vme_machdep.c revision 1.29 1 /* $NetBSD: vme_machdep.c,v 1.29 2000/06/29 07:40:08 mrg Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/param.h>
40 #include <sys/extent.h>
41 #include <sys/systm.h>
42 #include <sys/device.h>
43 #include <sys/malloc.h>
44 #include <sys/errno.h>
45
46 #include <sys/proc.h>
47 #include <sys/user.h>
48 #include <sys/syslog.h>
49
50 #include <uvm/uvm_extern.h>
51
52 #define _SPARC_BUS_DMA_PRIVATE
53 #include <machine/bus.h>
54 #include <sparc/sparc/iommuvar.h>
55 #include <machine/autoconf.h>
56 #include <machine/oldmon.h>
57 #include <machine/cpu.h>
58 #include <machine/ctlreg.h>
59
60 #include <dev/vme/vmereg.h>
61 #include <dev/vme/vmevar.h>
62
63 #include <sparc/sparc/asm.h>
64 #include <sparc/sparc/vaddrs.h>
65 #include <sparc/sparc/cpuvar.h>
66 #include <sparc/dev/vmereg.h>
67
68 struct sparcvme_softc {
69 struct device sc_dev; /* base device */
70 bus_space_tag_t sc_bustag;
71 bus_dma_tag_t sc_dmatag;
72 struct vmebusreg *sc_reg; /* VME control registers */
73 struct vmebusvec *sc_vec; /* VME interrupt vector */
74 struct rom_range *sc_range; /* ROM range property */
75 int sc_nrange;
76 volatile u_int32_t *sc_ioctags; /* VME IO-cache tag registers */
77 volatile u_int32_t *sc_iocflush;/* VME IO-cache flush registers */
78 int (*sc_vmeintr) __P((void *));
79 };
80 struct sparcvme_softc *sparcvme_sc;/*XXX*/
81
82 /* autoconfiguration driver */
83 static int vmematch_iommu __P((struct device *, struct cfdata *, void *));
84 static void vmeattach_iommu __P((struct device *, struct device *, void *));
85 static int vmematch_mainbus __P((struct device *, struct cfdata *, void *));
86 static void vmeattach_mainbus __P((struct device *, struct device *, void *));
87 #if defined(SUN4)
88 int vmeintr4 __P((void *));
89 #endif
90 #if defined(SUN4M)
91 int vmeintr4m __P((void *));
92 static int sparc_vme_error __P((void));
93 #endif
94
95
96 static int sparc_vme_probe __P((void *, vme_addr_t, vme_size_t,
97 vme_am_t, vme_datasize_t,
98 int (*) __P((void *, bus_space_tag_t, bus_space_handle_t)), void *));
99 static int sparc_vme_map __P((void *, vme_addr_t, vme_size_t, vme_am_t,
100 vme_datasize_t, vme_swap_t,
101 bus_space_tag_t *, bus_space_handle_t *,
102 vme_mapresc_t *));
103 static void sparc_vme_unmap __P((void *, vme_mapresc_t));
104 static int sparc_vme_intr_map __P((void *, int, int, vme_intr_handle_t *));
105 static const struct evcnt *sparc_vme_intr_evcnt __P((void *,
106 vme_intr_handle_t));
107 static void * sparc_vme_intr_establish __P((void *, vme_intr_handle_t, int,
108 int (*) __P((void *)), void *));
109 static void sparc_vme_intr_disestablish __P((void *, void *));
110
111 static int vmebus_translate __P((struct sparcvme_softc *, vme_am_t,
112 vme_addr_t, bus_type_t *, bus_addr_t *));
113 #if defined(SUN4M)
114 static void sparc_vme_iommu_barrier __P(( bus_space_tag_t, bus_space_handle_t,
115 bus_size_t, bus_size_t, int));
116
117 #endif
118
119 /*
120 * DMA functions.
121 */
122 static void sparc_vct_dmamap_destroy __P((void *, bus_dmamap_t));
123
124 #if defined(SUN4)
125 static int sparc_vct4_dmamap_create __P((void *, vme_size_t, vme_am_t,
126 vme_datasize_t, vme_swap_t, int, vme_size_t, vme_addr_t,
127 int, bus_dmamap_t *));
128 static int sparc_vme4_dmamap_load __P((bus_dma_tag_t, bus_dmamap_t, void *,
129 bus_size_t, struct proc *, int));
130 static void sparc_vme4_dmamap_unload __P((bus_dma_tag_t, bus_dmamap_t));
131 static void sparc_vme4_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t,
132 bus_addr_t, bus_size_t, int));
133 #endif
134
135 #if defined(SUN4M)
136 static int sparc_vct_iommu_dmamap_create __P((void *, vme_size_t, vme_am_t,
137 vme_datasize_t, vme_swap_t, int, vme_size_t, vme_addr_t,
138 int, bus_dmamap_t *));
139 static int sparc_vme_iommu_dmamap_create __P((bus_dma_tag_t, bus_size_t,
140 int, bus_size_t, bus_size_t, int, bus_dmamap_t *));
141
142 static int sparc_vme_iommu_dmamap_load __P((bus_dma_tag_t, bus_dmamap_t,
143 void *, bus_size_t, struct proc *, int));
144 static void sparc_vme_iommu_dmamap_unload __P((bus_dma_tag_t, bus_dmamap_t));
145 static void sparc_vme_iommu_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t,
146 bus_addr_t, bus_size_t, int));
147 #endif
148
149 static int sparc_vme_dmamem_map __P((bus_dma_tag_t, bus_dma_segment_t *,
150 int, size_t, caddr_t *, int));
151 #if 0
152 static void sparc_vme_dmamap_destroy __P((bus_dma_tag_t, bus_dmamap_t));
153 static void sparc_vme_dmamem_unmap __P((bus_dma_tag_t, caddr_t, size_t));
154 static paddr_t sparc_vme_dmamem_mmap __P((bus_dma_tag_t,
155 bus_dma_segment_t *, int, off_t, int, int));
156 #endif
157
158 int sparc_vme_mmap_cookie __P((vme_addr_t, vme_am_t, bus_space_handle_t *));
159
160 struct cfattach vme_mainbus_ca = {
161 sizeof(struct sparcvme_softc), vmematch_mainbus, vmeattach_mainbus
162 };
163
164 struct cfattach vme_iommu_ca = {
165 sizeof(struct sparcvme_softc), vmematch_iommu, vmeattach_iommu
166 };
167
168 int (*vmeerr_handler) __P((void));
169
170 #define VMEMOD_D32 0x40 /* ??? */
171
172 /* If the PROM does not provide the `ranges' property, we make up our own */
173 struct rom_range vmebus_translations[] = {
174 #define _DS (VME_AM_MBO | VME_AM_SUPER | VME_AM_DATA)
175 { VME_AM_A16|_DS, 0, PMAP_VME16, 0xffff0000, 0 },
176 { VME_AM_A24|_DS, 0, PMAP_VME16, 0xff000000, 0 },
177 { VME_AM_A32|_DS, 0, PMAP_VME16, 0x00000000, 0 },
178 { VME_AM_A16|VMEMOD_D32|_DS, 0, PMAP_VME32, 0xffff0000, 0 },
179 { VME_AM_A24|VMEMOD_D32|_DS, 0, PMAP_VME32, 0xff000000, 0 },
180 { VME_AM_A32|VMEMOD_D32|_DS, 0, PMAP_VME32, 0x00000000, 0 }
181 #undef _DS
182 };
183
184 /*
185 * The VME bus logic on sun4 machines maps DMA requests in the first MB
186 * of VME space to the last MB of DVMA space. `vme_dvmamap' is used
187 * for DVMA space allocations. The DMA addresses returned by
188 * bus_dmamap_load*() must be relocated by -VME4_DVMA_BASE.
189 */
190 struct extent *vme_dvmamap;
191
192 /*
193 * The VME hardware on the sun4m IOMMU maps the first 8MB of 32-bit
194 * VME space to the last 8MB of DVMA space and the first 1MB of
195 * 24-bit VME space to the first 1MB of the last 8MB of DVMA space
196 * (thus 24-bit VME space overlaps the first 1MB of of 32-bit space).
197 * The following constants define subregions in the IOMMU DVMA map
198 * for VME DVMA allocations. The DMA addresses returned by
199 * bus_dmamap_load*() must be relocated by -VME_IOMMU_DVMA_BASE.
200 */
201 #define VME_IOMMU_DVMA_BASE 0xff800000
202 #define VME_IOMMU_DVMA_AM24_BASE VME_IOMMU_DVMA_BASE
203 #define VME_IOMMU_DVMA_AM24_END 0xff900000
204 #define VME_IOMMU_DVMA_AM32_BASE VME_IOMMU_DVMA_BASE
205 #define VME_IOMMU_DVMA_AM32_END IOMMU_DVMA_END
206
207 struct sparc_bus_space_tag sparc_vme_bus_tag = {
208 NULL, /* cookie */
209 NULL, /* parent bus tag */
210 NULL, /* bus_map */
211 NULL, /* bus_unmap */
212 NULL, /* bus_subregion */
213 NULL /* barrier */
214 };
215
216 struct vme_chipset_tag sparc_vme_chipset_tag = {
217 NULL,
218 sparc_vme_map,
219 sparc_vme_unmap,
220 sparc_vme_probe,
221 sparc_vme_intr_map,
222 sparc_vme_intr_evcnt,
223 sparc_vme_intr_establish,
224 sparc_vme_intr_disestablish,
225 0, 0, 0 /* bus specific DMA stuff */
226 };
227
228
229 #if defined(SUN4)
230 struct sparc_bus_dma_tag sparc_vme4_dma_tag = {
231 NULL, /* cookie */
232 _bus_dmamap_create,
233 _bus_dmamap_destroy,
234 sparc_vme4_dmamap_load,
235 _bus_dmamap_load_mbuf,
236 _bus_dmamap_load_uio,
237 _bus_dmamap_load_raw,
238 sparc_vme4_dmamap_unload,
239 sparc_vme4_dmamap_sync,
240
241 _bus_dmamem_alloc,
242 _bus_dmamem_free,
243 sparc_vme_dmamem_map,
244 _bus_dmamem_unmap,
245 _bus_dmamem_mmap
246 };
247 #endif
248
249 #if defined(SUN4M)
250 struct sparc_bus_dma_tag sparc_vme_iommu_dma_tag = {
251 NULL, /* cookie */
252 sparc_vme_iommu_dmamap_create,
253 _bus_dmamap_destroy,
254 sparc_vme_iommu_dmamap_load,
255 _bus_dmamap_load_mbuf,
256 _bus_dmamap_load_uio,
257 _bus_dmamap_load_raw,
258 sparc_vme_iommu_dmamap_unload,
259 sparc_vme_iommu_dmamap_sync,
260
261 _bus_dmamem_alloc,
262 _bus_dmamem_free,
263 sparc_vme_dmamem_map,
264 _bus_dmamem_unmap,
265 _bus_dmamem_mmap
266 };
267 #endif
268
269
270 int
271 vmematch_mainbus(parent, cf, aux)
272 struct device *parent;
273 struct cfdata *cf;
274 void *aux;
275 {
276 struct mainbus_attach_args *ma = aux;
277
278 if (!CPU_ISSUN4)
279 return (0);
280
281 return (strcmp("vme", ma->ma_name) == 0);
282 }
283
284 int
285 vmematch_iommu(parent, cf, aux)
286 struct device *parent;
287 struct cfdata *cf;
288 void *aux;
289 {
290 struct iommu_attach_args *ia = aux;
291
292 return (strcmp("vme", ia->iom_name) == 0);
293 }
294
295
296 void
297 vmeattach_mainbus(parent, self, aux)
298 struct device *parent, *self;
299 void *aux;
300 {
301 #if defined(SUN4)
302 struct mainbus_attach_args *ma = aux;
303 struct sparcvme_softc *sc = (struct sparcvme_softc *)self;
304 struct vmebus_attach_args vba;
305
306 if (self->dv_unit > 0) {
307 printf(" unsupported\n");
308 return;
309 }
310
311 sc->sc_bustag = ma->ma_bustag;
312 sc->sc_dmatag = ma->ma_dmatag;
313
314 /* VME interrupt entry point */
315 sc->sc_vmeintr = vmeintr4;
316
317 /*XXX*/ sparc_vme_chipset_tag.cookie = self;
318 /*XXX*/ sparc_vme_chipset_tag.vct_dmamap_create = sparc_vct4_dmamap_create;
319 /*XXX*/ sparc_vme_chipset_tag.vct_dmamap_destroy = sparc_vct_dmamap_destroy;
320 /*XXX*/ sparc_vme4_dma_tag._cookie = self;
321
322 #if 0
323 sparc_vme_bus_tag.parent = ma->ma_bustag;
324 vba.vba_bustag = &sparc_vme_bus_tag;
325 #endif
326 vba.va_vct = &sparc_vme_chipset_tag;
327 vba.va_bdt = &sparc_vme4_dma_tag;
328 vba.va_slaveconfig = 0;
329
330 /* Fall back to our own `range' construction */
331 sc->sc_range = vmebus_translations;
332 sc->sc_nrange =
333 sizeof(vmebus_translations)/sizeof(vmebus_translations[0]);
334
335 vme_dvmamap = extent_create("vmedvma", VME4_DVMA_BASE, VME4_DVMA_END,
336 M_DEVBUF, 0, 0, EX_NOWAIT);
337 if (vme_dvmamap == NULL)
338 panic("vme: unable to allocate DVMA map");
339
340 printf("\n");
341 (void)config_found(self, &vba, 0);
342
343 #endif
344 return;
345 }
346
347 /* sun4m vmebus */
348 void
349 vmeattach_iommu(parent, self, aux)
350 struct device *parent, *self;
351 void *aux;
352 {
353 #if defined(SUN4M)
354 struct sparcvme_softc *sc = (struct sparcvme_softc *)self;
355 struct iommu_attach_args *ia = aux;
356 struct vmebus_attach_args vba;
357 bus_space_handle_t bh;
358 int node;
359 int cline;
360
361 if (self->dv_unit > 0) {
362 printf(" unsupported\n");
363 return;
364 }
365
366 sc->sc_bustag = ia->iom_bustag;
367 sc->sc_dmatag = ia->iom_dmatag;
368
369 /* VME interrupt entry point */
370 sc->sc_vmeintr = vmeintr4m;
371
372 /*XXX*/ sparc_vme_chipset_tag.cookie = self;
373 /*XXX*/ sparc_vme_chipset_tag.vct_dmamap_create = sparc_vct_iommu_dmamap_create;
374 /*XXX*/ sparc_vme_chipset_tag.vct_dmamap_destroy = sparc_vct_dmamap_destroy;
375 /*XXX*/ sparc_vme_iommu_dma_tag._cookie = self;
376 sparc_vme_bus_tag.sparc_bus_barrier = sparc_vme_iommu_barrier;
377
378 #if 0
379 vba.vba_bustag = &sparc_vme_bus_tag;
380 #endif
381 vba.va_vct = &sparc_vme_chipset_tag;
382 vba.va_bdt = &sparc_vme_iommu_dma_tag;
383 vba.va_slaveconfig = 0;
384
385 node = ia->iom_node;
386
387 /*
388 * Map VME control space
389 */
390 if (ia->iom_nreg < 2) {
391 printf("%s: only %d register sets\n", self->dv_xname,
392 ia->iom_nreg);
393 return;
394 }
395
396 if (bus_space_map2(ia->iom_bustag,
397 (bus_type_t)ia->iom_reg[0].ior_iospace,
398 (bus_addr_t)ia->iom_reg[0].ior_pa,
399 (bus_size_t)ia->iom_reg[0].ior_size,
400 BUS_SPACE_MAP_LINEAR,
401 0, &bh) != 0) {
402 panic("%s: can't map vmebusreg", self->dv_xname);
403 }
404 sc->sc_reg = (struct vmebusreg *)bh;
405
406 if (bus_space_map2(ia->iom_bustag,
407 (bus_type_t)ia->iom_reg[1].ior_iospace,
408 (bus_addr_t)ia->iom_reg[1].ior_pa,
409 (bus_size_t)ia->iom_reg[1].ior_size,
410 BUS_SPACE_MAP_LINEAR,
411 0, &bh) != 0) {
412 panic("%s: can't map vmebusvec", self->dv_xname);
413 }
414 sc->sc_vec = (struct vmebusvec *)bh;
415
416 /*
417 * Map VME IO cache tags and flush control.
418 */
419 if (bus_space_map2(ia->iom_bustag,
420 (bus_type_t)ia->iom_reg[1].ior_iospace,
421 (bus_addr_t)ia->iom_reg[1].ior_pa + VME_IOC_TAGOFFSET,
422 VME_IOC_SIZE,
423 BUS_SPACE_MAP_LINEAR,
424 0, &bh) != 0) {
425 panic("%s: can't map IOC tags", self->dv_xname);
426 }
427 sc->sc_ioctags = (u_int32_t *)bh;
428
429 if (bus_space_map2(ia->iom_bustag,
430 (bus_type_t)ia->iom_reg[1].ior_iospace,
431 (bus_addr_t)ia->iom_reg[1].ior_pa+VME_IOC_FLUSHOFFSET,
432 VME_IOC_SIZE,
433 BUS_SPACE_MAP_LINEAR,
434 0, &bh) != 0) {
435 panic("%s: can't map IOC flush registers", self->dv_xname);
436 }
437 sc->sc_iocflush = (u_int32_t *)bh;
438
439 /*XXX*/ sparc_vme_bus_tag.cookie = sc->sc_reg;
440
441 /*
442 * Get "range" property.
443 */
444 if (getprop(node, "ranges", sizeof(struct rom_range),
445 &sc->sc_nrange, (void **)&sc->sc_range) != 0) {
446 panic("%s: can't get ranges property", self->dv_xname);
447 }
448
449 sparcvme_sc = sc;
450 vmeerr_handler = sparc_vme_error;
451
452 /*
453 * Invalidate all IO-cache entries.
454 */
455 for (cline = VME_IOC_SIZE/VME_IOC_LINESZ; cline > 0;) {
456 sc->sc_ioctags[--cline] = 0;
457 }
458
459 /* Enable IO-cache */
460 sc->sc_reg->vmebus_cr |= VMEBUS_CR_C;
461
462 printf(": version 0x%x\n",
463 sc->sc_reg->vmebus_cr & VMEBUS_CR_IMPL);
464
465 (void)config_found(self, &vba, 0);
466 #endif
467 }
468
469 #if defined(SUN4M)
470 static int
471 sparc_vme_error()
472 {
473 struct sparcvme_softc *sc = sparcvme_sc;
474 u_int32_t afsr, afpa;
475 char bits[64];
476
477 afsr = sc->sc_reg->vmebus_afsr;
478 afpa = sc->sc_reg->vmebus_afar;
479 printf("VME error:\n\tAFSR %s\n",
480 bitmask_snprintf(afsr, VMEBUS_AFSR_BITS, bits, sizeof(bits)));
481 printf("\taddress: 0x%x%x\n", afsr, afpa);
482 return (0);
483 }
484 #endif
485
486 int
487 vmebus_translate(sc, mod, addr, btp, bap)
488 struct sparcvme_softc *sc;
489 vme_am_t mod;
490 vme_addr_t addr;
491 bus_type_t *btp;
492 bus_addr_t *bap;
493 {
494 int i;
495
496 for (i = 0; i < sc->sc_nrange; i++) {
497
498 if (sc->sc_range[i].cspace != mod)
499 continue;
500
501 /* We've found the connection to the parent bus */
502 *bap = sc->sc_range[i].poffset + addr;
503 *btp = sc->sc_range[i].pspace;
504 return (0);
505 }
506 return (ENOENT);
507 }
508
509 struct vmeprobe_myarg {
510 int (*cb) __P((void *, bus_space_tag_t, bus_space_handle_t));
511 void *cbarg;
512 bus_space_tag_t tag;
513 int res; /* backwards */
514 };
515
516 static int vmeprobe_mycb __P((void *, void *));
517 static int
518 vmeprobe_mycb(bh, arg)
519 void *bh, *arg;
520 {
521 struct vmeprobe_myarg *a = arg;
522
523 a->res = (*a->cb)(a->cbarg, a->tag, (bus_space_handle_t)bh);
524 return (!a->res);
525 }
526
527 int
528 sparc_vme_probe(cookie, addr, len, mod, datasize, callback, arg)
529 void *cookie;
530 vme_addr_t addr;
531 vme_size_t len;
532 vme_am_t mod;
533 vme_datasize_t datasize;
534 int (*callback) __P((void *, bus_space_tag_t, bus_space_handle_t));
535 void *arg;
536 {
537 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
538 bus_type_t iospace;
539 bus_addr_t paddr;
540 bus_size_t size;
541 struct vmeprobe_myarg myarg;
542 int res, i;
543
544 if (vmebus_translate(sc, mod, addr, &iospace, &paddr) != 0)
545 return (EINVAL);
546
547 size = (datasize == VME_D8 ? 1 : (datasize == VME_D16 ? 2 : 4));
548
549 if (callback) {
550 myarg.cb = callback;
551 myarg.cbarg = arg;
552 myarg.tag = sc->sc_bustag;
553 myarg.res = 0;
554 res = bus_space_probe(sc->sc_bustag, iospace, paddr, size, 0,
555 0, vmeprobe_mycb, &myarg);
556 return (res ? 0 : (myarg.res ? myarg.res : EIO));
557 }
558
559 for (i = 0; i < len / size; i++) {
560 myarg.res = 0;
561 res = bus_space_probe(sc->sc_bustag, iospace, paddr, size, 0,
562 0, 0, 0);
563 if (res == 0)
564 return (EIO);
565 paddr += size;
566 }
567 return (0);
568 }
569
570 int
571 sparc_vme_map(cookie, addr, size, mod, datasize, swap, tp, hp, rp)
572 void *cookie;
573 vme_addr_t addr;
574 vme_size_t size;
575 vme_am_t mod;
576 vme_datasize_t datasize;
577 vme_swap_t swap;
578 bus_space_tag_t *tp;
579 bus_space_handle_t *hp;
580 vme_mapresc_t *rp;
581 {
582 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
583 bus_type_t iospace;
584 bus_addr_t paddr;
585 int error;
586
587 error = vmebus_translate(sc, mod, addr, &iospace, &paddr);
588 if (error != 0)
589 return (error);
590
591 *tp = sc->sc_bustag;
592 return (bus_space_map2(sc->sc_bustag, iospace, paddr, size, 0, 0, hp));
593 }
594
595 int
596 sparc_vme_mmap_cookie(addr, mod, hp)
597 vme_addr_t addr;
598 vme_am_t mod;
599 bus_space_handle_t *hp;
600 {
601 struct sparcvme_softc *sc = sparcvme_sc;
602 bus_type_t iospace;
603 bus_addr_t paddr;
604 int error;
605
606 error = vmebus_translate(sc, mod, addr, &iospace, &paddr);
607 if (error != 0)
608 return (error);
609
610 return (bus_space_mmap(sc->sc_bustag, iospace, paddr, 0, hp));
611 }
612
613 #if defined(SUN4M)
614 void
615 sparc_vme_iommu_barrier(t, h, offset, size, flags)
616 bus_space_tag_t t;
617 bus_space_handle_t h;
618 bus_size_t offset;
619 bus_size_t size;
620 int flags;
621 {
622 struct vmebusreg *vbp = (struct vmebusreg *)t->cookie;
623
624 /* Read async fault status to flush write-buffers */
625 (*(volatile int *)&vbp->vmebus_afsr);
626 }
627 #endif
628
629
630
631 /*
632 * VME Interrupt Priority Level to sparc Processor Interrupt Level.
633 */
634 static int vme_ipl_to_pil[] = {
635 0,
636 2,
637 3,
638 5,
639 7,
640 9,
641 11,
642 13
643 };
644
645
646 /*
647 * All VME device interrupts go through vmeintr(). This function reads
648 * the VME vector from the bus, then dispatches the device interrupt
649 * handler. All handlers for devices that map to the same Processor
650 * Interrupt Level (according to the table above) are on a linked list
651 * of `sparc_vme_intr_handle' structures. The head of which is passed
652 * down as the argument to `vmeintr(void *arg)'.
653 */
654 struct sparc_vme_intr_handle {
655 struct intrhand ih;
656 struct sparc_vme_intr_handle *next;
657 int vec; /* VME interrupt vector */
658 int pri; /* VME interrupt priority */
659 struct sparcvme_softc *sc;/*XXX*/
660 };
661
662 #if defined(SUN4)
663 int
664 vmeintr4(arg)
665 void *arg;
666 {
667 struct sparc_vme_intr_handle *ihp = (vme_intr_handle_t)arg;
668 int level, vec;
669 int i = 0;
670
671 level = (ihp->pri << 1) | 1;
672
673 vec = ldcontrolb((caddr_t)(AC_VMEINTVEC | level));
674
675 if (vec == -1) {
676 printf("vme: spurious interrupt\n");
677 return 1; /* XXX - pretend we handled it, for now */
678 }
679
680 for (; ihp; ihp = ihp->next)
681 if (ihp->vec == vec && ihp->ih.ih_fun)
682 i += (ihp->ih.ih_fun)(ihp->ih.ih_arg);
683 return (i);
684 }
685 #endif
686
687 #if defined(SUN4M)
688 int
689 vmeintr4m(arg)
690 void *arg;
691 {
692 struct sparc_vme_intr_handle *ihp = (vme_intr_handle_t)arg;
693 int level, vec;
694 int i = 0;
695
696 level = (ihp->pri << 1) | 1;
697
698 #if 0
699 int pending;
700
701 /* Flush VME <=> Sbus write buffers */
702 (*(volatile int *)&ihp->sc->sc_reg->vmebus_afsr);
703
704 pending = *((int*)ICR_SI_PEND);
705 if ((pending & SINTR_VME(ihp->pri)) == 0) {
706 printf("vmeintr: non pending at pri %x(p 0x%x)\n",
707 ihp->pri, pending);
708 return (0);
709 }
710 #endif
711 #if 0
712 /* Why gives this a bus timeout sometimes? */
713 vec = ihp->sc->sc_vec->vmebusvec[level];
714 #else
715 /* so, arrange to catch the fault... */
716 {
717 extern struct user *proc0paddr;
718 extern int fkbyte __P((caddr_t, struct pcb *));
719 caddr_t addr = (caddr_t)&ihp->sc->sc_vec->vmebusvec[level];
720 struct pcb *xpcb;
721 u_long saveonfault;
722 int s;
723
724 s = splhigh();
725 if (curproc == NULL)
726 xpcb = (struct pcb *)proc0paddr;
727 else
728 xpcb = &curproc->p_addr->u_pcb;
729
730 saveonfault = (u_long)xpcb->pcb_onfault;
731 vec = fkbyte(addr, xpcb);
732 xpcb->pcb_onfault = (caddr_t)saveonfault;
733
734 splx(s);
735 }
736 #endif
737
738 if (vec == -1) {
739 printf("vme: spurious interrupt: ");
740 printf("SI: 0x%x, VME AFSR: 0x%x, VME AFAR 0x%x\n",
741 *((int*)ICR_SI_PEND),
742 ihp->sc->sc_reg->vmebus_afsr,
743 ihp->sc->sc_reg->vmebus_afar);
744 return (1); /* XXX - pretend we handled it, for now */
745 }
746
747 for (; ihp; ihp = ihp->next)
748 if (ihp->vec == vec && ihp->ih.ih_fun)
749 i += (ihp->ih.ih_fun)(ihp->ih.ih_arg);
750 return (i);
751 }
752 #endif
753
754 int
755 sparc_vme_intr_map(cookie, level, vec, ihp)
756 void *cookie;
757 int level;
758 int vec;
759 vme_intr_handle_t *ihp;
760 {
761 struct sparc_vme_intr_handle *ih;
762
763 ih = (vme_intr_handle_t)
764 malloc(sizeof(struct sparc_vme_intr_handle), M_DEVBUF, M_NOWAIT);
765 ih->pri = level;
766 ih->vec = vec;
767 ih->sc = cookie;/*XXX*/
768 *ihp = ih;
769 return (0);
770 }
771
772 const struct evcnt *
773 sparc_vme_intr_evcnt(cookie, vih)
774 void *cookie;
775 vme_intr_handle_t vih;
776 {
777
778 /* XXX for now, no evcnt parent reported */
779 return NULL;
780 }
781
782 void *
783 sparc_vme_intr_establish(cookie, vih, pri, func, arg)
784 void *cookie;
785 vme_intr_handle_t vih;
786 int pri;
787 int (*func) __P((void *));
788 void *arg;
789 {
790 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
791 struct sparc_vme_intr_handle *svih =
792 (struct sparc_vme_intr_handle *)vih;
793 struct intrhand *ih;
794 int level;
795
796 /* XXX pri == svih->pri ??? */
797
798 /* Translate VME priority to processor IPL */
799 level = vme_ipl_to_pil[svih->pri];
800
801 svih->ih.ih_fun = func;
802 svih->ih.ih_arg = arg;
803 svih->next = NULL;
804
805 /* ensure the interrupt subsystem will call us at this level */
806 for (ih = intrhand[level]; ih != NULL; ih = ih->ih_next)
807 if (ih->ih_fun == sc->sc_vmeintr)
808 break;
809
810 if (ih == NULL) {
811 ih = (struct intrhand *)
812 malloc(sizeof(struct intrhand), M_DEVBUF, M_NOWAIT);
813 if (ih == NULL)
814 panic("vme_addirq");
815 bzero(ih, sizeof *ih);
816 ih->ih_fun = sc->sc_vmeintr;
817 ih->ih_arg = vih;
818 intr_establish(level, ih);
819 } else {
820 svih->next = (vme_intr_handle_t)ih->ih_arg;
821 ih->ih_arg = vih;
822 }
823 return (NULL);
824 }
825
826 void
827 sparc_vme_unmap(cookie, resc)
828 void * cookie;
829 vme_mapresc_t resc;
830 {
831 /* Not implemented */
832 panic("sparc_vme_unmap");
833 }
834
835 void
836 sparc_vme_intr_disestablish(cookie, a)
837 void *cookie;
838 void *a;
839 {
840 /* Not implemented */
841 panic("sparc_vme_intr_disestablish");
842 }
843
844
845
846 /*
847 * VME DMA functions.
848 */
849
850 static void
851 sparc_vct_dmamap_destroy(cookie, map)
852 void *cookie;
853 bus_dmamap_t map;
854 {
855 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
856 bus_dmamap_destroy(sc->sc_dmatag, map);
857 }
858
859 #if defined(SUN4)
860 static int
861 sparc_vct4_dmamap_create(cookie, size, am, datasize, swap, nsegments, maxsegsz,
862 boundary, flags, dmamp)
863 void *cookie;
864 vme_size_t size;
865 vme_am_t am;
866 vme_datasize_t datasize;
867 vme_swap_t swap;
868 int nsegments;
869 vme_size_t maxsegsz;
870 vme_addr_t boundary;
871 int flags;
872 bus_dmamap_t *dmamp;
873 {
874 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
875
876 /* Allocate a base map through parent bus ops */
877 return (bus_dmamap_create(sc->sc_dmatag, size, nsegments, maxsegsz,
878 boundary, flags, dmamp));
879 }
880
881 int
882 sparc_vme4_dmamap_load(t, map, buf, buflen, p, flags)
883 bus_dma_tag_t t;
884 bus_dmamap_t map;
885 void *buf;
886 bus_size_t buflen;
887 struct proc *p;
888 int flags;
889 {
890 bus_addr_t dva;
891 bus_size_t sgsize;
892 vaddr_t va, voff;
893 pmap_t pmap;
894 int pagesz = PAGE_SIZE;
895 int error;
896
897 cpuinfo.cache_flush(buf, buflen); /* XXX - move to bus_dma_sync */
898
899 va = (vaddr_t)buf;
900 voff = va & (pagesz - 1);
901 va &= -pagesz;
902
903 /*
904 * Allocate an integral number of pages from DVMA space
905 * covering the passed buffer.
906 */
907 sgsize = (buflen + voff + pagesz - 1) & -pagesz;
908 error = extent_alloc(vme_dvmamap, sgsize, pagesz,
909 map->_dm_boundary,
910 (flags & BUS_DMA_NOWAIT) == 0
911 ? EX_WAITOK
912 : EX_NOWAIT,
913 (u_long *)&dva);
914 if (error != 0)
915 return (error);
916
917 map->dm_mapsize = buflen;
918 map->dm_nsegs = 1;
919 /* Adjust DVMA address to VME view */
920 map->dm_segs[0].ds_addr = dva + voff - VME4_DVMA_BASE;
921 map->dm_segs[0].ds_len = buflen;
922 map->dm_segs[0]._ds_sgsize = sgsize;
923
924 pmap = (p == NULL) ? pmap_kernel() : p->p_vmspace->vm_map.pmap;
925
926 for (; sgsize != 0; ) {
927 paddr_t pa;
928 /*
929 * Get the physical address for this page.
930 */
931 (void) pmap_extract(pmap, va, &pa);
932
933 #ifdef notyet
934 if (have_iocache)
935 pa |= PG_IOC;
936 #endif
937 pmap_enter(pmap_kernel(), dva,
938 pa | PMAP_NC,
939 VM_PROT_READ|VM_PROT_WRITE, PMAP_WIRED);
940
941 dva += pagesz;
942 va += pagesz;
943 sgsize -= pagesz;
944 }
945
946 return (0);
947 }
948
949 void
950 sparc_vme4_dmamap_unload(t, map)
951 bus_dma_tag_t t;
952 bus_dmamap_t map;
953 {
954 bus_dma_segment_t *segs = map->dm_segs;
955 int nsegs = map->dm_nsegs;
956 bus_addr_t dva;
957 bus_size_t len;
958 int i, s, error;
959
960 for (i = 0; i < nsegs; i++) {
961 /* Go from VME to CPU view */
962 dva = segs[i].ds_addr + VME4_DVMA_BASE;
963 dva &= -PAGE_SIZE;
964 len = segs[i]._ds_sgsize;
965
966 /* Remove double-mapping in DVMA space */
967 pmap_remove(pmap_kernel(), dva, dva + len);
968
969 /* Release DVMA space */
970 s = splhigh();
971 error = extent_free(vme_dvmamap, dva, len, EX_NOWAIT);
972 splx(s);
973 if (error != 0)
974 printf("warning: %ld of DVMA space lost\n", len);
975 }
976
977 /* Mark the mappings as invalid. */
978 map->dm_mapsize = 0;
979 map->dm_nsegs = 0;
980 }
981
982 void
983 sparc_vme4_dmamap_sync(t, map, offset, len, ops)
984 bus_dma_tag_t t;
985 bus_dmamap_t map;
986 bus_addr_t offset;
987 bus_size_t len;
988 int ops;
989 {
990
991 /*
992 * XXX Should perform cache flushes as necessary (e.g. 4/200 W/B).
993 * Currently the cache is flushed in bus_dma_load()...
994 */
995 }
996 #endif /* SUN4 */
997
998 #if defined(SUN4M)
999 static int
1000 sparc_vme_iommu_dmamap_create (t, size, nsegments, maxsegsz,
1001 boundary, flags, dmamp)
1002 bus_dma_tag_t t;
1003 bus_size_t size;
1004 int nsegments;
1005 bus_size_t maxsegsz;
1006 bus_size_t boundary;
1007 int flags;
1008 bus_dmamap_t *dmamp;
1009 {
1010
1011 printf("sparc_vme_dmamap_create: please use `vme_dmamap_create'\n");
1012 return (EINVAL);
1013 }
1014
1015 static int
1016 sparc_vct_iommu_dmamap_create(cookie, size, am, datasize, swap, nsegments,
1017 maxsegsz, boundary, flags, dmamp)
1018 void *cookie;
1019 vme_size_t size;
1020 vme_am_t am;
1021 vme_datasize_t datasize;
1022 vme_swap_t swap;
1023 int nsegments;
1024 vme_size_t maxsegsz;
1025 vme_addr_t boundary;
1026 int flags;
1027 bus_dmamap_t *dmamp;
1028 {
1029 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
1030 bus_dmamap_t map;
1031 int error;
1032
1033 /* Allocate a base map through parent bus ops */
1034 error = bus_dmamap_create(sc->sc_dmatag, size, nsegments, maxsegsz,
1035 boundary, flags, &map);
1036 if (error != 0)
1037 return (error);
1038
1039 /*
1040 * Each I/O cache line maps to a 8K section of VME DVMA space, so
1041 * we must ensure that DVMA alloctions are always 8K aligned.
1042 */
1043 map->_dm_align = VME_IOC_PAGESZ;
1044
1045 /* Set map region based on Address Modifier */
1046 switch ((am & VME_AM_ADRSIZEMASK)) {
1047 case VME_AM_A16:
1048 case VME_AM_A24:
1049 /* 1 MB of DVMA space */
1050 map->_dm_ex_start = VME_IOMMU_DVMA_AM24_BASE;
1051 map->_dm_ex_end = VME_IOMMU_DVMA_AM24_END;
1052 break;
1053 case VME_AM_A32:
1054 /* 8 MB of DVMA space */
1055 map->_dm_ex_start = VME_IOMMU_DVMA_AM32_BASE;
1056 map->_dm_ex_end = VME_IOMMU_DVMA_AM32_END;
1057 break;
1058 }
1059
1060 *dmamp = map;
1061 return (0);
1062 }
1063
1064 int
1065 sparc_vme_iommu_dmamap_load(t, map, buf, buflen, p, flags)
1066 bus_dma_tag_t t;
1067 bus_dmamap_t map;
1068 void *buf;
1069 bus_size_t buflen;
1070 struct proc *p;
1071 int flags;
1072 {
1073 struct sparcvme_softc *sc = (struct sparcvme_softc *)t->_cookie;
1074 volatile u_int32_t *ioctags;
1075 int error;
1076
1077 /* Round request to a multiple of the I/O cache size */
1078 buflen = (buflen + VME_IOC_PAGESZ - 1) & -VME_IOC_PAGESZ;
1079 error = bus_dmamap_load(sc->sc_dmatag, map, buf, buflen, p, flags);
1080 if (error != 0)
1081 return (error);
1082
1083 /* Allocate I/O cache entries for this range */
1084 ioctags = sc->sc_ioctags + VME_IOC_LINE(map->dm_segs[0].ds_addr);
1085 while (buflen > 0) {
1086 *ioctags = VME_IOC_IC | VME_IOC_W;
1087 ioctags += VME_IOC_LINESZ/sizeof(*ioctags);
1088 buflen -= VME_IOC_PAGESZ;
1089 }
1090
1091 /*
1092 * Adjust DVMA address to VME view.
1093 * Note: the DVMA base address is the same for all
1094 * VME address spaces.
1095 */
1096 map->dm_segs[0].ds_addr -= VME_IOMMU_DVMA_BASE;
1097 return (0);
1098 }
1099
1100
1101 void
1102 sparc_vme_iommu_dmamap_unload(t, map)
1103 bus_dma_tag_t t;
1104 bus_dmamap_t map;
1105 {
1106 struct sparcvme_softc *sc = (struct sparcvme_softc *)t->_cookie;
1107 volatile u_int32_t *flushregs;
1108 int len;
1109
1110 /* Go from VME to CPU view */
1111 map->dm_segs[0].ds_addr += VME_IOMMU_DVMA_BASE;
1112
1113 /* Flush VME I/O cache */
1114 len = map->dm_segs[0]._ds_sgsize;
1115 flushregs = sc->sc_iocflush + VME_IOC_LINE(map->dm_segs[0].ds_addr);
1116 while (len > 0) {
1117 *flushregs = 0;
1118 flushregs += VME_IOC_LINESZ/sizeof(*flushregs);
1119 len -= VME_IOC_PAGESZ;
1120 }
1121
1122 /*
1123 * Start a read from `tag space' which will not complete until
1124 * all cache flushes have finished
1125 */
1126 (*sc->sc_ioctags);
1127
1128 bus_dmamap_unload(sc->sc_dmatag, map);
1129 }
1130
1131 void
1132 sparc_vme_iommu_dmamap_sync(t, map, offset, len, ops)
1133 bus_dma_tag_t t;
1134 bus_dmamap_t map;
1135 bus_addr_t offset;
1136 bus_size_t len;
1137 int ops;
1138 {
1139
1140 /*
1141 * XXX Should perform cache flushes as necessary.
1142 */
1143 }
1144 #endif /* SUN4M */
1145
1146 int
1147 sparc_vme_dmamem_map(t, segs, nsegs, size, kvap, flags)
1148 bus_dma_tag_t t;
1149 bus_dma_segment_t *segs;
1150 int nsegs;
1151 size_t size;
1152 caddr_t *kvap;
1153 int flags;
1154 {
1155 struct sparcvme_softc *sc = (struct sparcvme_softc *)t->_cookie;
1156
1157 return (bus_dmamem_map(sc->sc_dmatag, segs, nsegs, size, kvap, flags));
1158 }
1159