapsize = 0;
902 map->dm_nsegs = 0;
903 }
904
905 void
906 sparc_vme4_dmamap_sync(t, map, offset, len, ops)
907 bus_dma_tag_t t;
908 bus_dmamap_t map;
909 bus_addr_t offset;
910 bus_size_t len;
911 int ops;
912 {
913
914 /*
915 * XXX Should perform cache flushes as necessary (e.g. 4/200 W/B).
916 * Currently the cache is flushed in bus_dma_load()...
917 */
918 }
919 #endif /* SUN4 */
920
921 #if defined(SUN4M)
922 static int
923 sparc_vme4m_dmamap_create (t, size, nsegments, maxsegsz, boundary, flags, dmamp)
924 bus_dma_tag_t t;
925 bus_size_t size;
926 int nsegments;
927 bus_size_t maxsegsz;
928 bus_size_t boundary;
929 int flags;
930 bus_dmamap_t *dmamp;
931 {
932 struct sparcvme_softc *sc = (struct sparcvme_softc *)t->_cookie;
933 int error;
934
935 /* XXX - todo: allocate DVMA addresses from assigned ranges:
936 upper 8MB for A32 space; upper 1MB for A24 space */
937 error = bus_dmamap_create(sc->sc_dmatag, size, nsegments, maxsegsz,
938 boundary, flags, dmamp);
939 if (error != 0)
940 return (error);
941
942 #if 0
943 /* VME DVMA addresses must always be 8K aligned */
944 (*dmamp)->_dm_align = 8192;
945 #endif
946
947 return (0);
948 }
949
950 int
951 sparc_vme4m_dmamap_load(t, map, buf, buflen, p, flags)
952 bus_dma_tag_t t;
953 bus_dmamap_t map;
954 void *buf;
955 bus_size_t buflen;
956 struct proc *p;
957 int flags;
958 {
959 struct sparcvme_softc *sc = (struct sparcvme_softc *)t->_cookie;
960 volatile u_int32_t *ioctags;
961 int error;
962
963 buflen = (buflen + VME_IOC_PAGESZ - 1) & -VME_IOC_PAGESZ;
964 error = bus_dmamap_load(sc->sc_dmatag, map, buf, buflen, p, flags);
965 if (error != 0)
966 return (error);
967
968 /* allocate IO cache entries for this range */
969 ioctags = sc->sc_ioctags + VME_IOC_LINE(map->dm_segs[0].ds_addr);
970 for (;buflen > 0;) {
971 *ioctags = VME_IOC_IC | VME_IOC_W;
972 ioctags += VME_IOC_LINESZ/sizeof(*ioctags);
973 buflen -= VME_IOC_PAGESZ;
974 }
975 return (0);
976 }
977
978
979 void
980 sparc_vme4m_dmamap_unload(t, map)
981 bus_dma_tag_t t;
982 bus_dmamap_t map;
983 {
984 struct sparcvme_softc *sc = (struct sparcvme_softc *)t->_cookie;
985 volatile u_int32_t *flushregs;
986 int len;
987
988 /* Flush VME IO cache */
989 len = map->dm_segs[0].ds_len;
990 flushregs = sc->sc_iocflush + VME_IOC_LINE(map->dm_segs[0].ds_addr);
991 for (;len > 0;) {
992 *flushregs = 0;
993 flushregs += VME_IOC_LINESZ/sizeof(*flushregs);
994 len -= VME_IOC_PAGESZ;
995 }
996 /* Read a tag to synchronize the IOC flushes */
997 (*sc->sc_ioctags);
998
999 bus_dmamap_unload(sc->sc_dmatag, map);
1000 }
1001
1002 void
1003 sparc_vme4m_dmamap_sync(t, map, offset, len, ops)
1004 bus_dma_tag_t t;
1005 bus_dmamap_t map;
1006 bus_addr_t offset;
1007 bus_size_t len;
1008 int ops;
1009 {
1010
1011 /*
1012 * XXX Should perform cache flushes as necessary.
1013 */
1014 }
1015 #endif /* SUN4M */
1016
1017 int
1018 sparc_vme_dmamem_map(t, segs, nsegs, size, kvap, flags)
1019 bus_dma_tag_t t;
1020 bus_dma_segment_t *segs;
1021 int nsegs;
1022 size_t size;
1023 caddr_t *kvap;
1024 int flags;
1025 {
1026 struct sparcvme_softc *sc = (struct sparcvme_softc *)t->_cookie;
1027
1028 return (bus_dmamem_map(sc->sc_dmatag, segs, nsegs, size, kvap, flags));
1029 }
1030