vme_machdep.c revision 1.28 1 /* $NetBSD: vme_machdep.c,v 1.28 2000/06/27 09:05:23 pk Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/param.h>
40 #include <sys/extent.h>
41 #include <sys/systm.h>
42 #include <sys/device.h>
43 #include <sys/malloc.h>
44 #include <sys/errno.h>
45
46 #include <sys/proc.h>
47 #include <sys/user.h>
48 #include <sys/syslog.h>
49
50 #include <vm/vm.h>
51
52 #define _SPARC_BUS_DMA_PRIVATE
53 #include <machine/bus.h>
54 #include <sparc/sparc/iommuvar.h>
55 #include <machine/autoconf.h>
56 #include <machine/pmap.h>
57 #include <machine/oldmon.h>
58 #include <machine/cpu.h>
59 #include <machine/ctlreg.h>
60
61 #include <dev/vme/vmereg.h>
62 #include <dev/vme/vmevar.h>
63
64 #include <sparc/sparc/asm.h>
65 #include <sparc/sparc/vaddrs.h>
66 #include <sparc/sparc/cpuvar.h>
67 #include <sparc/dev/vmereg.h>
68
69 struct sparcvme_softc {
70 struct device sc_dev; /* base device */
71 bus_space_tag_t sc_bustag;
72 bus_dma_tag_t sc_dmatag;
73 struct vmebusreg *sc_reg; /* VME control registers */
74 struct vmebusvec *sc_vec; /* VME interrupt vector */
75 struct rom_range *sc_range; /* ROM range property */
76 int sc_nrange;
77 volatile u_int32_t *sc_ioctags; /* VME IO-cache tag registers */
78 volatile u_int32_t *sc_iocflush;/* VME IO-cache flush registers */
79 int (*sc_vmeintr) __P((void *));
80 };
81 struct sparcvme_softc *sparcvme_sc;/*XXX*/
82
83 /* autoconfiguration driver */
84 static int vmematch_iommu __P((struct device *, struct cfdata *, void *));
85 static void vmeattach_iommu __P((struct device *, struct device *, void *));
86 static int vmematch_mainbus __P((struct device *, struct cfdata *, void *));
87 static void vmeattach_mainbus __P((struct device *, struct device *, void *));
88 #if defined(SUN4)
89 int vmeintr4 __P((void *));
90 #endif
91 #if defined(SUN4M)
92 int vmeintr4m __P((void *));
93 static int sparc_vme_error __P((void));
94 #endif
95
96
97 static int sparc_vme_probe __P((void *, vme_addr_t, vme_size_t,
98 vme_am_t, vme_datasize_t,
99 int (*) __P((void *, bus_space_tag_t, bus_space_handle_t)), void *));
100 static int sparc_vme_map __P((void *, vme_addr_t, vme_size_t, vme_am_t,
101 vme_datasize_t, vme_swap_t,
102 bus_space_tag_t *, bus_space_handle_t *,
103 vme_mapresc_t *));
104 static void sparc_vme_unmap __P((void *, vme_mapresc_t));
105 static int sparc_vme_intr_map __P((void *, int, int, vme_intr_handle_t *));
106 static const struct evcnt *sparc_vme_intr_evcnt __P((void *,
107 vme_intr_handle_t));
108 static void * sparc_vme_intr_establish __P((void *, vme_intr_handle_t, int,
109 int (*) __P((void *)), void *));
110 static void sparc_vme_intr_disestablish __P((void *, void *));
111
112 static int vmebus_translate __P((struct sparcvme_softc *, vme_am_t,
113 vme_addr_t, bus_type_t *, bus_addr_t *));
114 #if defined(SUN4M)
115 static void sparc_vme_iommu_barrier __P(( bus_space_tag_t, bus_space_handle_t,
116 bus_size_t, bus_size_t, int));
117
118 #endif
119
120 /*
121 * DMA functions.
122 */
123 static void sparc_vct_dmamap_destroy __P((void *, bus_dmamap_t));
124
125 #if defined(SUN4)
126 static int sparc_vct4_dmamap_create __P((void *, vme_size_t, vme_am_t,
127 vme_datasize_t, vme_swap_t, int, vme_size_t, vme_addr_t,
128 int, bus_dmamap_t *));
129 static int sparc_vme4_dmamap_load __P((bus_dma_tag_t, bus_dmamap_t, void *,
130 bus_size_t, struct proc *, int));
131 static void sparc_vme4_dmamap_unload __P((bus_dma_tag_t, bus_dmamap_t));
132 static void sparc_vme4_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t,
133 bus_addr_t, bus_size_t, int));
134 #endif
135
136 #if defined(SUN4M)
137 static int sparc_vct_iommu_dmamap_create __P((void *, vme_size_t, vme_am_t,
138 vme_datasize_t, vme_swap_t, int, vme_size_t, vme_addr_t,
139 int, bus_dmamap_t *));
140 static int sparc_vme_iommu_dmamap_create __P((bus_dma_tag_t, bus_size_t,
141 int, bus_size_t, bus_size_t, int, bus_dmamap_t *));
142
143 static int sparc_vme_iommu_dmamap_load __P((bus_dma_tag_t, bus_dmamap_t,
144 void *, bus_size_t, struct proc *, int));
145 static void sparc_vme_iommu_dmamap_unload __P((bus_dma_tag_t, bus_dmamap_t));
146 static void sparc_vme_iommu_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t,
147 bus_addr_t, bus_size_t, int));
148 #endif
149
150 static int sparc_vme_dmamem_map __P((bus_dma_tag_t, bus_dma_segment_t *,
151 int, size_t, caddr_t *, int));
152 #if 0
153 static void sparc_vme_dmamap_destroy __P((bus_dma_tag_t, bus_dmamap_t));
154 static void sparc_vme_dmamem_unmap __P((bus_dma_tag_t, caddr_t, size_t));
155 static paddr_t sparc_vme_dmamem_mmap __P((bus_dma_tag_t,
156 bus_dma_segment_t *, int, off_t, int, int));
157 #endif
158
159 int sparc_vme_mmap_cookie __P((vme_addr_t, vme_am_t, bus_space_handle_t *));
160
161 struct cfattach vme_mainbus_ca = {
162 sizeof(struct sparcvme_softc), vmematch_mainbus, vmeattach_mainbus
163 };
164
165 struct cfattach vme_iommu_ca = {
166 sizeof(struct sparcvme_softc), vmematch_iommu, vmeattach_iommu
167 };
168
169 int (*vmeerr_handler) __P((void));
170
171 #define VMEMOD_D32 0x40 /* ??? */
172
173 /* If the PROM does not provide the `ranges' property, we make up our own */
174 struct rom_range vmebus_translations[] = {
175 #define _DS (VME_AM_MBO | VME_AM_SUPER | VME_AM_DATA)
176 { VME_AM_A16|_DS, 0, PMAP_VME16, 0xffff0000, 0 },
177 { VME_AM_A24|_DS, 0, PMAP_VME16, 0xff000000, 0 },
178 { VME_AM_A32|_DS, 0, PMAP_VME16, 0x00000000, 0 },
179 { VME_AM_A16|VMEMOD_D32|_DS, 0, PMAP_VME32, 0xffff0000, 0 },
180 { VME_AM_A24|VMEMOD_D32|_DS, 0, PMAP_VME32, 0xff000000, 0 },
181 { VME_AM_A32|VMEMOD_D32|_DS, 0, PMAP_VME32, 0x00000000, 0 }
182 #undef _DS
183 };
184
185 /*
186 * The VME bus logic on sun4 machines maps DMA requests in the first MB
187 * of VME space to the last MB of DVMA space. `vme_dvmamap' is used
188 * for DVMA space allocations. The DMA addresses returned by
189 * bus_dmamap_load*() must be relocated by -VME4_DVMA_BASE.
190 */
191 struct extent *vme_dvmamap;
192
193 /*
194 * The VME hardware on the sun4m IOMMU maps the first 8MB of 32-bit
195 * VME space to the last 8MB of DVMA space and the first 1MB of
196 * 24-bit VME space to the first 1MB of the last 8MB of DVMA space
197 * (thus 24-bit VME space overlaps the first 1MB of of 32-bit space).
198 * The following constants define subregions in the IOMMU DVMA map
199 * for VME DVMA allocations. The DMA addresses returned by
200 * bus_dmamap_load*() must be relocated by -VME_IOMMU_DVMA_BASE.
201 */
202 #define VME_IOMMU_DVMA_BASE 0xff800000
203 #define VME_IOMMU_DVMA_AM24_BASE VME_IOMMU_DVMA_BASE
204 #define VME_IOMMU_DVMA_AM24_END 0xff900000
205 #define VME_IOMMU_DVMA_AM32_BASE VME_IOMMU_DVMA_BASE
206 #define VME_IOMMU_DVMA_AM32_END IOMMU_DVMA_END
207
208 struct sparc_bus_space_tag sparc_vme_bus_tag = {
209 NULL, /* cookie */
210 NULL, /* parent bus tag */
211 NULL, /* bus_map */
212 NULL, /* bus_unmap */
213 NULL, /* bus_subregion */
214 NULL /* barrier */
215 };
216
217 struct vme_chipset_tag sparc_vme_chipset_tag = {
218 NULL,
219 sparc_vme_map,
220 sparc_vme_unmap,
221 sparc_vme_probe,
222 sparc_vme_intr_map,
223 sparc_vme_intr_evcnt,
224 sparc_vme_intr_establish,
225 sparc_vme_intr_disestablish,
226 0, 0, 0 /* bus specific DMA stuff */
227 };
228
229
230 #if defined(SUN4)
231 struct sparc_bus_dma_tag sparc_vme4_dma_tag = {
232 NULL, /* cookie */
233 _bus_dmamap_create,
234 _bus_dmamap_destroy,
235 sparc_vme4_dmamap_load,
236 _bus_dmamap_load_mbuf,
237 _bus_dmamap_load_uio,
238 _bus_dmamap_load_raw,
239 sparc_vme4_dmamap_unload,
240 sparc_vme4_dmamap_sync,
241
242 _bus_dmamem_alloc,
243 _bus_dmamem_free,
244 sparc_vme_dmamem_map,
245 _bus_dmamem_unmap,
246 _bus_dmamem_mmap
247 };
248 #endif
249
250 #if defined(SUN4M)
251 struct sparc_bus_dma_tag sparc_vme_iommu_dma_tag = {
252 NULL, /* cookie */
253 sparc_vme_iommu_dmamap_create,
254 _bus_dmamap_destroy,
255 sparc_vme_iommu_dmamap_load,
256 _bus_dmamap_load_mbuf,
257 _bus_dmamap_load_uio,
258 _bus_dmamap_load_raw,
259 sparc_vme_iommu_dmamap_unload,
260 sparc_vme_iommu_dmamap_sync,
261
262 _bus_dmamem_alloc,
263 _bus_dmamem_free,
264 sparc_vme_dmamem_map,
265 _bus_dmamem_unmap,
266 _bus_dmamem_mmap
267 };
268 #endif
269
270
271 int
272 vmematch_mainbus(parent, cf, aux)
273 struct device *parent;
274 struct cfdata *cf;
275 void *aux;
276 {
277 struct mainbus_attach_args *ma = aux;
278
279 if (!CPU_ISSUN4)
280 return (0);
281
282 return (strcmp("vme", ma->ma_name) == 0);
283 }
284
285 int
286 vmematch_iommu(parent, cf, aux)
287 struct device *parent;
288 struct cfdata *cf;
289 void *aux;
290 {
291 struct iommu_attach_args *ia = aux;
292
293 return (strcmp("vme", ia->iom_name) == 0);
294 }
295
296
297 void
298 vmeattach_mainbus(parent, self, aux)
299 struct device *parent, *self;
300 void *aux;
301 {
302 #if defined(SUN4)
303 struct mainbus_attach_args *ma = aux;
304 struct sparcvme_softc *sc = (struct sparcvme_softc *)self;
305 struct vmebus_attach_args vba;
306
307 if (self->dv_unit > 0) {
308 printf(" unsupported\n");
309 return;
310 }
311
312 sc->sc_bustag = ma->ma_bustag;
313 sc->sc_dmatag = ma->ma_dmatag;
314
315 /* VME interrupt entry point */
316 sc->sc_vmeintr = vmeintr4;
317
318 /*XXX*/ sparc_vme_chipset_tag.cookie = self;
319 /*XXX*/ sparc_vme_chipset_tag.vct_dmamap_create = sparc_vct4_dmamap_create;
320 /*XXX*/ sparc_vme_chipset_tag.vct_dmamap_destroy = sparc_vct_dmamap_destroy;
321 /*XXX*/ sparc_vme4_dma_tag._cookie = self;
322
323 #if 0
324 sparc_vme_bus_tag.parent = ma->ma_bustag;
325 vba.vba_bustag = &sparc_vme_bus_tag;
326 #endif
327 vba.va_vct = &sparc_vme_chipset_tag;
328 vba.va_bdt = &sparc_vme4_dma_tag;
329 vba.va_slaveconfig = 0;
330
331 /* Fall back to our own `range' construction */
332 sc->sc_range = vmebus_translations;
333 sc->sc_nrange =
334 sizeof(vmebus_translations)/sizeof(vmebus_translations[0]);
335
336 vme_dvmamap = extent_create("vmedvma", VME4_DVMA_BASE, VME4_DVMA_END,
337 M_DEVBUF, 0, 0, EX_NOWAIT);
338 if (vme_dvmamap == NULL)
339 panic("vme: unable to allocate DVMA map");
340
341 printf("\n");
342 (void)config_found(self, &vba, 0);
343
344 #endif
345 return;
346 }
347
348 /* sun4m vmebus */
349 void
350 vmeattach_iommu(parent, self, aux)
351 struct device *parent, *self;
352 void *aux;
353 {
354 #if defined(SUN4M)
355 struct sparcvme_softc *sc = (struct sparcvme_softc *)self;
356 struct iommu_attach_args *ia = aux;
357 struct vmebus_attach_args vba;
358 bus_space_handle_t bh;
359 int node;
360 int cline;
361
362 if (self->dv_unit > 0) {
363 printf(" unsupported\n");
364 return;
365 }
366
367 sc->sc_bustag = ia->iom_bustag;
368 sc->sc_dmatag = ia->iom_dmatag;
369
370 /* VME interrupt entry point */
371 sc->sc_vmeintr = vmeintr4m;
372
373 /*XXX*/ sparc_vme_chipset_tag.cookie = self;
374 /*XXX*/ sparc_vme_chipset_tag.vct_dmamap_create = sparc_vct_iommu_dmamap_create;
375 /*XXX*/ sparc_vme_chipset_tag.vct_dmamap_destroy = sparc_vct_dmamap_destroy;
376 /*XXX*/ sparc_vme_iommu_dma_tag._cookie = self;
377 sparc_vme_bus_tag.sparc_bus_barrier = sparc_vme_iommu_barrier;
378
379 #if 0
380 vba.vba_bustag = &sparc_vme_bus_tag;
381 #endif
382 vba.va_vct = &sparc_vme_chipset_tag;
383 vba.va_bdt = &sparc_vme_iommu_dma_tag;
384 vba.va_slaveconfig = 0;
385
386 node = ia->iom_node;
387
388 /*
389 * Map VME control space
390 */
391 if (ia->iom_nreg < 2) {
392 printf("%s: only %d register sets\n", self->dv_xname,
393 ia->iom_nreg);
394 return;
395 }
396
397 if (bus_space_map2(ia->iom_bustag,
398 (bus_type_t)ia->iom_reg[0].ior_iospace,
399 (bus_addr_t)ia->iom_reg[0].ior_pa,
400 (bus_size_t)ia->iom_reg[0].ior_size,
401 BUS_SPACE_MAP_LINEAR,
402 0, &bh) != 0) {
403 panic("%s: can't map vmebusreg", self->dv_xname);
404 }
405 sc->sc_reg = (struct vmebusreg *)bh;
406
407 if (bus_space_map2(ia->iom_bustag,
408 (bus_type_t)ia->iom_reg[1].ior_iospace,
409 (bus_addr_t)ia->iom_reg[1].ior_pa,
410 (bus_size_t)ia->iom_reg[1].ior_size,
411 BUS_SPACE_MAP_LINEAR,
412 0, &bh) != 0) {
413 panic("%s: can't map vmebusvec", self->dv_xname);
414 }
415 sc->sc_vec = (struct vmebusvec *)bh;
416
417 /*
418 * Map VME IO cache tags and flush control.
419 */
420 if (bus_space_map2(ia->iom_bustag,
421 (bus_type_t)ia->iom_reg[1].ior_iospace,
422 (bus_addr_t)ia->iom_reg[1].ior_pa + VME_IOC_TAGOFFSET,
423 VME_IOC_SIZE,
424 BUS_SPACE_MAP_LINEAR,
425 0, &bh) != 0) {
426 panic("%s: can't map IOC tags", self->dv_xname);
427 }
428 sc->sc_ioctags = (u_int32_t *)bh;
429
430 if (bus_space_map2(ia->iom_bustag,
431 (bus_type_t)ia->iom_reg[1].ior_iospace,
432 (bus_addr_t)ia->iom_reg[1].ior_pa+VME_IOC_FLUSHOFFSET,
433 VME_IOC_SIZE,
434 BUS_SPACE_MAP_LINEAR,
435 0, &bh) != 0) {
436 panic("%s: can't map IOC flush registers", self->dv_xname);
437 }
438 sc->sc_iocflush = (u_int32_t *)bh;
439
440 /*XXX*/ sparc_vme_bus_tag.cookie = sc->sc_reg;
441
442 /*
443 * Get "range" property.
444 */
445 if (getprop(node, "ranges", sizeof(struct rom_range),
446 &sc->sc_nrange, (void **)&sc->sc_range) != 0) {
447 panic("%s: can't get ranges property", self->dv_xname);
448 }
449
450 sparcvme_sc = sc;
451 vmeerr_handler = sparc_vme_error;
452
453 /*
454 * Invalidate all IO-cache entries.
455 */
456 for (cline = VME_IOC_SIZE/VME_IOC_LINESZ; cline > 0;) {
457 sc->sc_ioctags[--cline] = 0;
458 }
459
460 /* Enable IO-cache */
461 sc->sc_reg->vmebus_cr |= VMEBUS_CR_C;
462
463 printf(": version 0x%x\n",
464 sc->sc_reg->vmebus_cr & VMEBUS_CR_IMPL);
465
466 (void)config_found(self, &vba, 0);
467 #endif
468 }
469
470 #if defined(SUN4M)
471 static int
472 sparc_vme_error()
473 {
474 struct sparcvme_softc *sc = sparcvme_sc;
475 u_int32_t afsr, afpa;
476 char bits[64];
477
478 afsr = sc->sc_reg->vmebus_afsr;
479 afpa = sc->sc_reg->vmebus_afar;
480 printf("VME error:\n\tAFSR %s\n",
481 bitmask_snprintf(afsr, VMEBUS_AFSR_BITS, bits, sizeof(bits)));
482 printf("\taddress: 0x%x%x\n", afsr, afpa);
483 return (0);
484 }
485 #endif
486
487 int
488 vmebus_translate(sc, mod, addr, btp, bap)
489 struct sparcvme_softc *sc;
490 vme_am_t mod;
491 vme_addr_t addr;
492 bus_type_t *btp;
493 bus_addr_t *bap;
494 {
495 int i;
496
497 for (i = 0; i < sc->sc_nrange; i++) {
498
499 if (sc->sc_range[i].cspace != mod)
500 continue;
501
502 /* We've found the connection to the parent bus */
503 *bap = sc->sc_range[i].poffset + addr;
504 *btp = sc->sc_range[i].pspace;
505 return (0);
506 }
507 return (ENOENT);
508 }
509
510 struct vmeprobe_myarg {
511 int (*cb) __P((void *, bus_space_tag_t, bus_space_handle_t));
512 void *cbarg;
513 bus_space_tag_t tag;
514 int res; /* backwards */
515 };
516
517 static int vmeprobe_mycb __P((void *, void *));
518 static int
519 vmeprobe_mycb(bh, arg)
520 void *bh, *arg;
521 {
522 struct vmeprobe_myarg *a = arg;
523
524 a->res = (*a->cb)(a->cbarg, a->tag, (bus_space_handle_t)bh);
525 return (!a->res);
526 }
527
528 int
529 sparc_vme_probe(cookie, addr, len, mod, datasize, callback, arg)
530 void *cookie;
531 vme_addr_t addr;
532 vme_size_t len;
533 vme_am_t mod;
534 vme_datasize_t datasize;
535 int (*callback) __P((void *, bus_space_tag_t, bus_space_handle_t));
536 void *arg;
537 {
538 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
539 bus_type_t iospace;
540 bus_addr_t paddr;
541 bus_size_t size;
542 struct vmeprobe_myarg myarg;
543 int res, i;
544
545 if (vmebus_translate(sc, mod, addr, &iospace, &paddr) != 0)
546 return (EINVAL);
547
548 size = (datasize == VME_D8 ? 1 : (datasize == VME_D16 ? 2 : 4));
549
550 if (callback) {
551 myarg.cb = callback;
552 myarg.cbarg = arg;
553 myarg.tag = sc->sc_bustag;
554 myarg.res = 0;
555 res = bus_space_probe(sc->sc_bustag, iospace, paddr, size, 0,
556 0, vmeprobe_mycb, &myarg);
557 return (res ? 0 : (myarg.res ? myarg.res : EIO));
558 }
559
560 for (i = 0; i < len / size; i++) {
561 myarg.res = 0;
562 res = bus_space_probe(sc->sc_bustag, iospace, paddr, size, 0,
563 0, 0, 0);
564 if (res == 0)
565 return (EIO);
566 paddr += size;
567 }
568 return (0);
569 }
570
571 int
572 sparc_vme_map(cookie, addr, size, mod, datasize, swap, tp, hp, rp)
573 void *cookie;
574 vme_addr_t addr;
575 vme_size_t size;
576 vme_am_t mod;
577 vme_datasize_t datasize;
578 vme_swap_t swap;
579 bus_space_tag_t *tp;
580 bus_space_handle_t *hp;
581 vme_mapresc_t *rp;
582 {
583 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
584 bus_type_t iospace;
585 bus_addr_t paddr;
586 int error;
587
588 error = vmebus_translate(sc, mod, addr, &iospace, &paddr);
589 if (error != 0)
590 return (error);
591
592 *tp = sc->sc_bustag;
593 return (bus_space_map2(sc->sc_bustag, iospace, paddr, size, 0, 0, hp));
594 }
595
596 int
597 sparc_vme_mmap_cookie(addr, mod, hp)
598 vme_addr_t addr;
599 vme_am_t mod;
600 bus_space_handle_t *hp;
601 {
602 struct sparcvme_softc *sc = sparcvme_sc;
603 bus_type_t iospace;
604 bus_addr_t paddr;
605 int error;
606
607 error = vmebus_translate(sc, mod, addr, &iospace, &paddr);
608 if (error != 0)
609 return (error);
610
611 return (bus_space_mmap(sc->sc_bustag, iospace, paddr, 0, hp));
612 }
613
614 #if defined(SUN4M)
615 void
616 sparc_vme_iommu_barrier(t, h, offset, size, flags)
617 bus_space_tag_t t;
618 bus_space_handle_t h;
619 bus_size_t offset;
620 bus_size_t size;
621 int flags;
622 {
623 struct vmebusreg *vbp = (struct vmebusreg *)t->cookie;
624
625 /* Read async fault status to flush write-buffers */
626 (*(volatile int *)&vbp->vmebus_afsr);
627 }
628 #endif
629
630
631
632 /*
633 * VME Interrupt Priority Level to sparc Processor Interrupt Level.
634 */
635 static int vme_ipl_to_pil[] = {
636 0,
637 2,
638 3,
639 5,
640 7,
641 9,
642 11,
643 13
644 };
645
646
647 /*
648 * All VME device interrupts go through vmeintr(). This function reads
649 * the VME vector from the bus, then dispatches the device interrupt
650 * handler. All handlers for devices that map to the same Processor
651 * Interrupt Level (according to the table above) are on a linked list
652 * of `sparc_vme_intr_handle' structures. The head of which is passed
653 * down as the argument to `vmeintr(void *arg)'.
654 */
655 struct sparc_vme_intr_handle {
656 struct intrhand ih;
657 struct sparc_vme_intr_handle *next;
658 int vec; /* VME interrupt vector */
659 int pri; /* VME interrupt priority */
660 struct sparcvme_softc *sc;/*XXX*/
661 };
662
663 #if defined(SUN4)
664 int
665 vmeintr4(arg)
666 void *arg;
667 {
668 struct sparc_vme_intr_handle *ihp = (vme_intr_handle_t)arg;
669 int level, vec;
670 int i = 0;
671
672 level = (ihp->pri << 1) | 1;
673
674 vec = ldcontrolb((caddr_t)(AC_VMEINTVEC | level));
675
676 if (vec == -1) {
677 printf("vme: spurious interrupt\n");
678 return 1; /* XXX - pretend we handled it, for now */
679 }
680
681 for (; ihp; ihp = ihp->next)
682 if (ihp->vec == vec && ihp->ih.ih_fun)
683 i += (ihp->ih.ih_fun)(ihp->ih.ih_arg);
684 return (i);
685 }
686 #endif
687
688 #if defined(SUN4M)
689 int
690 vmeintr4m(arg)
691 void *arg;
692 {
693 struct sparc_vme_intr_handle *ihp = (vme_intr_handle_t)arg;
694 int level, vec;
695 int i = 0;
696
697 level = (ihp->pri << 1) | 1;
698
699 #if 0
700 int pending;
701
702 /* Flush VME <=> Sbus write buffers */
703 (*(volatile int *)&ihp->sc->sc_reg->vmebus_afsr);
704
705 pending = *((int*)ICR_SI_PEND);
706 if ((pending & SINTR_VME(ihp->pri)) == 0) {
707 printf("vmeintr: non pending at pri %x(p 0x%x)\n",
708 ihp->pri, pending);
709 return (0);
710 }
711 #endif
712 #if 0
713 /* Why gives this a bus timeout sometimes? */
714 vec = ihp->sc->sc_vec->vmebusvec[level];
715 #else
716 /* so, arrange to catch the fault... */
717 {
718 extern struct user *proc0paddr;
719 extern int fkbyte __P((caddr_t, struct pcb *));
720 caddr_t addr = (caddr_t)&ihp->sc->sc_vec->vmebusvec[level];
721 struct pcb *xpcb;
722 u_long saveonfault;
723 int s;
724
725 s = splhigh();
726 if (curproc == NULL)
727 xpcb = (struct pcb *)proc0paddr;
728 else
729 xpcb = &curproc->p_addr->u_pcb;
730
731 saveonfault = (u_long)xpcb->pcb_onfault;
732 vec = fkbyte(addr, xpcb);
733 xpcb->pcb_onfault = (caddr_t)saveonfault;
734
735 splx(s);
736 }
737 #endif
738
739 if (vec == -1) {
740 printf("vme: spurious interrupt: ");
741 printf("SI: 0x%x, VME AFSR: 0x%x, VME AFAR 0x%x\n",
742 *((int*)ICR_SI_PEND),
743 ihp->sc->sc_reg->vmebus_afsr,
744 ihp->sc->sc_reg->vmebus_afar);
745 return (1); /* XXX - pretend we handled it, for now */
746 }
747
748 for (; ihp; ihp = ihp->next)
749 if (ihp->vec == vec && ihp->ih.ih_fun)
750 i += (ihp->ih.ih_fun)(ihp->ih.ih_arg);
751 return (i);
752 }
753 #endif
754
755 int
756 sparc_vme_intr_map(cookie, level, vec, ihp)
757 void *cookie;
758 int level;
759 int vec;
760 vme_intr_handle_t *ihp;
761 {
762 struct sparc_vme_intr_handle *ih;
763
764 ih = (vme_intr_handle_t)
765 malloc(sizeof(struct sparc_vme_intr_handle), M_DEVBUF, M_NOWAIT);
766 ih->pri = level;
767 ih->vec = vec;
768 ih->sc = cookie;/*XXX*/
769 *ihp = ih;
770 return (0);
771 }
772
773 const struct evcnt *
774 sparc_vme_intr_evcnt(cookie, vih)
775 void *cookie;
776 vme_intr_handle_t vih;
777 {
778
779 /* XXX for now, no evcnt parent reported */
780 return NULL;
781 }
782
783 void *
784 sparc_vme_intr_establish(cookie, vih, pri, func, arg)
785 void *cookie;
786 vme_intr_handle_t vih;
787 int pri;
788 int (*func) __P((void *));
789 void *arg;
790 {
791 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
792 struct sparc_vme_intr_handle *svih =
793 (struct sparc_vme_intr_handle *)vih;
794 struct intrhand *ih;
795 int level;
796
797 /* XXX pri == svih->pri ??? */
798
799 /* Translate VME priority to processor IPL */
800 level = vme_ipl_to_pil[svih->pri];
801
802 svih->ih.ih_fun = func;
803 svih->ih.ih_arg = arg;
804 svih->next = NULL;
805
806 /* ensure the interrupt subsystem will call us at this level */
807 for (ih = intrhand[level]; ih != NULL; ih = ih->ih_next)
808 if (ih->ih_fun == sc->sc_vmeintr)
809 break;
810
811 if (ih == NULL) {
812 ih = (struct intrhand *)
813 malloc(sizeof(struct intrhand), M_DEVBUF, M_NOWAIT);
814 if (ih == NULL)
815 panic("vme_addirq");
816 bzero(ih, sizeof *ih);
817 ih->ih_fun = sc->sc_vmeintr;
818 ih->ih_arg = vih;
819 intr_establish(level, ih);
820 } else {
821 svih->next = (vme_intr_handle_t)ih->ih_arg;
822 ih->ih_arg = vih;
823 }
824 return (NULL);
825 }
826
827 void
828 sparc_vme_unmap(cookie, resc)
829 void * cookie;
830 vme_mapresc_t resc;
831 {
832 /* Not implemented */
833 panic("sparc_vme_unmap");
834 }
835
836 void
837 sparc_vme_intr_disestablish(cookie, a)
838 void *cookie;
839 void *a;
840 {
841 /* Not implemented */
842 panic("sparc_vme_intr_disestablish");
843 }
844
845
846
847 /*
848 * VME DMA functions.
849 */
850
851 static void
852 sparc_vct_dmamap_destroy(cookie, map)
853 void *cookie;
854 bus_dmamap_t map;
855 {
856 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
857 bus_dmamap_destroy(sc->sc_dmatag, map);
858 }
859
860 #if defined(SUN4)
861 static int
862 sparc_vct4_dmamap_create(cookie, size, am, datasize, swap, nsegments, maxsegsz,
863 boundary, flags, dmamp)
864 void *cookie;
865 vme_size_t size;
866 vme_am_t am;
867 vme_datasize_t datasize;
868 vme_swap_t swap;
869 int nsegments;
870 vme_size_t maxsegsz;
871 vme_addr_t boundary;
872 int flags;
873 bus_dmamap_t *dmamp;
874 {
875 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
876
877 /* Allocate a base map through parent bus ops */
878 return (bus_dmamap_create(sc->sc_dmatag, size, nsegments, maxsegsz,
879 boundary, flags, dmamp));
880 }
881
882 int
883 sparc_vme4_dmamap_load(t, map, buf, buflen, p, flags)
884 bus_dma_tag_t t;
885 bus_dmamap_t map;
886 void *buf;
887 bus_size_t buflen;
888 struct proc *p;
889 int flags;
890 {
891 bus_addr_t dva;
892 bus_size_t sgsize;
893 vaddr_t va, voff;
894 pmap_t pmap;
895 int pagesz = PAGE_SIZE;
896 int error;
897
898 cpuinfo.cache_flush(buf, buflen); /* XXX - move to bus_dma_sync */
899
900 va = (vaddr_t)buf;
901 voff = va & (pagesz - 1);
902 va &= -pagesz;
903
904 /*
905 * Allocate an integral number of pages from DVMA space
906 * covering the passed buffer.
907 */
908 sgsize = (buflen + voff + pagesz - 1) & -pagesz;
909 error = extent_alloc(vme_dvmamap, sgsize, pagesz,
910 map->_dm_boundary,
911 (flags & BUS_DMA_NOWAIT) == 0
912 ? EX_WAITOK
913 : EX_NOWAIT,
914 (u_long *)&dva);
915 if (error != 0)
916 return (error);
917
918 map->dm_mapsize = buflen;
919 map->dm_nsegs = 1;
920 /* Adjust DVMA address to VME view */
921 map->dm_segs[0].ds_addr = dva + voff - VME4_DVMA_BASE;
922 map->dm_segs[0].ds_len = buflen;
923 map->dm_segs[0]._ds_sgsize = sgsize;
924
925 pmap = (p == NULL) ? pmap_kernel() : p->p_vmspace->vm_map.pmap;
926
927 for (; sgsize != 0; ) {
928 paddr_t pa;
929 /*
930 * Get the physical address for this page.
931 */
932 (void) pmap_extract(pmap, va, &pa);
933
934 #ifdef notyet
935 if (have_iocache)
936 pa |= PG_IOC;
937 #endif
938 pmap_enter(pmap_kernel(), dva,
939 pa | PMAP_NC,
940 VM_PROT_READ|VM_PROT_WRITE, PMAP_WIRED);
941
942 dva += pagesz;
943 va += pagesz;
944 sgsize -= pagesz;
945 }
946
947 return (0);
948 }
949
950 void
951 sparc_vme4_dmamap_unload(t, map)
952 bus_dma_tag_t t;
953 bus_dmamap_t map;
954 {
955 bus_dma_segment_t *segs = map->dm_segs;
956 int nsegs = map->dm_nsegs;
957 bus_addr_t dva;
958 bus_size_t len;
959 int i, s, error;
960
961 for (i = 0; i < nsegs; i++) {
962 /* Go from VME to CPU view */
963 dva = segs[i].ds_addr + VME4_DVMA_BASE;
964 dva &= -PAGE_SIZE;
965 len = segs[i]._ds_sgsize;
966
967 /* Remove double-mapping in DVMA space */
968 pmap_remove(pmap_kernel(), dva, dva + len);
969
970 /* Release DVMA space */
971 s = splhigh();
972 error = extent_free(vme_dvmamap, dva, len, EX_NOWAIT);
973 splx(s);
974 if (error != 0)
975 printf("warning: %ld of DVMA space lost\n", len);
976 }
977
978 /* Mark the mappings as invalid. */
979 map->dm_mapsize = 0;
980 map->dm_nsegs = 0;
981 }
982
983 void
984 sparc_vme4_dmamap_sync(t, map, offset, len, ops)
985 bus_dma_tag_t t;
986 bus_dmamap_t map;
987 bus_addr_t offset;
988 bus_size_t len;
989 int ops;
990 {
991
992 /*
993 * XXX Should perform cache flushes as necessary (e.g. 4/200 W/B).
994 * Currently the cache is flushed in bus_dma_load()...
995 */
996 }
997 #endif /* SUN4 */
998
999 #if defined(SUN4M)
1000 static int
1001 sparc_vme_iommu_dmamap_create (t, size, nsegments, maxsegsz,
1002 boundary, flags, dmamp)
1003 bus_dma_tag_t t;
1004 bus_size_t size;
1005 int nsegments;
1006 bus_size_t maxsegsz;
1007 bus_size_t boundary;
1008 int flags;
1009 bus_dmamap_t *dmamp;
1010 {
1011
1012 printf("sparc_vme_dmamap_create: please use `vme_dmamap_create'\n");
1013 return (EINVAL);
1014 }
1015
1016 static int
1017 sparc_vct_iommu_dmamap_create(cookie, size, am, datasize, swap, nsegments,
1018 maxsegsz, boundary, flags, dmamp)
1019 void *cookie;
1020 vme_size_t size;
1021 vme_am_t am;
1022 vme_datasize_t datasize;
1023 vme_swap_t swap;
1024 int nsegments;
1025 vme_size_t maxsegsz;
1026 vme_addr_t boundary;
1027 int flags;
1028 bus_dmamap_t *dmamp;
1029 {
1030 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
1031 bus_dmamap_t map;
1032 int error;
1033
1034 /* Allocate a base map through parent bus ops */
1035 error = bus_dmamap_create(sc->sc_dmatag, size, nsegments, maxsegsz,
1036 boundary, flags, &map);
1037 if (error != 0)
1038 return (error);
1039
1040 /*
1041 * Each I/O cache line maps to a 8K section of VME DVMA space, so
1042 * we must ensure that DVMA alloctions are always 8K aligned.
1043 */
1044 map->_dm_align = VME_IOC_PAGESZ;
1045
1046 /* Set map region based on Address Modifier */
1047 switch ((am & VME_AM_ADRSIZEMASK)) {
1048 case VME_AM_A16:
1049 case VME_AM_A24:
1050 /* 1 MB of DVMA space */
1051 map->_dm_ex_start = VME_IOMMU_DVMA_AM24_BASE;
1052 map->_dm_ex_end = VME_IOMMU_DVMA_AM24_END;
1053 break;
1054 case VME_AM_A32:
1055 /* 8 MB of DVMA space */
1056 map->_dm_ex_start = VME_IOMMU_DVMA_AM32_BASE;
1057 map->_dm_ex_end = VME_IOMMU_DVMA_AM32_END;
1058 break;
1059 }
1060
1061 *dmamp = map;
1062 return (0);
1063 }
1064
1065 int
1066 sparc_vme_iommu_dmamap_load(t, map, buf, buflen, p, flags)
1067 bus_dma_tag_t t;
1068 bus_dmamap_t map;
1069 void *buf;
1070 bus_size_t buflen;
1071 struct proc *p;
1072 int flags;
1073 {
1074 struct sparcvme_softc *sc = (struct sparcvme_softc *)t->_cookie;
1075 volatile u_int32_t *ioctags;
1076 int error;
1077
1078 /* Round request to a multiple of the I/O cache size */
1079 buflen = (buflen + VME_IOC_PAGESZ - 1) & -VME_IOC_PAGESZ;
1080 error = bus_dmamap_load(sc->sc_dmatag, map, buf, buflen, p, flags);
1081 if (error != 0)
1082 return (error);
1083
1084 /* Allocate I/O cache entries for this range */
1085 ioctags = sc->sc_ioctags + VME_IOC_LINE(map->dm_segs[0].ds_addr);
1086 while (buflen > 0) {
1087 *ioctags = VME_IOC_IC | VME_IOC_W;
1088 ioctags += VME_IOC_LINESZ/sizeof(*ioctags);
1089 buflen -= VME_IOC_PAGESZ;
1090 }
1091
1092 /*
1093 * Adjust DVMA address to VME view.
1094 * Note: the DVMA base address is the same for all
1095 * VME address spaces.
1096 */
1097 map->dm_segs[0].ds_addr -= VME_IOMMU_DVMA_BASE;
1098 return (0);
1099 }
1100
1101
1102 void
1103 sparc_vme_iommu_dmamap_unload(t, map)
1104 bus_dma_tag_t t;
1105 bus_dmamap_t map;
1106 {
1107 struct sparcvme_softc *sc = (struct sparcvme_softc *)t->_cookie;
1108 volatile u_int32_t *flushregs;
1109 int len;
1110
1111 /* Go from VME to CPU view */
1112 map->dm_segs[0].ds_addr += VME_IOMMU_DVMA_BASE;
1113
1114 /* Flush VME I/O cache */
1115 len = map->dm_segs[0]._ds_sgsize;
1116 flushregs = sc->sc_iocflush + VME_IOC_LINE(map->dm_segs[0].ds_addr);
1117 while (len > 0) {
1118 *flushregs = 0;
1119 flushregs += VME_IOC_LINESZ/sizeof(*flushregs);
1120 len -= VME_IOC_PAGESZ;
1121 }
1122
1123 /*
1124 * Start a read from `tag space' which will not complete until
1125 * all cache flushes have finished
1126 */
1127 (*sc->sc_ioctags);
1128
1129 bus_dmamap_unload(sc->sc_dmatag, map);
1130 }
1131
1132 void
1133 sparc_vme_iommu_dmamap_sync(t, map, offset, len, ops)
1134 bus_dma_tag_t t;
1135 bus_dmamap_t map;
1136 bus_addr_t offset;
1137 bus_size_t len;
1138 int ops;
1139 {
1140
1141 /*
1142 * XXX Should perform cache flushes as necessary.
1143 */
1144 }
1145 #endif /* SUN4M */
1146
1147 int
1148 sparc_vme_dmamem_map(t, segs, nsegs, size, kvap, flags)
1149 bus_dma_tag_t t;
1150 bus_dma_segment_t *segs;
1151 int nsegs;
1152 size_t size;
1153 caddr_t *kvap;
1154 int flags;
1155 {
1156 struct sparcvme_softc *sc = (struct sparcvme_softc *)t->_cookie;
1157
1158 return (bus_dmamem_map(sc->sc_dmatag, segs, nsegs, size, kvap, flags));
1159 }
1160