vme_machdep.c revision 1.35 1 /* $NetBSD: vme_machdep.c,v 1.35 2002/03/11 16:27:02 pk Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/param.h>
40 #include <sys/extent.h>
41 #include <sys/systm.h>
42 #include <sys/device.h>
43 #include <sys/malloc.h>
44 #include <sys/errno.h>
45
46 #include <sys/proc.h>
47 #include <sys/user.h>
48 #include <sys/syslog.h>
49
50 #include <uvm/uvm_extern.h>
51
52 #define _SPARC_BUS_DMA_PRIVATE
53 #include <machine/bus.h>
54 #include <sparc/sparc/iommuvar.h>
55 #include <machine/autoconf.h>
56 #include <machine/oldmon.h>
57 #include <machine/cpu.h>
58 #include <machine/ctlreg.h>
59
60 #include <dev/vme/vmereg.h>
61 #include <dev/vme/vmevar.h>
62
63 #include <sparc/sparc/asm.h>
64 #include <sparc/sparc/vaddrs.h>
65 #include <sparc/sparc/cpuvar.h>
66 #include <sparc/dev/vmereg.h>
67
68 struct sparcvme_softc {
69 struct device sc_dev; /* base device */
70 bus_space_tag_t sc_bustag;
71 bus_dma_tag_t sc_dmatag;
72 struct vmebusreg *sc_reg; /* VME control registers */
73 struct vmebusvec *sc_vec; /* VME interrupt vector */
74 struct rom_range *sc_range; /* ROM range property */
75 int sc_nrange;
76 volatile u_int32_t *sc_ioctags; /* VME IO-cache tag registers */
77 volatile u_int32_t *sc_iocflush;/* VME IO-cache flush registers */
78 int (*sc_vmeintr) __P((void *));
79 };
80 struct sparcvme_softc *sparcvme_sc;/*XXX*/
81
82 /* autoconfiguration driver */
83 static int vmematch_iommu __P((struct device *, struct cfdata *, void *));
84 static void vmeattach_iommu __P((struct device *, struct device *, void *));
85 static int vmematch_mainbus __P((struct device *, struct cfdata *, void *));
86 static void vmeattach_mainbus __P((struct device *, struct device *, void *));
87 #if defined(SUN4)
88 int vmeintr4 __P((void *));
89 #endif
90 #if defined(SUN4M)
91 int vmeintr4m __P((void *));
92 static int sparc_vme_error __P((void));
93 #endif
94
95
96 static int sparc_vme_probe __P((void *, vme_addr_t, vme_size_t,
97 vme_am_t, vme_datasize_t,
98 int (*) __P((void *, bus_space_tag_t, bus_space_handle_t)), void *));
99 static int sparc_vme_map __P((void *, vme_addr_t, vme_size_t, vme_am_t,
100 vme_datasize_t, vme_swap_t,
101 bus_space_tag_t *, bus_space_handle_t *,
102 vme_mapresc_t *));
103 static void sparc_vme_unmap __P((void *, vme_mapresc_t));
104 static int sparc_vme_intr_map __P((void *, int, int, vme_intr_handle_t *));
105 static const struct evcnt *sparc_vme_intr_evcnt __P((void *,
106 vme_intr_handle_t));
107 static void * sparc_vme_intr_establish __P((void *, vme_intr_handle_t, int,
108 int (*) __P((void *)), void *));
109 static void sparc_vme_intr_disestablish __P((void *, void *));
110
111 static int vmebus_translate __P((struct sparcvme_softc *, vme_am_t,
112 vme_addr_t, bus_addr_t *));
113 #if defined(SUN4M)
114 static void sparc_vme_iommu_barrier __P(( bus_space_tag_t, bus_space_handle_t,
115 bus_size_t, bus_size_t, int));
116
117 #endif
118
119 /*
120 * DMA functions.
121 */
122 static void sparc_vct_dmamap_destroy __P((void *, bus_dmamap_t));
123
124 #if defined(SUN4)
125 static int sparc_vct4_dmamap_create __P((void *, vme_size_t, vme_am_t,
126 vme_datasize_t, vme_swap_t, int, vme_size_t, vme_addr_t,
127 int, bus_dmamap_t *));
128 static int sparc_vme4_dmamap_load __P((bus_dma_tag_t, bus_dmamap_t, void *,
129 bus_size_t, struct proc *, int));
130 static void sparc_vme4_dmamap_unload __P((bus_dma_tag_t, bus_dmamap_t));
131 static void sparc_vme4_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t,
132 bus_addr_t, bus_size_t, int));
133 #endif
134
135 #if defined(SUN4M)
136 static int sparc_vct_iommu_dmamap_create __P((void *, vme_size_t, vme_am_t,
137 vme_datasize_t, vme_swap_t, int, vme_size_t, vme_addr_t,
138 int, bus_dmamap_t *));
139 static int sparc_vme_iommu_dmamap_create __P((bus_dma_tag_t, bus_size_t,
140 int, bus_size_t, bus_size_t, int, bus_dmamap_t *));
141
142 static int sparc_vme_iommu_dmamap_load __P((bus_dma_tag_t, bus_dmamap_t,
143 void *, bus_size_t, struct proc *, int));
144 static void sparc_vme_iommu_dmamap_unload __P((bus_dma_tag_t, bus_dmamap_t));
145 static void sparc_vme_iommu_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t,
146 bus_addr_t, bus_size_t, int));
147 #endif
148
149 static int sparc_vme_dmamem_map __P((bus_dma_tag_t, bus_dma_segment_t *,
150 int, size_t, caddr_t *, int));
151 #if 0
152 static void sparc_vme_dmamap_destroy __P((bus_dma_tag_t, bus_dmamap_t));
153 static void sparc_vme_dmamem_unmap __P((bus_dma_tag_t, caddr_t, size_t));
154 static paddr_t sparc_vme_dmamem_mmap __P((bus_dma_tag_t,
155 bus_dma_segment_t *, int, off_t, int, int));
156 #endif
157
158 int sparc_vme_mmap_cookie __P((vme_addr_t, vme_am_t, bus_space_handle_t *));
159
160 struct cfattach vme_mainbus_ca = {
161 sizeof(struct sparcvme_softc), vmematch_mainbus, vmeattach_mainbus
162 };
163
164 struct cfattach vme_iommu_ca = {
165 sizeof(struct sparcvme_softc), vmematch_iommu, vmeattach_iommu
166 };
167
168 int (*vmeerr_handler) __P((void));
169
170 #define VMEMOD_D32 0x40 /* ??? */
171
172 /* If the PROM does not provide the `ranges' property, we make up our own */
173 struct rom_range vmebus_translations[] = {
174 #define _DS (VME_AM_MBO | VME_AM_SUPER | VME_AM_DATA)
175 { VME_AM_A16|_DS, 0, PMAP_VME16, 0xffff0000, 0 },
176 { VME_AM_A24|_DS, 0, PMAP_VME16, 0xff000000, 0 },
177 { VME_AM_A32|_DS, 0, PMAP_VME16, 0x00000000, 0 },
178 { VME_AM_A16|VMEMOD_D32|_DS, 0, PMAP_VME32, 0xffff0000, 0 },
179 { VME_AM_A24|VMEMOD_D32|_DS, 0, PMAP_VME32, 0xff000000, 0 },
180 { VME_AM_A32|VMEMOD_D32|_DS, 0, PMAP_VME32, 0x00000000, 0 }
181 #undef _DS
182 };
183
184 /*
185 * The VME bus logic on sun4 machines maps DMA requests in the first MB
186 * of VME space to the last MB of DVMA space. `vme_dvmamap' is used
187 * for DVMA space allocations. The DMA addresses returned by
188 * bus_dmamap_load*() must be relocated by -VME4_DVMA_BASE.
189 */
190 struct extent *vme_dvmamap;
191
192 /*
193 * The VME hardware on the sun4m IOMMU maps the first 8MB of 32-bit
194 * VME space to the last 8MB of DVMA space and the first 1MB of
195 * 24-bit VME space to the first 1MB of the last 8MB of DVMA space
196 * (thus 24-bit VME space overlaps the first 1MB of of 32-bit space).
197 * The following constants define subregions in the IOMMU DVMA map
198 * for VME DVMA allocations. The DMA addresses returned by
199 * bus_dmamap_load*() must be relocated by -VME_IOMMU_DVMA_BASE.
200 */
201 #define VME_IOMMU_DVMA_BASE 0xff800000
202 #define VME_IOMMU_DVMA_AM24_BASE VME_IOMMU_DVMA_BASE
203 #define VME_IOMMU_DVMA_AM24_END 0xff900000
204 #define VME_IOMMU_DVMA_AM32_BASE VME_IOMMU_DVMA_BASE
205 #define VME_IOMMU_DVMA_AM32_END IOMMU_DVMA_END
206
207 struct sparc_bus_space_tag sparc_vme_bus_tag = {
208 NULL, /* cookie */
209 NULL, /* parent bus tag */
210 NULL, /* bus_map */
211 NULL, /* bus_unmap */
212 NULL, /* bus_subregion */
213 NULL /* barrier */
214 };
215
216 struct vme_chipset_tag sparc_vme_chipset_tag = {
217 NULL,
218 sparc_vme_map,
219 sparc_vme_unmap,
220 sparc_vme_probe,
221 sparc_vme_intr_map,
222 sparc_vme_intr_evcnt,
223 sparc_vme_intr_establish,
224 sparc_vme_intr_disestablish,
225 0, 0, 0 /* bus specific DMA stuff */
226 };
227
228
229 #if defined(SUN4)
230 struct sparc_bus_dma_tag sparc_vme4_dma_tag = {
231 NULL, /* cookie */
232 _bus_dmamap_create,
233 _bus_dmamap_destroy,
234 sparc_vme4_dmamap_load,
235 _bus_dmamap_load_mbuf,
236 _bus_dmamap_load_uio,
237 _bus_dmamap_load_raw,
238 sparc_vme4_dmamap_unload,
239 sparc_vme4_dmamap_sync,
240
241 _bus_dmamem_alloc,
242 _bus_dmamem_free,
243 sparc_vme_dmamem_map,
244 _bus_dmamem_unmap,
245 _bus_dmamem_mmap
246 };
247 #endif
248
249 #if defined(SUN4M)
250 struct sparc_bus_dma_tag sparc_vme_iommu_dma_tag = {
251 NULL, /* cookie */
252 sparc_vme_iommu_dmamap_create,
253 _bus_dmamap_destroy,
254 sparc_vme_iommu_dmamap_load,
255 _bus_dmamap_load_mbuf,
256 _bus_dmamap_load_uio,
257 _bus_dmamap_load_raw,
258 sparc_vme_iommu_dmamap_unload,
259 sparc_vme_iommu_dmamap_sync,
260
261 _bus_dmamem_alloc,
262 _bus_dmamem_free,
263 sparc_vme_dmamem_map,
264 _bus_dmamem_unmap,
265 _bus_dmamem_mmap
266 };
267 #endif
268
269
270 int
271 vmematch_mainbus(parent, cf, aux)
272 struct device *parent;
273 struct cfdata *cf;
274 void *aux;
275 {
276 struct mainbus_attach_args *ma = aux;
277
278 if (!CPU_ISSUN4)
279 return (0);
280
281 return (strcmp("vme", ma->ma_name) == 0);
282 }
283
284 int
285 vmematch_iommu(parent, cf, aux)
286 struct device *parent;
287 struct cfdata *cf;
288 void *aux;
289 {
290 struct iommu_attach_args *ia = aux;
291
292 return (strcmp("vme", ia->iom_name) == 0);
293 }
294
295
296 void
297 vmeattach_mainbus(parent, self, aux)
298 struct device *parent, *self;
299 void *aux;
300 {
301 #if defined(SUN4)
302 struct mainbus_attach_args *ma = aux;
303 struct sparcvme_softc *sc = (struct sparcvme_softc *)self;
304 struct vmebus_attach_args vba;
305
306 if (self->dv_unit > 0) {
307 printf(" unsupported\n");
308 return;
309 }
310
311 sc->sc_bustag = ma->ma_bustag;
312 sc->sc_dmatag = ma->ma_dmatag;
313
314 /* VME interrupt entry point */
315 sc->sc_vmeintr = vmeintr4;
316
317 /*XXX*/ sparc_vme_chipset_tag.cookie = self;
318 /*XXX*/ sparc_vme_chipset_tag.vct_dmamap_create = sparc_vct4_dmamap_create;
319 /*XXX*/ sparc_vme_chipset_tag.vct_dmamap_destroy = sparc_vct_dmamap_destroy;
320 /*XXX*/ sparc_vme4_dma_tag._cookie = self;
321
322 #if 0
323 sparc_vme_bus_tag.parent = ma->ma_bustag;
324 vba.vba_bustag = &sparc_vme_bus_tag;
325 #endif
326 vba.va_vct = &sparc_vme_chipset_tag;
327 vba.va_bdt = &sparc_vme4_dma_tag;
328 vba.va_slaveconfig = 0;
329
330 /* Fall back to our own `range' construction */
331 sc->sc_range = vmebus_translations;
332 sc->sc_nrange =
333 sizeof(vmebus_translations)/sizeof(vmebus_translations[0]);
334
335 vme_dvmamap = extent_create("vmedvma", VME4_DVMA_BASE, VME4_DVMA_END,
336 M_DEVBUF, 0, 0, EX_NOWAIT);
337 if (vme_dvmamap == NULL)
338 panic("vme: unable to allocate DVMA map");
339
340 printf("\n");
341 (void)config_found(self, &vba, 0);
342
343 #endif
344 return;
345 }
346
347 /* sun4m vmebus */
348 void
349 vmeattach_iommu(parent, self, aux)
350 struct device *parent, *self;
351 void *aux;
352 {
353 #if defined(SUN4M)
354 struct sparcvme_softc *sc = (struct sparcvme_softc *)self;
355 struct iommu_attach_args *ia = aux;
356 struct vmebus_attach_args vba;
357 bus_space_handle_t bh;
358 int node;
359 int cline;
360
361 if (self->dv_unit > 0) {
362 printf(" unsupported\n");
363 return;
364 }
365
366 sc->sc_bustag = ia->iom_bustag;
367 sc->sc_dmatag = ia->iom_dmatag;
368
369 /* VME interrupt entry point */
370 sc->sc_vmeintr = vmeintr4m;
371
372 /*XXX*/ sparc_vme_chipset_tag.cookie = self;
373 /*XXX*/ sparc_vme_chipset_tag.vct_dmamap_create = sparc_vct_iommu_dmamap_create;
374 /*XXX*/ sparc_vme_chipset_tag.vct_dmamap_destroy = sparc_vct_dmamap_destroy;
375 /*XXX*/ sparc_vme_iommu_dma_tag._cookie = self;
376 sparc_vme_bus_tag.sparc_bus_barrier = sparc_vme_iommu_barrier;
377
378 #if 0
379 vba.vba_bustag = &sparc_vme_bus_tag;
380 #endif
381 vba.va_vct = &sparc_vme_chipset_tag;
382 vba.va_bdt = &sparc_vme_iommu_dma_tag;
383 vba.va_slaveconfig = 0;
384
385 node = ia->iom_node;
386
387 /*
388 * Map VME control space
389 */
390 if (ia->iom_nreg < 2) {
391 printf("%s: only %d register sets\n", self->dv_xname,
392 ia->iom_nreg);
393 return;
394 }
395
396 if (bus_space_map(ia->iom_bustag,
397 (bus_addr_t) BUS_ADDR(ia->iom_reg[0].ior_iospace,
398 ia->iom_reg[0].ior_pa),
399 (bus_size_t)ia->iom_reg[0].ior_size,
400 BUS_SPACE_MAP_LINEAR,
401 &bh) != 0) {
402 panic("%s: can't map vmebusreg", self->dv_xname);
403 }
404 sc->sc_reg = (struct vmebusreg *)bh;
405
406 if (bus_space_map(ia->iom_bustag,
407 (bus_addr_t) BUS_ADDR(ia->iom_reg[1].ior_iospace,
408 ia->iom_reg[1].ior_pa),
409 (bus_size_t)ia->iom_reg[1].ior_size,
410 BUS_SPACE_MAP_LINEAR,
411 &bh) != 0) {
412 panic("%s: can't map vmebusvec", self->dv_xname);
413 }
414 sc->sc_vec = (struct vmebusvec *)bh;
415
416 /*
417 * Map VME IO cache tags and flush control.
418 */
419 if (bus_space_map(ia->iom_bustag,
420 (bus_addr_t) BUS_ADDR(
421 ia->iom_reg[1].ior_iospace,
422 ia->iom_reg[1].ior_pa + VME_IOC_TAGOFFSET),
423 VME_IOC_SIZE,
424 BUS_SPACE_MAP_LINEAR,
425 &bh) != 0) {
426 panic("%s: can't map IOC tags", self->dv_xname);
427 }
428 sc->sc_ioctags = (u_int32_t *)bh;
429
430 if (bus_space_map(ia->iom_bustag,
431 (bus_addr_t) BUS_ADDR(
432 ia->iom_reg[1].ior_iospace,
433 ia->iom_reg[1].ior_pa + VME_IOC_FLUSHOFFSET),
434 VME_IOC_SIZE,
435 BUS_SPACE_MAP_LINEAR,
436 &bh) != 0) {
437 panic("%s: can't map IOC flush registers", self->dv_xname);
438 }
439 sc->sc_iocflush = (u_int32_t *)bh;
440
441 /*XXX*/ sparc_vme_bus_tag.cookie = sc->sc_reg;
442
443 /*
444 * Get "range" property.
445 */
446 if (PROM_getprop(node, "ranges", sizeof(struct rom_range),
447 &sc->sc_nrange, (void **)&sc->sc_range) != 0) {
448 panic("%s: can't get ranges property", self->dv_xname);
449 }
450
451 sparcvme_sc = sc;
452 vmeerr_handler = sparc_vme_error;
453
454 /*
455 * Invalidate all IO-cache entries.
456 */
457 for (cline = VME_IOC_SIZE/VME_IOC_LINESZ; cline > 0;) {
458 sc->sc_ioctags[--cline] = 0;
459 }
460
461 /* Enable IO-cache */
462 sc->sc_reg->vmebus_cr |= VMEBUS_CR_C;
463
464 printf(": version 0x%x\n",
465 sc->sc_reg->vmebus_cr & VMEBUS_CR_IMPL);
466
467 (void)config_found(self, &vba, 0);
468 #endif
469 }
470
471 #if defined(SUN4M)
472 static int
473 sparc_vme_error()
474 {
475 struct sparcvme_softc *sc = sparcvme_sc;
476 u_int32_t afsr, afpa;
477 char bits[64];
478
479 afsr = sc->sc_reg->vmebus_afsr;
480 afpa = sc->sc_reg->vmebus_afar;
481 printf("VME error:\n\tAFSR %s\n",
482 bitmask_snprintf(afsr, VMEBUS_AFSR_BITS, bits, sizeof(bits)));
483 printf("\taddress: 0x%x%x\n", afsr, afpa);
484 return (0);
485 }
486 #endif
487
488 int
489 vmebus_translate(sc, mod, addr, bap)
490 struct sparcvme_softc *sc;
491 vme_am_t mod;
492 vme_addr_t addr;
493 bus_addr_t *bap;
494 {
495 int i;
496
497 for (i = 0; i < sc->sc_nrange; i++) {
498 struct rom_range *rp = &sc->sc_range[i];
499
500 if (rp->cspace != mod)
501 continue;
502
503 /* We've found the connection to the parent bus */
504 *bap = BUS_ADDR(rp->pspace, rp->poffset + addr);
505 return (0);
506 }
507 return (ENOENT);
508 }
509
510 struct vmeprobe_myarg {
511 int (*cb) __P((void *, bus_space_tag_t, bus_space_handle_t));
512 void *cbarg;
513 bus_space_tag_t tag;
514 int res; /* backwards */
515 };
516
517 static int vmeprobe_mycb __P((void *, void *));
518 static int
519 vmeprobe_mycb(bh, arg)
520 void *bh, *arg;
521 {
522 struct vmeprobe_myarg *a = arg;
523
524 a->res = (*a->cb)(a->cbarg, a->tag, (bus_space_handle_t)bh);
525 return (!a->res);
526 }
527
528 int
529 sparc_vme_probe(cookie, addr, len, mod, datasize, callback, arg)
530 void *cookie;
531 vme_addr_t addr;
532 vme_size_t len;
533 vme_am_t mod;
534 vme_datasize_t datasize;
535 int (*callback) __P((void *, bus_space_tag_t, bus_space_handle_t));
536 void *arg;
537 {
538 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
539 bus_addr_t paddr;
540 bus_size_t size;
541 struct vmeprobe_myarg myarg;
542 int res, i;
543
544 if (vmebus_translate(sc, mod, addr, &paddr) != 0)
545 return (EINVAL);
546
547 size = (datasize == VME_D8 ? 1 : (datasize == VME_D16 ? 2 : 4));
548
549 if (callback) {
550 myarg.cb = callback;
551 myarg.cbarg = arg;
552 myarg.tag = sc->sc_bustag;
553 myarg.res = 0;
554 res = bus_space_probe(sc->sc_bustag, paddr, size, 0,
555 0, vmeprobe_mycb, &myarg);
556 return (res ? 0 : (myarg.res ? myarg.res : EIO));
557 }
558
559 for (i = 0; i < len / size; i++) {
560 myarg.res = 0;
561 res = bus_space_probe(sc->sc_bustag, paddr, size, 0,
562 0, 0, 0);
563 if (res == 0)
564 return (EIO);
565 paddr += size;
566 }
567 return (0);
568 }
569
570 int
571 sparc_vme_map(cookie, addr, size, mod, datasize, swap, tp, hp, rp)
572 void *cookie;
573 vme_addr_t addr;
574 vme_size_t size;
575 vme_am_t mod;
576 vme_datasize_t datasize;
577 vme_swap_t swap;
578 bus_space_tag_t *tp;
579 bus_space_handle_t *hp;
580 vme_mapresc_t *rp;
581 {
582 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
583 bus_addr_t paddr;
584 int error;
585
586 error = vmebus_translate(sc, mod, addr, &paddr);
587 if (error != 0)
588 return (error);
589
590 *tp = sc->sc_bustag;
591 return (bus_space_map(sc->sc_bustag, paddr, size, 0, hp));
592 }
593
594 int
595 sparc_vme_mmap_cookie(addr, mod, hp)
596 vme_addr_t addr;
597 vme_am_t mod;
598 bus_space_handle_t *hp;
599 {
600 struct sparcvme_softc *sc = sparcvme_sc;
601 bus_addr_t paddr;
602 int error;
603
604 error = vmebus_translate(sc, mod, addr, &paddr);
605 if (error != 0)
606 return (error);
607
608 return (bus_space_mmap(sc->sc_bustag, paddr, 0,
609 0/*prot is ignored*/, 0));
610 }
611
612 #if defined(SUN4M)
613 void
614 sparc_vme_iommu_barrier(t, h, offset, size, flags)
615 bus_space_tag_t t;
616 bus_space_handle_t h;
617 bus_size_t offset;
618 bus_size_t size;
619 int flags;
620 {
621 struct vmebusreg *vbp = (struct vmebusreg *)t->cookie;
622
623 /* Read async fault status to flush write-buffers */
624 (*(volatile int *)&vbp->vmebus_afsr);
625 }
626 #endif
627
628
629
630 /*
631 * VME Interrupt Priority Level to sparc Processor Interrupt Level.
632 */
633 static int vme_ipl_to_pil[] = {
634 0,
635 2,
636 3,
637 5,
638 7,
639 9,
640 11,
641 13
642 };
643
644
645 /*
646 * All VME device interrupts go through vmeintr(). This function reads
647 * the VME vector from the bus, then dispatches the device interrupt
648 * handler. All handlers for devices that map to the same Processor
649 * Interrupt Level (according to the table above) are on a linked list
650 * of `sparc_vme_intr_handle' structures. The head of which is passed
651 * down as the argument to `vmeintr(void *arg)'.
652 */
653 struct sparc_vme_intr_handle {
654 struct intrhand ih;
655 struct sparc_vme_intr_handle *next;
656 int vec; /* VME interrupt vector */
657 int pri; /* VME interrupt priority */
658 struct sparcvme_softc *sc;/*XXX*/
659 };
660
661 #if defined(SUN4)
662 int
663 vmeintr4(arg)
664 void *arg;
665 {
666 struct sparc_vme_intr_handle *ihp = (vme_intr_handle_t)arg;
667 int level, vec;
668 int rv = 0;
669
670 level = (ihp->pri << 1) | 1;
671
672 vec = ldcontrolb((caddr_t)(AC_VMEINTVEC | level));
673
674 if (vec == -1) {
675 #ifdef DEBUG
676 /*
677 * This seems to happen only with the i82586 based
678 * `ie1' boards.
679 */
680 printf("vme: spurious interrupt at VME level %d\n", ihp->pri);
681 #endif
682 return (1); /* XXX - pretend we handled it, for now */
683 }
684
685 for (; ihp; ihp = ihp->next)
686 if (ihp->vec == vec && ihp->ih.ih_fun)
687 rv |= (ihp->ih.ih_fun)(ihp->ih.ih_arg);
688
689 return (rv);
690 }
691 #endif
692
693 #if defined(SUN4M)
694 int
695 vmeintr4m(arg)
696 void *arg;
697 {
698 struct sparc_vme_intr_handle *ihp = (vme_intr_handle_t)arg;
699 int level, vec;
700 int rv = 0;
701
702 level = (ihp->pri << 1) | 1;
703
704 #if 0
705 int pending;
706
707 /* Flush VME <=> Sbus write buffers */
708 (*(volatile int *)&ihp->sc->sc_reg->vmebus_afsr);
709
710 pending = *((int*)ICR_SI_PEND);
711 if ((pending & SINTR_VME(ihp->pri)) == 0) {
712 printf("vmeintr: non pending at pri %x(p 0x%x)\n",
713 ihp->pri, pending);
714 return (0);
715 }
716 #endif
717 #if 0
718 /* Why gives this a bus timeout sometimes? */
719 vec = ihp->sc->sc_vec->vmebusvec[level];
720 #else
721 /* so, arrange to catch the fault... */
722 {
723 extern struct user *proc0paddr;
724 extern int fkbyte __P((caddr_t, struct pcb *));
725 caddr_t addr = (caddr_t)&ihp->sc->sc_vec->vmebusvec[level];
726 struct pcb *xpcb;
727 u_long saveonfault;
728 int s;
729
730 s = splhigh();
731 if (curproc == NULL)
732 xpcb = (struct pcb *)proc0paddr;
733 else
734 xpcb = &curproc->p_addr->u_pcb;
735
736 saveonfault = (u_long)xpcb->pcb_onfault;
737 vec = fkbyte(addr, xpcb);
738 xpcb->pcb_onfault = (caddr_t)saveonfault;
739
740 splx(s);
741 }
742 #endif
743
744 if (vec == -1) {
745 #ifdef DEBUG
746 /*
747 * This seems to happen only with the i82586 based
748 * `ie1' boards.
749 */
750 printf("vme: spurious interrupt at VME level %d\n", ihp->pri);
751 printf(" ICR_SI_PEND=0x%x; VME AFSR=0x%x; VME AFAR=0x%x\n",
752 *((int*)ICR_SI_PEND),
753 ihp->sc->sc_reg->vmebus_afsr,
754 ihp->sc->sc_reg->vmebus_afar);
755 #endif
756 return (1); /* XXX - pretend we handled it, for now */
757 }
758
759 for (; ihp; ihp = ihp->next)
760 if (ihp->vec == vec && ihp->ih.ih_fun)
761 rv |= (ihp->ih.ih_fun)(ihp->ih.ih_arg);
762
763 return (rv);
764 }
765 #endif
766
767 int
768 sparc_vme_intr_map(cookie, level, vec, ihp)
769 void *cookie;
770 int level;
771 int vec;
772 vme_intr_handle_t *ihp;
773 {
774 struct sparc_vme_intr_handle *ih;
775
776 ih = (vme_intr_handle_t)
777 malloc(sizeof(struct sparc_vme_intr_handle), M_DEVBUF, M_NOWAIT);
778 ih->pri = level;
779 ih->vec = vec;
780 ih->sc = cookie;/*XXX*/
781 *ihp = ih;
782 return (0);
783 }
784
785 const struct evcnt *
786 sparc_vme_intr_evcnt(cookie, vih)
787 void *cookie;
788 vme_intr_handle_t vih;
789 {
790
791 /* XXX for now, no evcnt parent reported */
792 return NULL;
793 }
794
795 void *
796 sparc_vme_intr_establish(cookie, vih, pri, func, arg)
797 void *cookie;
798 vme_intr_handle_t vih;
799 int pri;
800 int (*func) __P((void *));
801 void *arg;
802 {
803 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
804 struct sparc_vme_intr_handle *svih =
805 (struct sparc_vme_intr_handle *)vih;
806 struct intrhand *ih;
807 int level;
808
809 /* XXX pri == svih->pri ??? */
810
811 /* Translate VME priority to processor IPL */
812 level = vme_ipl_to_pil[svih->pri];
813
814 svih->ih.ih_fun = func;
815 svih->ih.ih_arg = arg;
816 svih->next = NULL;
817
818 /* ensure the interrupt subsystem will call us at this level */
819 for (ih = intrhand[level]; ih != NULL; ih = ih->ih_next)
820 if (ih->ih_fun == sc->sc_vmeintr)
821 break;
822
823 if (ih == NULL) {
824 ih = (struct intrhand *)
825 malloc(sizeof(struct intrhand), M_DEVBUF, M_NOWAIT);
826 if (ih == NULL)
827 panic("vme_addirq");
828 bzero(ih, sizeof *ih);
829 ih->ih_fun = sc->sc_vmeintr;
830 ih->ih_arg = vih;
831 intr_establish(level, ih);
832 } else {
833 svih->next = (vme_intr_handle_t)ih->ih_arg;
834 ih->ih_arg = vih;
835 }
836 return (NULL);
837 }
838
839 void
840 sparc_vme_unmap(cookie, resc)
841 void * cookie;
842 vme_mapresc_t resc;
843 {
844 /* Not implemented */
845 panic("sparc_vme_unmap");
846 }
847
848 void
849 sparc_vme_intr_disestablish(cookie, a)
850 void *cookie;
851 void *a;
852 {
853 /* Not implemented */
854 panic("sparc_vme_intr_disestablish");
855 }
856
857
858
859 /*
860 * VME DMA functions.
861 */
862
863 static void
864 sparc_vct_dmamap_destroy(cookie, map)
865 void *cookie;
866 bus_dmamap_t map;
867 {
868 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
869 bus_dmamap_destroy(sc->sc_dmatag, map);
870 }
871
872 #if defined(SUN4)
873 static int
874 sparc_vct4_dmamap_create(cookie, size, am, datasize, swap, nsegments, maxsegsz,
875 boundary, flags, dmamp)
876 void *cookie;
877 vme_size_t size;
878 vme_am_t am;
879 vme_datasize_t datasize;
880 vme_swap_t swap;
881 int nsegments;
882 vme_size_t maxsegsz;
883 vme_addr_t boundary;
884 int flags;
885 bus_dmamap_t *dmamp;
886 {
887 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
888
889 /* Allocate a base map through parent bus ops */
890 return (bus_dmamap_create(sc->sc_dmatag, size, nsegments, maxsegsz,
891 boundary, flags, dmamp));
892 }
893
894 int
895 sparc_vme4_dmamap_load(t, map, buf, buflen, p, flags)
896 bus_dma_tag_t t;
897 bus_dmamap_t map;
898 void *buf;
899 bus_size_t buflen;
900 struct proc *p;
901 int flags;
902 {
903 bus_addr_t dva;
904 bus_size_t sgsize;
905 vaddr_t va, voff;
906 pmap_t pmap;
907 int pagesz = PAGE_SIZE;
908 int error;
909
910 cpuinfo.cache_flush(buf, buflen); /* XXX - move to bus_dma_sync */
911
912 va = (vaddr_t)buf;
913 voff = va & (pagesz - 1);
914 va &= -pagesz;
915
916 /*
917 * Allocate an integral number of pages from DVMA space
918 * covering the passed buffer.
919 */
920 sgsize = (buflen + voff + pagesz - 1) & -pagesz;
921 error = extent_alloc(vme_dvmamap, sgsize, pagesz,
922 map->_dm_boundary,
923 (flags & BUS_DMA_NOWAIT) == 0
924 ? EX_WAITOK
925 : EX_NOWAIT,
926 (u_long *)&dva);
927 if (error != 0)
928 return (error);
929
930 map->dm_mapsize = buflen;
931 map->dm_nsegs = 1;
932 /* Adjust DVMA address to VME view */
933 map->dm_segs[0].ds_addr = dva + voff - VME4_DVMA_BASE;
934 map->dm_segs[0].ds_len = buflen;
935 map->dm_segs[0]._ds_sgsize = sgsize;
936
937 pmap = (p == NULL) ? pmap_kernel() : p->p_vmspace->vm_map.pmap;
938
939 for (; sgsize != 0; ) {
940 paddr_t pa;
941 /*
942 * Get the physical address for this page.
943 */
944 (void) pmap_extract(pmap, va, &pa);
945
946 #ifdef notyet
947 if (have_iocache)
948 pa |= PG_IOC;
949 #endif
950 pmap_enter(pmap_kernel(), dva,
951 pa | PMAP_NC,
952 VM_PROT_READ|VM_PROT_WRITE, PMAP_WIRED);
953
954 dva += pagesz;
955 va += pagesz;
956 sgsize -= pagesz;
957 }
958 pmap_update(pmap_kernel());
959
960 return (0);
961 }
962
963 void
964 sparc_vme4_dmamap_unload(t, map)
965 bus_dma_tag_t t;
966 bus_dmamap_t map;
967 {
968 bus_dma_segment_t *segs = map->dm_segs;
969 int nsegs = map->dm_nsegs;
970 bus_addr_t dva;
971 bus_size_t len;
972 int i, s, error;
973
974 for (i = 0; i < nsegs; i++) {
975 /* Go from VME to CPU view */
976 dva = segs[i].ds_addr + VME4_DVMA_BASE;
977 dva &= -PAGE_SIZE;
978 len = segs[i]._ds_sgsize;
979
980 /* Remove double-mapping in DVMA space */
981 pmap_remove(pmap_kernel(), dva, dva + len);
982
983 /* Release DVMA space */
984 s = splhigh();
985 error = extent_free(vme_dvmamap, dva, len, EX_NOWAIT);
986 splx(s);
987 if (error != 0)
988 printf("warning: %ld of DVMA space lost\n", len);
989 }
990 pmap_update(pmap_kernel());
991
992 /* Mark the mappings as invalid. */
993 map->dm_mapsize = 0;
994 map->dm_nsegs = 0;
995 }
996
997 void
998 sparc_vme4_dmamap_sync(t, map, offset, len, ops)
999 bus_dma_tag_t t;
1000 bus_dmamap_t map;
1001 bus_addr_t offset;
1002 bus_size_t len;
1003 int ops;
1004 {
1005
1006 /*
1007 * XXX Should perform cache flushes as necessary (e.g. 4/200 W/B).
1008 * Currently the cache is flushed in bus_dma_load()...
1009 */
1010 }
1011 #endif /* SUN4 */
1012
1013 #if defined(SUN4M)
1014 static int
1015 sparc_vme_iommu_dmamap_create (t, size, nsegments, maxsegsz,
1016 boundary, flags, dmamp)
1017 bus_dma_tag_t t;
1018 bus_size_t size;
1019 int nsegments;
1020 bus_size_t maxsegsz;
1021 bus_size_t boundary;
1022 int flags;
1023 bus_dmamap_t *dmamp;
1024 {
1025
1026 printf("sparc_vme_dmamap_create: please use `vme_dmamap_create'\n");
1027 return (EINVAL);
1028 }
1029
1030 static int
1031 sparc_vct_iommu_dmamap_create(cookie, size, am, datasize, swap, nsegments,
1032 maxsegsz, boundary, flags, dmamp)
1033 void *cookie;
1034 vme_size_t size;
1035 vme_am_t am;
1036 vme_datasize_t datasize;
1037 vme_swap_t swap;
1038 int nsegments;
1039 vme_size_t maxsegsz;
1040 vme_addr_t boundary;
1041 int flags;
1042 bus_dmamap_t *dmamp;
1043 {
1044 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
1045 bus_dmamap_t map;
1046 int error;
1047
1048 /* Allocate a base map through parent bus ops */
1049 error = bus_dmamap_create(sc->sc_dmatag, size, nsegments, maxsegsz,
1050 boundary, flags, &map);
1051 if (error != 0)
1052 return (error);
1053
1054 /*
1055 * Each I/O cache line maps to a 8K section of VME DVMA space, so
1056 * we must ensure that DVMA alloctions are always 8K aligned.
1057 */
1058 map->_dm_align = VME_IOC_PAGESZ;
1059
1060 /* Set map region based on Address Modifier */
1061 switch ((am & VME_AM_ADRSIZEMASK)) {
1062 case VME_AM_A16:
1063 case VME_AM_A24:
1064 /* 1 MB of DVMA space */
1065 map->_dm_ex_start = VME_IOMMU_DVMA_AM24_BASE;
1066 map->_dm_ex_end = VME_IOMMU_DVMA_AM24_END;
1067 break;
1068 case VME_AM_A32:
1069 /* 8 MB of DVMA space */
1070 map->_dm_ex_start = VME_IOMMU_DVMA_AM32_BASE;
1071 map->_dm_ex_end = VME_IOMMU_DVMA_AM32_END;
1072 break;
1073 }
1074
1075 *dmamp = map;
1076 return (0);
1077 }
1078
1079 int
1080 sparc_vme_iommu_dmamap_load(t, map, buf, buflen, p, flags)
1081 bus_dma_tag_t t;
1082 bus_dmamap_t map;
1083 void *buf;
1084 bus_size_t buflen;
1085 struct proc *p;
1086 int flags;
1087 {
1088 struct sparcvme_softc *sc = (struct sparcvme_softc *)t->_cookie;
1089 volatile u_int32_t *ioctags;
1090 int error;
1091
1092 /* Round request to a multiple of the I/O cache size */
1093 buflen = (buflen + VME_IOC_PAGESZ - 1) & -VME_IOC_PAGESZ;
1094 error = bus_dmamap_load(sc->sc_dmatag, map, buf, buflen, p, flags);
1095 if (error != 0)
1096 return (error);
1097
1098 /* Allocate I/O cache entries for this range */
1099 ioctags = sc->sc_ioctags + VME_IOC_LINE(map->dm_segs[0].ds_addr);
1100 while (buflen > 0) {
1101 *ioctags = VME_IOC_IC | VME_IOC_W;
1102 ioctags += VME_IOC_LINESZ/sizeof(*ioctags);
1103 buflen -= VME_IOC_PAGESZ;
1104 }
1105
1106 /*
1107 * Adjust DVMA address to VME view.
1108 * Note: the DVMA base address is the same for all
1109 * VME address spaces.
1110 */
1111 map->dm_segs[0].ds_addr -= VME_IOMMU_DVMA_BASE;
1112 return (0);
1113 }
1114
1115
1116 void
1117 sparc_vme_iommu_dmamap_unload(t, map)
1118 bus_dma_tag_t t;
1119 bus_dmamap_t map;
1120 {
1121 struct sparcvme_softc *sc = (struct sparcvme_softc *)t->_cookie;
1122 volatile u_int32_t *flushregs;
1123 int len;
1124
1125 /* Go from VME to CPU view */
1126 map->dm_segs[0].ds_addr += VME_IOMMU_DVMA_BASE;
1127
1128 /* Flush VME I/O cache */
1129 len = map->dm_segs[0]._ds_sgsize;
1130 flushregs = sc->sc_iocflush + VME_IOC_LINE(map->dm_segs[0].ds_addr);
1131 while (len > 0) {
1132 *flushregs = 0;
1133 flushregs += VME_IOC_LINESZ/sizeof(*flushregs);
1134 len -= VME_IOC_PAGESZ;
1135 }
1136
1137 /*
1138 * Start a read from `tag space' which will not complete until
1139 * all cache flushes have finished
1140 */
1141 (*sc->sc_ioctags);
1142
1143 bus_dmamap_unload(sc->sc_dmatag, map);
1144 }
1145
1146 void
1147 sparc_vme_iommu_dmamap_sync(t, map, offset, len, ops)
1148 bus_dma_tag_t t;
1149 bus_dmamap_t map;
1150 bus_addr_t offset;
1151 bus_size_t len;
1152 int ops;
1153 {
1154
1155 /*
1156 * XXX Should perform cache flushes as necessary.
1157 */
1158 }
1159 #endif /* SUN4M */
1160
1161 int
1162 sparc_vme_dmamem_map(t, segs, nsegs, size, kvap, flags)
1163 bus_dma_tag_t t;
1164 bus_dma_segment_t *segs;
1165 int nsegs;
1166 size_t size;
1167 caddr_t *kvap;
1168 int flags;
1169 {
1170 struct sparcvme_softc *sc = (struct sparcvme_softc *)t->_cookie;
1171
1172 return (bus_dmamem_map(sc->sc_dmatag, segs, nsegs, size, kvap, flags));
1173 }
1174