vme_machdep.c revision 1.34 1 /* $NetBSD: vme_machdep.c,v 1.34 2001/09/26 20:53:05 eeh Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/param.h>
40 #include <sys/extent.h>
41 #include <sys/systm.h>
42 #include <sys/device.h>
43 #include <sys/malloc.h>
44 #include <sys/errno.h>
45
46 #include <sys/proc.h>
47 #include <sys/user.h>
48 #include <sys/syslog.h>
49
50 #include <uvm/uvm_extern.h>
51
52 #define _SPARC_BUS_DMA_PRIVATE
53 #include <machine/bus.h>
54 #include <sparc/sparc/iommuvar.h>
55 #include <machine/autoconf.h>
56 #include <machine/oldmon.h>
57 #include <machine/cpu.h>
58 #include <machine/ctlreg.h>
59
60 #include <dev/vme/vmereg.h>
61 #include <dev/vme/vmevar.h>
62
63 #include <sparc/sparc/asm.h>
64 #include <sparc/sparc/vaddrs.h>
65 #include <sparc/sparc/cpuvar.h>
66 #include <sparc/dev/vmereg.h>
67
68 struct sparcvme_softc {
69 struct device sc_dev; /* base device */
70 bus_space_tag_t sc_bustag;
71 bus_dma_tag_t sc_dmatag;
72 struct vmebusreg *sc_reg; /* VME control registers */
73 struct vmebusvec *sc_vec; /* VME interrupt vector */
74 struct rom_range *sc_range; /* ROM range property */
75 int sc_nrange;
76 volatile u_int32_t *sc_ioctags; /* VME IO-cache tag registers */
77 volatile u_int32_t *sc_iocflush;/* VME IO-cache flush registers */
78 int (*sc_vmeintr) __P((void *));
79 };
80 struct sparcvme_softc *sparcvme_sc;/*XXX*/
81
82 /* autoconfiguration driver */
83 static int vmematch_iommu __P((struct device *, struct cfdata *, void *));
84 static void vmeattach_iommu __P((struct device *, struct device *, void *));
85 static int vmematch_mainbus __P((struct device *, struct cfdata *, void *));
86 static void vmeattach_mainbus __P((struct device *, struct device *, void *));
87 #if defined(SUN4)
88 int vmeintr4 __P((void *));
89 #endif
90 #if defined(SUN4M)
91 int vmeintr4m __P((void *));
92 static int sparc_vme_error __P((void));
93 #endif
94
95
96 static int sparc_vme_probe __P((void *, vme_addr_t, vme_size_t,
97 vme_am_t, vme_datasize_t,
98 int (*) __P((void *, bus_space_tag_t, bus_space_handle_t)), void *));
99 static int sparc_vme_map __P((void *, vme_addr_t, vme_size_t, vme_am_t,
100 vme_datasize_t, vme_swap_t,
101 bus_space_tag_t *, bus_space_handle_t *,
102 vme_mapresc_t *));
103 static void sparc_vme_unmap __P((void *, vme_mapresc_t));
104 static int sparc_vme_intr_map __P((void *, int, int, vme_intr_handle_t *));
105 static const struct evcnt *sparc_vme_intr_evcnt __P((void *,
106 vme_intr_handle_t));
107 static void * sparc_vme_intr_establish __P((void *, vme_intr_handle_t, int,
108 int (*) __P((void *)), void *));
109 static void sparc_vme_intr_disestablish __P((void *, void *));
110
111 static int vmebus_translate __P((struct sparcvme_softc *, vme_am_t,
112 vme_addr_t, bus_type_t *, bus_addr_t *));
113 #if defined(SUN4M)
114 static void sparc_vme_iommu_barrier __P(( bus_space_tag_t, bus_space_handle_t,
115 bus_size_t, bus_size_t, int));
116
117 #endif
118
119 /*
120 * DMA functions.
121 */
122 static void sparc_vct_dmamap_destroy __P((void *, bus_dmamap_t));
123
124 #if defined(SUN4)
125 static int sparc_vct4_dmamap_create __P((void *, vme_size_t, vme_am_t,
126 vme_datasize_t, vme_swap_t, int, vme_size_t, vme_addr_t,
127 int, bus_dmamap_t *));
128 static int sparc_vme4_dmamap_load __P((bus_dma_tag_t, bus_dmamap_t, void *,
129 bus_size_t, struct proc *, int));
130 static void sparc_vme4_dmamap_unload __P((bus_dma_tag_t, bus_dmamap_t));
131 static void sparc_vme4_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t,
132 bus_addr_t, bus_size_t, int));
133 #endif
134
135 #if defined(SUN4M)
136 static int sparc_vct_iommu_dmamap_create __P((void *, vme_size_t, vme_am_t,
137 vme_datasize_t, vme_swap_t, int, vme_size_t, vme_addr_t,
138 int, bus_dmamap_t *));
139 static int sparc_vme_iommu_dmamap_create __P((bus_dma_tag_t, bus_size_t,
140 int, bus_size_t, bus_size_t, int, bus_dmamap_t *));
141
142 static int sparc_vme_iommu_dmamap_load __P((bus_dma_tag_t, bus_dmamap_t,
143 void *, bus_size_t, struct proc *, int));
144 static void sparc_vme_iommu_dmamap_unload __P((bus_dma_tag_t, bus_dmamap_t));
145 static void sparc_vme_iommu_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t,
146 bus_addr_t, bus_size_t, int));
147 #endif
148
149 static int sparc_vme_dmamem_map __P((bus_dma_tag_t, bus_dma_segment_t *,
150 int, size_t, caddr_t *, int));
151 #if 0
152 static void sparc_vme_dmamap_destroy __P((bus_dma_tag_t, bus_dmamap_t));
153 static void sparc_vme_dmamem_unmap __P((bus_dma_tag_t, caddr_t, size_t));
154 static paddr_t sparc_vme_dmamem_mmap __P((bus_dma_tag_t,
155 bus_dma_segment_t *, int, off_t, int, int));
156 #endif
157
158 int sparc_vme_mmap_cookie __P((vme_addr_t, vme_am_t, bus_space_handle_t *));
159
160 struct cfattach vme_mainbus_ca = {
161 sizeof(struct sparcvme_softc), vmematch_mainbus, vmeattach_mainbus
162 };
163
164 struct cfattach vme_iommu_ca = {
165 sizeof(struct sparcvme_softc), vmematch_iommu, vmeattach_iommu
166 };
167
168 int (*vmeerr_handler) __P((void));
169
170 #define VMEMOD_D32 0x40 /* ??? */
171
172 /* If the PROM does not provide the `ranges' property, we make up our own */
173 struct rom_range vmebus_translations[] = {
174 #define _DS (VME_AM_MBO | VME_AM_SUPER | VME_AM_DATA)
175 { VME_AM_A16|_DS, 0, PMAP_VME16, 0xffff0000, 0 },
176 { VME_AM_A24|_DS, 0, PMAP_VME16, 0xff000000, 0 },
177 { VME_AM_A32|_DS, 0, PMAP_VME16, 0x00000000, 0 },
178 { VME_AM_A16|VMEMOD_D32|_DS, 0, PMAP_VME32, 0xffff0000, 0 },
179 { VME_AM_A24|VMEMOD_D32|_DS, 0, PMAP_VME32, 0xff000000, 0 },
180 { VME_AM_A32|VMEMOD_D32|_DS, 0, PMAP_VME32, 0x00000000, 0 }
181 #undef _DS
182 };
183
184 /*
185 * The VME bus logic on sun4 machines maps DMA requests in the first MB
186 * of VME space to the last MB of DVMA space. `vme_dvmamap' is used
187 * for DVMA space allocations. The DMA addresses returned by
188 * bus_dmamap_load*() must be relocated by -VME4_DVMA_BASE.
189 */
190 struct extent *vme_dvmamap;
191
192 /*
193 * The VME hardware on the sun4m IOMMU maps the first 8MB of 32-bit
194 * VME space to the last 8MB of DVMA space and the first 1MB of
195 * 24-bit VME space to the first 1MB of the last 8MB of DVMA space
196 * (thus 24-bit VME space overlaps the first 1MB of of 32-bit space).
197 * The following constants define subregions in the IOMMU DVMA map
198 * for VME DVMA allocations. The DMA addresses returned by
199 * bus_dmamap_load*() must be relocated by -VME_IOMMU_DVMA_BASE.
200 */
201 #define VME_IOMMU_DVMA_BASE 0xff800000
202 #define VME_IOMMU_DVMA_AM24_BASE VME_IOMMU_DVMA_BASE
203 #define VME_IOMMU_DVMA_AM24_END 0xff900000
204 #define VME_IOMMU_DVMA_AM32_BASE VME_IOMMU_DVMA_BASE
205 #define VME_IOMMU_DVMA_AM32_END IOMMU_DVMA_END
206
207 struct sparc_bus_space_tag sparc_vme_bus_tag = {
208 NULL, /* cookie */
209 NULL, /* parent bus tag */
210 NULL, /* bus_map */
211 NULL, /* bus_unmap */
212 NULL, /* bus_subregion */
213 NULL /* barrier */
214 };
215
216 struct vme_chipset_tag sparc_vme_chipset_tag = {
217 NULL,
218 sparc_vme_map,
219 sparc_vme_unmap,
220 sparc_vme_probe,
221 sparc_vme_intr_map,
222 sparc_vme_intr_evcnt,
223 sparc_vme_intr_establish,
224 sparc_vme_intr_disestablish,
225 0, 0, 0 /* bus specific DMA stuff */
226 };
227
228
229 #if defined(SUN4)
230 struct sparc_bus_dma_tag sparc_vme4_dma_tag = {
231 NULL, /* cookie */
232 _bus_dmamap_create,
233 _bus_dmamap_destroy,
234 sparc_vme4_dmamap_load,
235 _bus_dmamap_load_mbuf,
236 _bus_dmamap_load_uio,
237 _bus_dmamap_load_raw,
238 sparc_vme4_dmamap_unload,
239 sparc_vme4_dmamap_sync,
240
241 _bus_dmamem_alloc,
242 _bus_dmamem_free,
243 sparc_vme_dmamem_map,
244 _bus_dmamem_unmap,
245 _bus_dmamem_mmap
246 };
247 #endif
248
249 #if defined(SUN4M)
250 struct sparc_bus_dma_tag sparc_vme_iommu_dma_tag = {
251 NULL, /* cookie */
252 sparc_vme_iommu_dmamap_create,
253 _bus_dmamap_destroy,
254 sparc_vme_iommu_dmamap_load,
255 _bus_dmamap_load_mbuf,
256 _bus_dmamap_load_uio,
257 _bus_dmamap_load_raw,
258 sparc_vme_iommu_dmamap_unload,
259 sparc_vme_iommu_dmamap_sync,
260
261 _bus_dmamem_alloc,
262 _bus_dmamem_free,
263 sparc_vme_dmamem_map,
264 _bus_dmamem_unmap,
265 _bus_dmamem_mmap
266 };
267 #endif
268
269
270 int
271 vmematch_mainbus(parent, cf, aux)
272 struct device *parent;
273 struct cfdata *cf;
274 void *aux;
275 {
276 struct mainbus_attach_args *ma = aux;
277
278 if (!CPU_ISSUN4)
279 return (0);
280
281 return (strcmp("vme", ma->ma_name) == 0);
282 }
283
284 int
285 vmematch_iommu(parent, cf, aux)
286 struct device *parent;
287 struct cfdata *cf;
288 void *aux;
289 {
290 struct iommu_attach_args *ia = aux;
291
292 return (strcmp("vme", ia->iom_name) == 0);
293 }
294
295
296 void
297 vmeattach_mainbus(parent, self, aux)
298 struct device *parent, *self;
299 void *aux;
300 {
301 #if defined(SUN4)
302 struct mainbus_attach_args *ma = aux;
303 struct sparcvme_softc *sc = (struct sparcvme_softc *)self;
304 struct vmebus_attach_args vba;
305
306 if (self->dv_unit > 0) {
307 printf(" unsupported\n");
308 return;
309 }
310
311 sc->sc_bustag = ma->ma_bustag;
312 sc->sc_dmatag = ma->ma_dmatag;
313
314 /* VME interrupt entry point */
315 sc->sc_vmeintr = vmeintr4;
316
317 /*XXX*/ sparc_vme_chipset_tag.cookie = self;
318 /*XXX*/ sparc_vme_chipset_tag.vct_dmamap_create = sparc_vct4_dmamap_create;
319 /*XXX*/ sparc_vme_chipset_tag.vct_dmamap_destroy = sparc_vct_dmamap_destroy;
320 /*XXX*/ sparc_vme4_dma_tag._cookie = self;
321
322 #if 0
323 sparc_vme_bus_tag.parent = ma->ma_bustag;
324 vba.vba_bustag = &sparc_vme_bus_tag;
325 #endif
326 vba.va_vct = &sparc_vme_chipset_tag;
327 vba.va_bdt = &sparc_vme4_dma_tag;
328 vba.va_slaveconfig = 0;
329
330 /* Fall back to our own `range' construction */
331 sc->sc_range = vmebus_translations;
332 sc->sc_nrange =
333 sizeof(vmebus_translations)/sizeof(vmebus_translations[0]);
334
335 vme_dvmamap = extent_create("vmedvma", VME4_DVMA_BASE, VME4_DVMA_END,
336 M_DEVBUF, 0, 0, EX_NOWAIT);
337 if (vme_dvmamap == NULL)
338 panic("vme: unable to allocate DVMA map");
339
340 printf("\n");
341 (void)config_found(self, &vba, 0);
342
343 #endif
344 return;
345 }
346
347 /* sun4m vmebus */
348 void
349 vmeattach_iommu(parent, self, aux)
350 struct device *parent, *self;
351 void *aux;
352 {
353 #if defined(SUN4M)
354 struct sparcvme_softc *sc = (struct sparcvme_softc *)self;
355 struct iommu_attach_args *ia = aux;
356 struct vmebus_attach_args vba;
357 bus_space_handle_t bh;
358 int node;
359 int cline;
360
361 if (self->dv_unit > 0) {
362 printf(" unsupported\n");
363 return;
364 }
365
366 sc->sc_bustag = ia->iom_bustag;
367 sc->sc_dmatag = ia->iom_dmatag;
368
369 /* VME interrupt entry point */
370 sc->sc_vmeintr = vmeintr4m;
371
372 /*XXX*/ sparc_vme_chipset_tag.cookie = self;
373 /*XXX*/ sparc_vme_chipset_tag.vct_dmamap_create = sparc_vct_iommu_dmamap_create;
374 /*XXX*/ sparc_vme_chipset_tag.vct_dmamap_destroy = sparc_vct_dmamap_destroy;
375 /*XXX*/ sparc_vme_iommu_dma_tag._cookie = self;
376 sparc_vme_bus_tag.sparc_bus_barrier = sparc_vme_iommu_barrier;
377
378 #if 0
379 vba.vba_bustag = &sparc_vme_bus_tag;
380 #endif
381 vba.va_vct = &sparc_vme_chipset_tag;
382 vba.va_bdt = &sparc_vme_iommu_dma_tag;
383 vba.va_slaveconfig = 0;
384
385 node = ia->iom_node;
386
387 /*
388 * Map VME control space
389 */
390 if (ia->iom_nreg < 2) {
391 printf("%s: only %d register sets\n", self->dv_xname,
392 ia->iom_nreg);
393 return;
394 }
395
396 if (bus_space_map2(ia->iom_bustag,
397 (bus_type_t)ia->iom_reg[0].ior_iospace,
398 (bus_addr_t)ia->iom_reg[0].ior_pa,
399 (bus_size_t)ia->iom_reg[0].ior_size,
400 BUS_SPACE_MAP_LINEAR,
401 0, &bh) != 0) {
402 panic("%s: can't map vmebusreg", self->dv_xname);
403 }
404 sc->sc_reg = (struct vmebusreg *)bh;
405
406 if (bus_space_map2(ia->iom_bustag,
407 (bus_type_t)ia->iom_reg[1].ior_iospace,
408 (bus_addr_t)ia->iom_reg[1].ior_pa,
409 (bus_size_t)ia->iom_reg[1].ior_size,
410 BUS_SPACE_MAP_LINEAR,
411 0, &bh) != 0) {
412 panic("%s: can't map vmebusvec", self->dv_xname);
413 }
414 sc->sc_vec = (struct vmebusvec *)bh;
415
416 /*
417 * Map VME IO cache tags and flush control.
418 */
419 if (bus_space_map2(ia->iom_bustag,
420 (bus_type_t)ia->iom_reg[1].ior_iospace,
421 (bus_addr_t)ia->iom_reg[1].ior_pa + VME_IOC_TAGOFFSET,
422 VME_IOC_SIZE,
423 BUS_SPACE_MAP_LINEAR,
424 0, &bh) != 0) {
425 panic("%s: can't map IOC tags", self->dv_xname);
426 }
427 sc->sc_ioctags = (u_int32_t *)bh;
428
429 if (bus_space_map2(ia->iom_bustag,
430 (bus_type_t)ia->iom_reg[1].ior_iospace,
431 (bus_addr_t)ia->iom_reg[1].ior_pa+VME_IOC_FLUSHOFFSET,
432 VME_IOC_SIZE,
433 BUS_SPACE_MAP_LINEAR,
434 0, &bh) != 0) {
435 panic("%s: can't map IOC flush registers", self->dv_xname);
436 }
437 sc->sc_iocflush = (u_int32_t *)bh;
438
439 /*XXX*/ sparc_vme_bus_tag.cookie = sc->sc_reg;
440
441 /*
442 * Get "range" property.
443 */
444 if (PROM_getprop(node, "ranges", sizeof(struct rom_range),
445 &sc->sc_nrange, (void **)&sc->sc_range) != 0) {
446 panic("%s: can't get ranges property", self->dv_xname);
447 }
448
449 sparcvme_sc = sc;
450 vmeerr_handler = sparc_vme_error;
451
452 /*
453 * Invalidate all IO-cache entries.
454 */
455 for (cline = VME_IOC_SIZE/VME_IOC_LINESZ; cline > 0;) {
456 sc->sc_ioctags[--cline] = 0;
457 }
458
459 /* Enable IO-cache */
460 sc->sc_reg->vmebus_cr |= VMEBUS_CR_C;
461
462 printf(": version 0x%x\n",
463 sc->sc_reg->vmebus_cr & VMEBUS_CR_IMPL);
464
465 (void)config_found(self, &vba, 0);
466 #endif
467 }
468
469 #if defined(SUN4M)
470 static int
471 sparc_vme_error()
472 {
473 struct sparcvme_softc *sc = sparcvme_sc;
474 u_int32_t afsr, afpa;
475 char bits[64];
476
477 afsr = sc->sc_reg->vmebus_afsr;
478 afpa = sc->sc_reg->vmebus_afar;
479 printf("VME error:\n\tAFSR %s\n",
480 bitmask_snprintf(afsr, VMEBUS_AFSR_BITS, bits, sizeof(bits)));
481 printf("\taddress: 0x%x%x\n", afsr, afpa);
482 return (0);
483 }
484 #endif
485
486 int
487 vmebus_translate(sc, mod, addr, btp, bap)
488 struct sparcvme_softc *sc;
489 vme_am_t mod;
490 vme_addr_t addr;
491 bus_type_t *btp;
492 bus_addr_t *bap;
493 {
494 int i;
495
496 for (i = 0; i < sc->sc_nrange; i++) {
497
498 if (sc->sc_range[i].cspace != mod)
499 continue;
500
501 /* We've found the connection to the parent bus */
502 *bap = sc->sc_range[i].poffset + addr;
503 *btp = sc->sc_range[i].pspace;
504 return (0);
505 }
506 return (ENOENT);
507 }
508
509 struct vmeprobe_myarg {
510 int (*cb) __P((void *, bus_space_tag_t, bus_space_handle_t));
511 void *cbarg;
512 bus_space_tag_t tag;
513 int res; /* backwards */
514 };
515
516 static int vmeprobe_mycb __P((void *, void *));
517 static int
518 vmeprobe_mycb(bh, arg)
519 void *bh, *arg;
520 {
521 struct vmeprobe_myarg *a = arg;
522
523 a->res = (*a->cb)(a->cbarg, a->tag, (bus_space_handle_t)bh);
524 return (!a->res);
525 }
526
527 int
528 sparc_vme_probe(cookie, addr, len, mod, datasize, callback, arg)
529 void *cookie;
530 vme_addr_t addr;
531 vme_size_t len;
532 vme_am_t mod;
533 vme_datasize_t datasize;
534 int (*callback) __P((void *, bus_space_tag_t, bus_space_handle_t));
535 void *arg;
536 {
537 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
538 bus_type_t iospace;
539 bus_addr_t paddr;
540 bus_size_t size;
541 struct vmeprobe_myarg myarg;
542 int res, i;
543
544 if (vmebus_translate(sc, mod, addr, &iospace, &paddr) != 0)
545 return (EINVAL);
546
547 size = (datasize == VME_D8 ? 1 : (datasize == VME_D16 ? 2 : 4));
548
549 if (callback) {
550 myarg.cb = callback;
551 myarg.cbarg = arg;
552 myarg.tag = sc->sc_bustag;
553 myarg.res = 0;
554 res = bus_space_probe(sc->sc_bustag, iospace, paddr, size, 0,
555 0, vmeprobe_mycb, &myarg);
556 return (res ? 0 : (myarg.res ? myarg.res : EIO));
557 }
558
559 for (i = 0; i < len / size; i++) {
560 myarg.res = 0;
561 res = bus_space_probe(sc->sc_bustag, iospace, paddr, size, 0,
562 0, 0, 0);
563 if (res == 0)
564 return (EIO);
565 paddr += size;
566 }
567 return (0);
568 }
569
570 int
571 sparc_vme_map(cookie, addr, size, mod, datasize, swap, tp, hp, rp)
572 void *cookie;
573 vme_addr_t addr;
574 vme_size_t size;
575 vme_am_t mod;
576 vme_datasize_t datasize;
577 vme_swap_t swap;
578 bus_space_tag_t *tp;
579 bus_space_handle_t *hp;
580 vme_mapresc_t *rp;
581 {
582 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
583 bus_type_t iospace;
584 bus_addr_t paddr;
585 int error;
586
587 error = vmebus_translate(sc, mod, addr, &iospace, &paddr);
588 if (error != 0)
589 return (error);
590
591 *tp = sc->sc_bustag;
592 return (bus_space_map2(sc->sc_bustag, iospace, paddr, size, 0, 0, hp));
593 }
594
595 int
596 sparc_vme_mmap_cookie(addr, mod, hp)
597 vme_addr_t addr;
598 vme_am_t mod;
599 bus_space_handle_t *hp;
600 {
601 struct sparcvme_softc *sc = sparcvme_sc;
602 bus_type_t iospace;
603 bus_addr_t paddr;
604 int error;
605
606 error = vmebus_translate(sc, mod, addr, &iospace, &paddr);
607 if (error != 0)
608 return (error);
609
610 return (bus_space_mmap(sc->sc_bustag, BUS_ADDR(iospace, paddr), 0,
611 0/*prot is ignored*/, 0));
612 }
613
614 #if defined(SUN4M)
615 void
616 sparc_vme_iommu_barrier(t, h, offset, size, flags)
617 bus_space_tag_t t;
618 bus_space_handle_t h;
619 bus_size_t offset;
620 bus_size_t size;
621 int flags;
622 {
623 struct vmebusreg *vbp = (struct vmebusreg *)t->cookie;
624
625 /* Read async fault status to flush write-buffers */
626 (*(volatile int *)&vbp->vmebus_afsr);
627 }
628 #endif
629
630
631
632 /*
633 * VME Interrupt Priority Level to sparc Processor Interrupt Level.
634 */
635 static int vme_ipl_to_pil[] = {
636 0,
637 2,
638 3,
639 5,
640 7,
641 9,
642 11,
643 13
644 };
645
646
647 /*
648 * All VME device interrupts go through vmeintr(). This function reads
649 * the VME vector from the bus, then dispatches the device interrupt
650 * handler. All handlers for devices that map to the same Processor
651 * Interrupt Level (according to the table above) are on a linked list
652 * of `sparc_vme_intr_handle' structures. The head of which is passed
653 * down as the argument to `vmeintr(void *arg)'.
654 */
655 struct sparc_vme_intr_handle {
656 struct intrhand ih;
657 struct sparc_vme_intr_handle *next;
658 int vec; /* VME interrupt vector */
659 int pri; /* VME interrupt priority */
660 struct sparcvme_softc *sc;/*XXX*/
661 };
662
663 #if defined(SUN4)
664 int
665 vmeintr4(arg)
666 void *arg;
667 {
668 struct sparc_vme_intr_handle *ihp = (vme_intr_handle_t)arg;
669 int level, vec;
670 int rv = 0;
671
672 level = (ihp->pri << 1) | 1;
673
674 vec = ldcontrolb((caddr_t)(AC_VMEINTVEC | level));
675
676 if (vec == -1) {
677 #ifdef DEBUG
678 /*
679 * This seems to happen only with the i82586 based
680 * `ie1' boards.
681 */
682 printf("vme: spurious interrupt at VME level %d\n", ihp->pri);
683 #endif
684 return (1); /* XXX - pretend we handled it, for now */
685 }
686
687 for (; ihp; ihp = ihp->next)
688 if (ihp->vec == vec && ihp->ih.ih_fun)
689 rv |= (ihp->ih.ih_fun)(ihp->ih.ih_arg);
690
691 return (rv);
692 }
693 #endif
694
695 #if defined(SUN4M)
696 int
697 vmeintr4m(arg)
698 void *arg;
699 {
700 struct sparc_vme_intr_handle *ihp = (vme_intr_handle_t)arg;
701 int level, vec;
702 int rv = 0;
703
704 level = (ihp->pri << 1) | 1;
705
706 #if 0
707 int pending;
708
709 /* Flush VME <=> Sbus write buffers */
710 (*(volatile int *)&ihp->sc->sc_reg->vmebus_afsr);
711
712 pending = *((int*)ICR_SI_PEND);
713 if ((pending & SINTR_VME(ihp->pri)) == 0) {
714 printf("vmeintr: non pending at pri %x(p 0x%x)\n",
715 ihp->pri, pending);
716 return (0);
717 }
718 #endif
719 #if 0
720 /* Why gives this a bus timeout sometimes? */
721 vec = ihp->sc->sc_vec->vmebusvec[level];
722 #else
723 /* so, arrange to catch the fault... */
724 {
725 extern struct user *proc0paddr;
726 extern int fkbyte __P((caddr_t, struct pcb *));
727 caddr_t addr = (caddr_t)&ihp->sc->sc_vec->vmebusvec[level];
728 struct pcb *xpcb;
729 u_long saveonfault;
730 int s;
731
732 s = splhigh();
733 if (curproc == NULL)
734 xpcb = (struct pcb *)proc0paddr;
735 else
736 xpcb = &curproc->p_addr->u_pcb;
737
738 saveonfault = (u_long)xpcb->pcb_onfault;
739 vec = fkbyte(addr, xpcb);
740 xpcb->pcb_onfault = (caddr_t)saveonfault;
741
742 splx(s);
743 }
744 #endif
745
746 if (vec == -1) {
747 #ifdef DEBUG
748 /*
749 * This seems to happen only with the i82586 based
750 * `ie1' boards.
751 */
752 printf("vme: spurious interrupt at VME level %d\n", ihp->pri);
753 printf(" ICR_SI_PEND=0x%x; VME AFSR=0x%x; VME AFAR=0x%x\n",
754 *((int*)ICR_SI_PEND),
755 ihp->sc->sc_reg->vmebus_afsr,
756 ihp->sc->sc_reg->vmebus_afar);
757 #endif
758 return (1); /* XXX - pretend we handled it, for now */
759 }
760
761 for (; ihp; ihp = ihp->next)
762 if (ihp->vec == vec && ihp->ih.ih_fun)
763 rv |= (ihp->ih.ih_fun)(ihp->ih.ih_arg);
764
765 return (rv);
766 }
767 #endif
768
769 int
770 sparc_vme_intr_map(cookie, level, vec, ihp)
771 void *cookie;
772 int level;
773 int vec;
774 vme_intr_handle_t *ihp;
775 {
776 struct sparc_vme_intr_handle *ih;
777
778 ih = (vme_intr_handle_t)
779 malloc(sizeof(struct sparc_vme_intr_handle), M_DEVBUF, M_NOWAIT);
780 ih->pri = level;
781 ih->vec = vec;
782 ih->sc = cookie;/*XXX*/
783 *ihp = ih;
784 return (0);
785 }
786
787 const struct evcnt *
788 sparc_vme_intr_evcnt(cookie, vih)
789 void *cookie;
790 vme_intr_handle_t vih;
791 {
792
793 /* XXX for now, no evcnt parent reported */
794 return NULL;
795 }
796
797 void *
798 sparc_vme_intr_establish(cookie, vih, pri, func, arg)
799 void *cookie;
800 vme_intr_handle_t vih;
801 int pri;
802 int (*func) __P((void *));
803 void *arg;
804 {
805 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
806 struct sparc_vme_intr_handle *svih =
807 (struct sparc_vme_intr_handle *)vih;
808 struct intrhand *ih;
809 int level;
810
811 /* XXX pri == svih->pri ??? */
812
813 /* Translate VME priority to processor IPL */
814 level = vme_ipl_to_pil[svih->pri];
815
816 svih->ih.ih_fun = func;
817 svih->ih.ih_arg = arg;
818 svih->next = NULL;
819
820 /* ensure the interrupt subsystem will call us at this level */
821 for (ih = intrhand[level]; ih != NULL; ih = ih->ih_next)
822 if (ih->ih_fun == sc->sc_vmeintr)
823 break;
824
825 if (ih == NULL) {
826 ih = (struct intrhand *)
827 malloc(sizeof(struct intrhand), M_DEVBUF, M_NOWAIT);
828 if (ih == NULL)
829 panic("vme_addirq");
830 bzero(ih, sizeof *ih);
831 ih->ih_fun = sc->sc_vmeintr;
832 ih->ih_arg = vih;
833 intr_establish(level, ih);
834 } else {
835 svih->next = (vme_intr_handle_t)ih->ih_arg;
836 ih->ih_arg = vih;
837 }
838 return (NULL);
839 }
840
841 void
842 sparc_vme_unmap(cookie, resc)
843 void * cookie;
844 vme_mapresc_t resc;
845 {
846 /* Not implemented */
847 panic("sparc_vme_unmap");
848 }
849
850 void
851 sparc_vme_intr_disestablish(cookie, a)
852 void *cookie;
853 void *a;
854 {
855 /* Not implemented */
856 panic("sparc_vme_intr_disestablish");
857 }
858
859
860
861 /*
862 * VME DMA functions.
863 */
864
865 static void
866 sparc_vct_dmamap_destroy(cookie, map)
867 void *cookie;
868 bus_dmamap_t map;
869 {
870 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
871 bus_dmamap_destroy(sc->sc_dmatag, map);
872 }
873
874 #if defined(SUN4)
875 static int
876 sparc_vct4_dmamap_create(cookie, size, am, datasize, swap, nsegments, maxsegsz,
877 boundary, flags, dmamp)
878 void *cookie;
879 vme_size_t size;
880 vme_am_t am;
881 vme_datasize_t datasize;
882 vme_swap_t swap;
883 int nsegments;
884 vme_size_t maxsegsz;
885 vme_addr_t boundary;
886 int flags;
887 bus_dmamap_t *dmamp;
888 {
889 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
890
891 /* Allocate a base map through parent bus ops */
892 return (bus_dmamap_create(sc->sc_dmatag, size, nsegments, maxsegsz,
893 boundary, flags, dmamp));
894 }
895
896 int
897 sparc_vme4_dmamap_load(t, map, buf, buflen, p, flags)
898 bus_dma_tag_t t;
899 bus_dmamap_t map;
900 void *buf;
901 bus_size_t buflen;
902 struct proc *p;
903 int flags;
904 {
905 bus_addr_t dva;
906 bus_size_t sgsize;
907 vaddr_t va, voff;
908 pmap_t pmap;
909 int pagesz = PAGE_SIZE;
910 int error;
911
912 cpuinfo.cache_flush(buf, buflen); /* XXX - move to bus_dma_sync */
913
914 va = (vaddr_t)buf;
915 voff = va & (pagesz - 1);
916 va &= -pagesz;
917
918 /*
919 * Allocate an integral number of pages from DVMA space
920 * covering the passed buffer.
921 */
922 sgsize = (buflen + voff + pagesz - 1) & -pagesz;
923 error = extent_alloc(vme_dvmamap, sgsize, pagesz,
924 map->_dm_boundary,
925 (flags & BUS_DMA_NOWAIT) == 0
926 ? EX_WAITOK
927 : EX_NOWAIT,
928 (u_long *)&dva);
929 if (error != 0)
930 return (error);
931
932 map->dm_mapsize = buflen;
933 map->dm_nsegs = 1;
934 /* Adjust DVMA address to VME view */
935 map->dm_segs[0].ds_addr = dva + voff - VME4_DVMA_BASE;
936 map->dm_segs[0].ds_len = buflen;
937 map->dm_segs[0]._ds_sgsize = sgsize;
938
939 pmap = (p == NULL) ? pmap_kernel() : p->p_vmspace->vm_map.pmap;
940
941 for (; sgsize != 0; ) {
942 paddr_t pa;
943 /*
944 * Get the physical address for this page.
945 */
946 (void) pmap_extract(pmap, va, &pa);
947
948 #ifdef notyet
949 if (have_iocache)
950 pa |= PG_IOC;
951 #endif
952 pmap_enter(pmap_kernel(), dva,
953 pa | PMAP_NC,
954 VM_PROT_READ|VM_PROT_WRITE, PMAP_WIRED);
955
956 dva += pagesz;
957 va += pagesz;
958 sgsize -= pagesz;
959 }
960 pmap_update(pmap_kernel());
961
962 return (0);
963 }
964
965 void
966 sparc_vme4_dmamap_unload(t, map)
967 bus_dma_tag_t t;
968 bus_dmamap_t map;
969 {
970 bus_dma_segment_t *segs = map->dm_segs;
971 int nsegs = map->dm_nsegs;
972 bus_addr_t dva;
973 bus_size_t len;
974 int i, s, error;
975
976 for (i = 0; i < nsegs; i++) {
977 /* Go from VME to CPU view */
978 dva = segs[i].ds_addr + VME4_DVMA_BASE;
979 dva &= -PAGE_SIZE;
980 len = segs[i]._ds_sgsize;
981
982 /* Remove double-mapping in DVMA space */
983 pmap_remove(pmap_kernel(), dva, dva + len);
984
985 /* Release DVMA space */
986 s = splhigh();
987 error = extent_free(vme_dvmamap, dva, len, EX_NOWAIT);
988 splx(s);
989 if (error != 0)
990 printf("warning: %ld of DVMA space lost\n", len);
991 }
992 pmap_update(pmap_kernel());
993
994 /* Mark the mappings as invalid. */
995 map->dm_mapsize = 0;
996 map->dm_nsegs = 0;
997 }
998
999 void
1000 sparc_vme4_dmamap_sync(t, map, offset, len, ops)
1001 bus_dma_tag_t t;
1002 bus_dmamap_t map;
1003 bus_addr_t offset;
1004 bus_size_t len;
1005 int ops;
1006 {
1007
1008 /*
1009 * XXX Should perform cache flushes as necessary (e.g. 4/200 W/B).
1010 * Currently the cache is flushed in bus_dma_load()...
1011 */
1012 }
1013 #endif /* SUN4 */
1014
1015 #if defined(SUN4M)
1016 static int
1017 sparc_vme_iommu_dmamap_create (t, size, nsegments, maxsegsz,
1018 boundary, flags, dmamp)
1019 bus_dma_tag_t t;
1020 bus_size_t size;
1021 int nsegments;
1022 bus_size_t maxsegsz;
1023 bus_size_t boundary;
1024 int flags;
1025 bus_dmamap_t *dmamp;
1026 {
1027
1028 printf("sparc_vme_dmamap_create: please use `vme_dmamap_create'\n");
1029 return (EINVAL);
1030 }
1031
1032 static int
1033 sparc_vct_iommu_dmamap_create(cookie, size, am, datasize, swap, nsegments,
1034 maxsegsz, boundary, flags, dmamp)
1035 void *cookie;
1036 vme_size_t size;
1037 vme_am_t am;
1038 vme_datasize_t datasize;
1039 vme_swap_t swap;
1040 int nsegments;
1041 vme_size_t maxsegsz;
1042 vme_addr_t boundary;
1043 int flags;
1044 bus_dmamap_t *dmamp;
1045 {
1046 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
1047 bus_dmamap_t map;
1048 int error;
1049
1050 /* Allocate a base map through parent bus ops */
1051 error = bus_dmamap_create(sc->sc_dmatag, size, nsegments, maxsegsz,
1052 boundary, flags, &map);
1053 if (error != 0)
1054 return (error);
1055
1056 /*
1057 * Each I/O cache line maps to a 8K section of VME DVMA space, so
1058 * we must ensure that DVMA alloctions are always 8K aligned.
1059 */
1060 map->_dm_align = VME_IOC_PAGESZ;
1061
1062 /* Set map region based on Address Modifier */
1063 switch ((am & VME_AM_ADRSIZEMASK)) {
1064 case VME_AM_A16:
1065 case VME_AM_A24:
1066 /* 1 MB of DVMA space */
1067 map->_dm_ex_start = VME_IOMMU_DVMA_AM24_BASE;
1068 map->_dm_ex_end = VME_IOMMU_DVMA_AM24_END;
1069 break;
1070 case VME_AM_A32:
1071 /* 8 MB of DVMA space */
1072 map->_dm_ex_start = VME_IOMMU_DVMA_AM32_BASE;
1073 map->_dm_ex_end = VME_IOMMU_DVMA_AM32_END;
1074 break;
1075 }
1076
1077 *dmamp = map;
1078 return (0);
1079 }
1080
1081 int
1082 sparc_vme_iommu_dmamap_load(t, map, buf, buflen, p, flags)
1083 bus_dma_tag_t t;
1084 bus_dmamap_t map;
1085 void *buf;
1086 bus_size_t buflen;
1087 struct proc *p;
1088 int flags;
1089 {
1090 struct sparcvme_softc *sc = (struct sparcvme_softc *)t->_cookie;
1091 volatile u_int32_t *ioctags;
1092 int error;
1093
1094 /* Round request to a multiple of the I/O cache size */
1095 buflen = (buflen + VME_IOC_PAGESZ - 1) & -VME_IOC_PAGESZ;
1096 error = bus_dmamap_load(sc->sc_dmatag, map, buf, buflen, p, flags);
1097 if (error != 0)
1098 return (error);
1099
1100 /* Allocate I/O cache entries for this range */
1101 ioctags = sc->sc_ioctags + VME_IOC_LINE(map->dm_segs[0].ds_addr);
1102 while (buflen > 0) {
1103 *ioctags = VME_IOC_IC | VME_IOC_W;
1104 ioctags += VME_IOC_LINESZ/sizeof(*ioctags);
1105 buflen -= VME_IOC_PAGESZ;
1106 }
1107
1108 /*
1109 * Adjust DVMA address to VME view.
1110 * Note: the DVMA base address is the same for all
1111 * VME address spaces.
1112 */
1113 map->dm_segs[0].ds_addr -= VME_IOMMU_DVMA_BASE;
1114 return (0);
1115 }
1116
1117
1118 void
1119 sparc_vme_iommu_dmamap_unload(t, map)
1120 bus_dma_tag_t t;
1121 bus_dmamap_t map;
1122 {
1123 struct sparcvme_softc *sc = (struct sparcvme_softc *)t->_cookie;
1124 volatile u_int32_t *flushregs;
1125 int len;
1126
1127 /* Go from VME to CPU view */
1128 map->dm_segs[0].ds_addr += VME_IOMMU_DVMA_BASE;
1129
1130 /* Flush VME I/O cache */
1131 len = map->dm_segs[0]._ds_sgsize;
1132 flushregs = sc->sc_iocflush + VME_IOC_LINE(map->dm_segs[0].ds_addr);
1133 while (len > 0) {
1134 *flushregs = 0;
1135 flushregs += VME_IOC_LINESZ/sizeof(*flushregs);
1136 len -= VME_IOC_PAGESZ;
1137 }
1138
1139 /*
1140 * Start a read from `tag space' which will not complete until
1141 * all cache flushes have finished
1142 */
1143 (*sc->sc_ioctags);
1144
1145 bus_dmamap_unload(sc->sc_dmatag, map);
1146 }
1147
1148 void
1149 sparc_vme_iommu_dmamap_sync(t, map, offset, len, ops)
1150 bus_dma_tag_t t;
1151 bus_dmamap_t map;
1152 bus_addr_t offset;
1153 bus_size_t len;
1154 int ops;
1155 {
1156
1157 /*
1158 * XXX Should perform cache flushes as necessary.
1159 */
1160 }
1161 #endif /* SUN4M */
1162
1163 int
1164 sparc_vme_dmamem_map(t, segs, nsegs, size, kvap, flags)
1165 bus_dma_tag_t t;
1166 bus_dma_segment_t *segs;
1167 int nsegs;
1168 size_t size;
1169 caddr_t *kvap;
1170 int flags;
1171 {
1172 struct sparcvme_softc *sc = (struct sparcvme_softc *)t->_cookie;
1173
1174 return (bus_dmamem_map(sc->sc_dmatag, segs, nsegs, size, kvap, flags));
1175 }
1176