vme_machdep.c revision 1.46 1 /* $NetBSD: vme_machdep.c,v 1.46 2003/07/15 00:04:57 lukem Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: vme_machdep.c,v 1.46 2003/07/15 00:04:57 lukem Exp $");
41
42 #include <sys/param.h>
43 #include <sys/extent.h>
44 #include <sys/systm.h>
45 #include <sys/device.h>
46 #include <sys/malloc.h>
47 #include <sys/errno.h>
48
49 #include <sys/proc.h>
50 #include <sys/user.h>
51 #include <sys/syslog.h>
52
53 #include <uvm/uvm_extern.h>
54
55 #define _SPARC_BUS_DMA_PRIVATE
56 #include <machine/bus.h>
57 #include <sparc/sparc/iommuvar.h>
58 #include <machine/autoconf.h>
59 #include <machine/oldmon.h>
60 #include <machine/cpu.h>
61 #include <machine/ctlreg.h>
62
63 #include <dev/vme/vmereg.h>
64 #include <dev/vme/vmevar.h>
65
66 #include <sparc/sparc/asm.h>
67 #include <sparc/sparc/vaddrs.h>
68 #include <sparc/sparc/cpuvar.h>
69 #include <sparc/dev/vmereg.h>
70
71 struct sparcvme_softc {
72 struct device sc_dev; /* base device */
73 bus_space_tag_t sc_bustag;
74 bus_dma_tag_t sc_dmatag;
75 struct vmebusreg *sc_reg; /* VME control registers */
76 struct vmebusvec *sc_vec; /* VME interrupt vector */
77 struct rom_range *sc_range; /* ROM range property */
78 int sc_nrange;
79 volatile u_int32_t *sc_ioctags; /* VME IO-cache tag registers */
80 volatile u_int32_t *sc_iocflush;/* VME IO-cache flush registers */
81 int (*sc_vmeintr) __P((void *));
82 };
83 struct sparcvme_softc *sparcvme_sc;/*XXX*/
84
85 /* autoconfiguration driver */
86 static int vmematch_iommu __P((struct device *, struct cfdata *, void *));
87 static void vmeattach_iommu __P((struct device *, struct device *, void *));
88 static int vmematch_mainbus __P((struct device *, struct cfdata *, void *));
89 static void vmeattach_mainbus __P((struct device *, struct device *, void *));
90 #if defined(SUN4)
91 int vmeintr4 __P((void *));
92 #endif
93 #if defined(SUN4M)
94 int vmeintr4m __P((void *));
95 static int sparc_vme_error __P((void));
96 #endif
97
98
99 static int sparc_vme_probe __P((void *, vme_addr_t, vme_size_t,
100 vme_am_t, vme_datasize_t,
101 int (*) __P((void *, bus_space_tag_t, bus_space_handle_t)), void *));
102 static int sparc_vme_map __P((void *, vme_addr_t, vme_size_t, vme_am_t,
103 vme_datasize_t, vme_swap_t,
104 bus_space_tag_t *, bus_space_handle_t *,
105 vme_mapresc_t *));
106 static void sparc_vme_unmap __P((void *, vme_mapresc_t));
107 static int sparc_vme_intr_map __P((void *, int, int, vme_intr_handle_t *));
108 static const struct evcnt *sparc_vme_intr_evcnt __P((void *,
109 vme_intr_handle_t));
110 static void * sparc_vme_intr_establish __P((void *, vme_intr_handle_t, int,
111 int (*) __P((void *)), void *));
112 static void sparc_vme_intr_disestablish __P((void *, void *));
113
114 static int vmebus_translate __P((struct sparcvme_softc *, vme_am_t,
115 vme_addr_t, bus_addr_t *));
116 #if defined(SUN4M)
117 static void sparc_vme_iommu_barrier __P(( bus_space_tag_t, bus_space_handle_t,
118 bus_size_t, bus_size_t, int));
119
120 #endif
121
122 /*
123 * DMA functions.
124 */
125 static void sparc_vct_dmamap_destroy __P((void *, bus_dmamap_t));
126
127 #if defined(SUN4)
128 static int sparc_vct4_dmamap_create __P((void *, vme_size_t, vme_am_t,
129 vme_datasize_t, vme_swap_t, int, vme_size_t, vme_addr_t,
130 int, bus_dmamap_t *));
131 static int sparc_vme4_dmamap_load __P((bus_dma_tag_t, bus_dmamap_t, void *,
132 bus_size_t, struct proc *, int));
133 static void sparc_vme4_dmamap_unload __P((bus_dma_tag_t, bus_dmamap_t));
134 static void sparc_vme4_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t,
135 bus_addr_t, bus_size_t, int));
136 #endif
137
138 #if defined(SUN4M)
139 static int sparc_vct_iommu_dmamap_create __P((void *, vme_size_t, vme_am_t,
140 vme_datasize_t, vme_swap_t, int, vme_size_t, vme_addr_t,
141 int, bus_dmamap_t *));
142 static int sparc_vme_iommu_dmamap_create __P((bus_dma_tag_t, bus_size_t,
143 int, bus_size_t, bus_size_t, int, bus_dmamap_t *));
144
145 static int sparc_vme_iommu_dmamap_load __P((bus_dma_tag_t, bus_dmamap_t,
146 void *, bus_size_t, struct proc *, int));
147 static void sparc_vme_iommu_dmamap_unload __P((bus_dma_tag_t, bus_dmamap_t));
148 static void sparc_vme_iommu_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t,
149 bus_addr_t, bus_size_t, int));
150 #endif
151
152 static int sparc_vme_dmamem_map __P((bus_dma_tag_t, bus_dma_segment_t *,
153 int, size_t, caddr_t *, int));
154 #if 0
155 static void sparc_vme_dmamap_destroy __P((bus_dma_tag_t, bus_dmamap_t));
156 static void sparc_vme_dmamem_unmap __P((bus_dma_tag_t, caddr_t, size_t));
157 static paddr_t sparc_vme_dmamem_mmap __P((bus_dma_tag_t,
158 bus_dma_segment_t *, int, off_t, int, int));
159 #endif
160
161 int sparc_vme_mmap_cookie __P((vme_addr_t, vme_am_t, bus_space_handle_t *));
162
163 CFATTACH_DECL(vme_mainbus, sizeof(struct sparcvme_softc),
164 vmematch_mainbus, vmeattach_mainbus, NULL, NULL);
165
166 CFATTACH_DECL(vme_iommu, sizeof(struct sparcvme_softc),
167 vmematch_iommu, vmeattach_iommu, NULL, NULL);
168
169 int (*vmeerr_handler) __P((void));
170
171 #define VMEMOD_D32 0x40 /* ??? */
172
173 /* If the PROM does not provide the `ranges' property, we make up our own */
174 struct rom_range vmebus_translations[] = {
175 #define _DS (VME_AM_MBO | VME_AM_SUPER | VME_AM_DATA)
176 { VME_AM_A16|_DS, 0, PMAP_VME16, 0xffff0000, 0 },
177 { VME_AM_A24|_DS, 0, PMAP_VME16, 0xff000000, 0 },
178 { VME_AM_A32|_DS, 0, PMAP_VME16, 0x00000000, 0 },
179 { VME_AM_A16|VMEMOD_D32|_DS, 0, PMAP_VME32, 0xffff0000, 0 },
180 { VME_AM_A24|VMEMOD_D32|_DS, 0, PMAP_VME32, 0xff000000, 0 },
181 { VME_AM_A32|VMEMOD_D32|_DS, 0, PMAP_VME32, 0x00000000, 0 }
182 #undef _DS
183 };
184
185 /*
186 * The VME bus logic on sun4 machines maps DMA requests in the first MB
187 * of VME space to the last MB of DVMA space. `vme_dvmamap' is used
188 * for DVMA space allocations. The DMA addresses returned by
189 * bus_dmamap_load*() must be relocated by -VME4_DVMA_BASE.
190 */
191 struct extent *vme_dvmamap;
192
193 /*
194 * The VME hardware on the sun4m IOMMU maps the first 8MB of 32-bit
195 * VME space to the last 8MB of DVMA space and the first 1MB of
196 * 24-bit VME space to the first 1MB of the last 8MB of DVMA space
197 * (thus 24-bit VME space overlaps the first 1MB of of 32-bit space).
198 * The following constants define subregions in the IOMMU DVMA map
199 * for VME DVMA allocations. The DMA addresses returned by
200 * bus_dmamap_load*() must be relocated by -VME_IOMMU_DVMA_BASE.
201 */
202 #define VME_IOMMU_DVMA_BASE 0xff800000
203 #define VME_IOMMU_DVMA_AM24_BASE VME_IOMMU_DVMA_BASE
204 #define VME_IOMMU_DVMA_AM24_END 0xff900000
205 #define VME_IOMMU_DVMA_AM32_BASE VME_IOMMU_DVMA_BASE
206 #define VME_IOMMU_DVMA_AM32_END IOMMU_DVMA_END
207
208 struct sparc_bus_space_tag sparc_vme_bus_tag = {
209 NULL, /* cookie */
210 NULL, /* parent bus tag */
211 NULL, /* ranges */
212 0, /* nranges */
213 NULL, /* bus_map */
214 NULL, /* bus_unmap */
215 NULL, /* bus_subregion */
216 NULL, /* barrier */
217 NULL, /* mmap */
218 NULL, /* intr_establish */
219 #if __FULL_SPARC_BUS_SPACE
220 NULL, /* read_1 */
221 NULL, /* read_2 */
222 NULL, /* read_4 */
223 NULL, /* read_8 */
224 NULL, /* write_1 */
225 NULL, /* write_2 */
226 NULL, /* write_4 */
227 NULL /* write_8 */
228 #endif
229 };
230
231 struct vme_chipset_tag sparc_vme_chipset_tag = {
232 NULL,
233 sparc_vme_map,
234 sparc_vme_unmap,
235 sparc_vme_probe,
236 sparc_vme_intr_map,
237 sparc_vme_intr_evcnt,
238 sparc_vme_intr_establish,
239 sparc_vme_intr_disestablish,
240 0, 0, 0 /* bus specific DMA stuff */
241 };
242
243
244 #if defined(SUN4)
245 struct sparc_bus_dma_tag sparc_vme4_dma_tag = {
246 NULL, /* cookie */
247 _bus_dmamap_create,
248 _bus_dmamap_destroy,
249 sparc_vme4_dmamap_load,
250 _bus_dmamap_load_mbuf,
251 _bus_dmamap_load_uio,
252 _bus_dmamap_load_raw,
253 sparc_vme4_dmamap_unload,
254 sparc_vme4_dmamap_sync,
255
256 _bus_dmamem_alloc,
257 _bus_dmamem_free,
258 sparc_vme_dmamem_map,
259 _bus_dmamem_unmap,
260 _bus_dmamem_mmap
261 };
262 #endif
263
264 #if defined(SUN4M)
265 struct sparc_bus_dma_tag sparc_vme_iommu_dma_tag = {
266 NULL, /* cookie */
267 sparc_vme_iommu_dmamap_create,
268 _bus_dmamap_destroy,
269 sparc_vme_iommu_dmamap_load,
270 _bus_dmamap_load_mbuf,
271 _bus_dmamap_load_uio,
272 _bus_dmamap_load_raw,
273 sparc_vme_iommu_dmamap_unload,
274 sparc_vme_iommu_dmamap_sync,
275
276 _bus_dmamem_alloc,
277 _bus_dmamem_free,
278 sparc_vme_dmamem_map,
279 _bus_dmamem_unmap,
280 _bus_dmamem_mmap
281 };
282 #endif
283
284
285 int
286 vmematch_mainbus(parent, cf, aux)
287 struct device *parent;
288 struct cfdata *cf;
289 void *aux;
290 {
291 struct mainbus_attach_args *ma = aux;
292
293 if (!CPU_ISSUN4)
294 return (0);
295
296 return (strcmp("vme", ma->ma_name) == 0);
297 }
298
299 int
300 vmematch_iommu(parent, cf, aux)
301 struct device *parent;
302 struct cfdata *cf;
303 void *aux;
304 {
305 struct iommu_attach_args *ia = aux;
306
307 return (strcmp("vme", ia->iom_name) == 0);
308 }
309
310
311 void
312 vmeattach_mainbus(parent, self, aux)
313 struct device *parent, *self;
314 void *aux;
315 {
316 #if defined(SUN4)
317 struct mainbus_attach_args *ma = aux;
318 struct sparcvme_softc *sc = (struct sparcvme_softc *)self;
319 struct vmebus_attach_args vba;
320
321 if (self->dv_unit > 0) {
322 printf(" unsupported\n");
323 return;
324 }
325
326 sc->sc_bustag = ma->ma_bustag;
327 sc->sc_dmatag = ma->ma_dmatag;
328
329 /* VME interrupt entry point */
330 sc->sc_vmeintr = vmeintr4;
331
332 /*XXX*/ sparc_vme_chipset_tag.cookie = self;
333 /*XXX*/ sparc_vme_chipset_tag.vct_dmamap_create = sparc_vct4_dmamap_create;
334 /*XXX*/ sparc_vme_chipset_tag.vct_dmamap_destroy = sparc_vct_dmamap_destroy;
335 /*XXX*/ sparc_vme4_dma_tag._cookie = self;
336
337 #if 0
338 sparc_vme_bus_tag.parent = ma->ma_bustag;
339 vba.vba_bustag = &sparc_vme_bus_tag;
340 #endif
341 vba.va_vct = &sparc_vme_chipset_tag;
342 vba.va_bdt = &sparc_vme4_dma_tag;
343 vba.va_slaveconfig = 0;
344
345 /* Fall back to our own `range' construction */
346 sc->sc_range = vmebus_translations;
347 sc->sc_nrange =
348 sizeof(vmebus_translations)/sizeof(vmebus_translations[0]);
349
350 vme_dvmamap = extent_create("vmedvma", VME4_DVMA_BASE, VME4_DVMA_END,
351 M_DEVBUF, 0, 0, EX_NOWAIT);
352 if (vme_dvmamap == NULL)
353 panic("vme: unable to allocate DVMA map");
354
355 printf("\n");
356 (void)config_found(self, &vba, 0);
357
358 #endif
359 return;
360 }
361
362 /* sun4m vmebus */
363 void
364 vmeattach_iommu(parent, self, aux)
365 struct device *parent, *self;
366 void *aux;
367 {
368 #if defined(SUN4M)
369 struct sparcvme_softc *sc = (struct sparcvme_softc *)self;
370 struct iommu_attach_args *ia = aux;
371 struct vmebus_attach_args vba;
372 bus_space_handle_t bh;
373 int node;
374 int cline;
375
376 if (self->dv_unit > 0) {
377 printf(" unsupported\n");
378 return;
379 }
380
381 sc->sc_bustag = ia->iom_bustag;
382 sc->sc_dmatag = ia->iom_dmatag;
383
384 /* VME interrupt entry point */
385 sc->sc_vmeintr = vmeintr4m;
386
387 /*XXX*/ sparc_vme_chipset_tag.cookie = self;
388 /*XXX*/ sparc_vme_chipset_tag.vct_dmamap_create = sparc_vct_iommu_dmamap_create;
389 /*XXX*/ sparc_vme_chipset_tag.vct_dmamap_destroy = sparc_vct_dmamap_destroy;
390 /*XXX*/ sparc_vme_iommu_dma_tag._cookie = self;
391 sparc_vme_bus_tag.sparc_bus_barrier = sparc_vme_iommu_barrier;
392
393 #if 0
394 vba.vba_bustag = &sparc_vme_bus_tag;
395 #endif
396 vba.va_vct = &sparc_vme_chipset_tag;
397 vba.va_bdt = &sparc_vme_iommu_dma_tag;
398 vba.va_slaveconfig = 0;
399
400 node = ia->iom_node;
401
402 /*
403 * Map VME control space
404 */
405 if (ia->iom_nreg < 2) {
406 printf("%s: only %d register sets\n", self->dv_xname,
407 ia->iom_nreg);
408 return;
409 }
410
411 if (bus_space_map(ia->iom_bustag,
412 (bus_addr_t) BUS_ADDR(ia->iom_reg[0].oa_space,
413 ia->iom_reg[0].oa_base),
414 (bus_size_t)ia->iom_reg[0].oa_size,
415 BUS_SPACE_MAP_LINEAR,
416 &bh) != 0) {
417 panic("%s: can't map vmebusreg", self->dv_xname);
418 }
419 sc->sc_reg = (struct vmebusreg *)bh;
420
421 if (bus_space_map(ia->iom_bustag,
422 (bus_addr_t) BUS_ADDR(ia->iom_reg[1].oa_space,
423 ia->iom_reg[1].oa_base),
424 (bus_size_t)ia->iom_reg[1].oa_size,
425 BUS_SPACE_MAP_LINEAR,
426 &bh) != 0) {
427 panic("%s: can't map vmebusvec", self->dv_xname);
428 }
429 sc->sc_vec = (struct vmebusvec *)bh;
430
431 /*
432 * Map VME IO cache tags and flush control.
433 */
434 if (bus_space_map(ia->iom_bustag,
435 (bus_addr_t) BUS_ADDR(
436 ia->iom_reg[1].oa_space,
437 ia->iom_reg[1].oa_base + VME_IOC_TAGOFFSET),
438 VME_IOC_SIZE,
439 BUS_SPACE_MAP_LINEAR,
440 &bh) != 0) {
441 panic("%s: can't map IOC tags", self->dv_xname);
442 }
443 sc->sc_ioctags = (u_int32_t *)bh;
444
445 if (bus_space_map(ia->iom_bustag,
446 (bus_addr_t) BUS_ADDR(
447 ia->iom_reg[1].oa_space,
448 ia->iom_reg[1].oa_base + VME_IOC_FLUSHOFFSET),
449 VME_IOC_SIZE,
450 BUS_SPACE_MAP_LINEAR,
451 &bh) != 0) {
452 panic("%s: can't map IOC flush registers", self->dv_xname);
453 }
454 sc->sc_iocflush = (u_int32_t *)bh;
455
456 /*XXX*/ sparc_vme_bus_tag.cookie = sc->sc_reg;
457
458 /*
459 * Get "range" property.
460 */
461 if (PROM_getprop(node, "ranges", sizeof(struct rom_range),
462 &sc->sc_nrange, (void **)&sc->sc_range) != 0) {
463 panic("%s: can't get ranges property", self->dv_xname);
464 }
465
466 sparcvme_sc = sc;
467 vmeerr_handler = sparc_vme_error;
468
469 /*
470 * Invalidate all IO-cache entries.
471 */
472 for (cline = VME_IOC_SIZE/VME_IOC_LINESZ; cline > 0;) {
473 sc->sc_ioctags[--cline] = 0;
474 }
475
476 /* Enable IO-cache */
477 sc->sc_reg->vmebus_cr |= VMEBUS_CR_C;
478
479 printf(": version 0x%x\n",
480 sc->sc_reg->vmebus_cr & VMEBUS_CR_IMPL);
481
482 (void)config_found(self, &vba, 0);
483 #endif
484 }
485
486 #if defined(SUN4M)
487 static int
488 sparc_vme_error()
489 {
490 struct sparcvme_softc *sc = sparcvme_sc;
491 u_int32_t afsr, afpa;
492 char bits[64];
493
494 afsr = sc->sc_reg->vmebus_afsr;
495 afpa = sc->sc_reg->vmebus_afar;
496 printf("VME error:\n\tAFSR %s\n",
497 bitmask_snprintf(afsr, VMEBUS_AFSR_BITS, bits, sizeof(bits)));
498 printf("\taddress: 0x%x%x\n", afsr, afpa);
499 return (0);
500 }
501 #endif
502
503 int
504 vmebus_translate(sc, mod, addr, bap)
505 struct sparcvme_softc *sc;
506 vme_am_t mod;
507 vme_addr_t addr;
508 bus_addr_t *bap;
509 {
510 int i;
511
512 for (i = 0; i < sc->sc_nrange; i++) {
513 struct rom_range *rp = &sc->sc_range[i];
514
515 if (rp->cspace != mod)
516 continue;
517
518 /* We've found the connection to the parent bus */
519 *bap = BUS_ADDR(rp->pspace, rp->poffset + addr);
520 return (0);
521 }
522 return (ENOENT);
523 }
524
525 struct vmeprobe_myarg {
526 int (*cb) __P((void *, bus_space_tag_t, bus_space_handle_t));
527 void *cbarg;
528 bus_space_tag_t tag;
529 int res; /* backwards */
530 };
531
532 static int vmeprobe_mycb __P((void *, void *));
533 static int
534 vmeprobe_mycb(bh, arg)
535 void *bh, *arg;
536 {
537 struct vmeprobe_myarg *a = arg;
538
539 a->res = (*a->cb)(a->cbarg, a->tag, (bus_space_handle_t)bh);
540 return (!a->res);
541 }
542
543 int
544 sparc_vme_probe(cookie, addr, len, mod, datasize, callback, arg)
545 void *cookie;
546 vme_addr_t addr;
547 vme_size_t len;
548 vme_am_t mod;
549 vme_datasize_t datasize;
550 int (*callback) __P((void *, bus_space_tag_t, bus_space_handle_t));
551 void *arg;
552 {
553 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
554 bus_addr_t paddr;
555 bus_size_t size;
556 struct vmeprobe_myarg myarg;
557 int res, i;
558
559 if (vmebus_translate(sc, mod, addr, &paddr) != 0)
560 return (EINVAL);
561
562 size = (datasize == VME_D8 ? 1 : (datasize == VME_D16 ? 2 : 4));
563
564 if (callback) {
565 myarg.cb = callback;
566 myarg.cbarg = arg;
567 myarg.tag = sc->sc_bustag;
568 myarg.res = 0;
569 res = bus_space_probe(sc->sc_bustag, paddr, size, 0,
570 0, vmeprobe_mycb, &myarg);
571 return (res ? 0 : (myarg.res ? myarg.res : EIO));
572 }
573
574 for (i = 0; i < len / size; i++) {
575 myarg.res = 0;
576 res = bus_space_probe(sc->sc_bustag, paddr, size, 0,
577 0, 0, 0);
578 if (res == 0)
579 return (EIO);
580 paddr += size;
581 }
582 return (0);
583 }
584
585 int
586 sparc_vme_map(cookie, addr, size, mod, datasize, swap, tp, hp, rp)
587 void *cookie;
588 vme_addr_t addr;
589 vme_size_t size;
590 vme_am_t mod;
591 vme_datasize_t datasize;
592 vme_swap_t swap;
593 bus_space_tag_t *tp;
594 bus_space_handle_t *hp;
595 vme_mapresc_t *rp;
596 {
597 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
598 bus_addr_t paddr;
599 int error;
600
601 error = vmebus_translate(sc, mod, addr, &paddr);
602 if (error != 0)
603 return (error);
604
605 *tp = sc->sc_bustag;
606 return (bus_space_map(sc->sc_bustag, paddr, size, 0, hp));
607 }
608
609 int
610 sparc_vme_mmap_cookie(addr, mod, hp)
611 vme_addr_t addr;
612 vme_am_t mod;
613 bus_space_handle_t *hp;
614 {
615 struct sparcvme_softc *sc = sparcvme_sc;
616 bus_addr_t paddr;
617 int error;
618
619 error = vmebus_translate(sc, mod, addr, &paddr);
620 if (error != 0)
621 return (error);
622
623 return (bus_space_mmap(sc->sc_bustag, paddr, 0,
624 0/*prot is ignored*/, 0));
625 }
626
627 #if defined(SUN4M)
628 void
629 sparc_vme_iommu_barrier(t, h, offset, size, flags)
630 bus_space_tag_t t;
631 bus_space_handle_t h;
632 bus_size_t offset;
633 bus_size_t size;
634 int flags;
635 {
636 struct vmebusreg *vbp = (struct vmebusreg *)t->cookie;
637
638 /* Read async fault status to flush write-buffers */
639 (*(volatile int *)&vbp->vmebus_afsr);
640 }
641 #endif
642
643
644
645 /*
646 * VME Interrupt Priority Level to sparc Processor Interrupt Level.
647 */
648 static int vme_ipl_to_pil[] = {
649 0,
650 2,
651 3,
652 5,
653 7,
654 9,
655 11,
656 13
657 };
658
659
660 /*
661 * All VME device interrupts go through vmeintr(). This function reads
662 * the VME vector from the bus, then dispatches the device interrupt
663 * handler. All handlers for devices that map to the same Processor
664 * Interrupt Level (according to the table above) are on a linked list
665 * of `sparc_vme_intr_handle' structures. The head of which is passed
666 * down as the argument to `vmeintr(void *arg)'.
667 */
668 struct sparc_vme_intr_handle {
669 struct intrhand ih;
670 struct sparc_vme_intr_handle *next;
671 int vec; /* VME interrupt vector */
672 int pri; /* VME interrupt priority */
673 struct sparcvme_softc *sc;/*XXX*/
674 };
675
676 #if defined(SUN4)
677 int
678 vmeintr4(arg)
679 void *arg;
680 {
681 struct sparc_vme_intr_handle *ihp = (vme_intr_handle_t)arg;
682 int level, vec;
683 int rv = 0;
684
685 level = (ihp->pri << 1) | 1;
686
687 vec = ldcontrolb((caddr_t)(AC_VMEINTVEC | level));
688
689 if (vec == -1) {
690 #ifdef DEBUG
691 /*
692 * This seems to happen only with the i82586 based
693 * `ie1' boards.
694 */
695 printf("vme: spurious interrupt at VME level %d\n", ihp->pri);
696 #endif
697 return (1); /* XXX - pretend we handled it, for now */
698 }
699
700 for (; ihp; ihp = ihp->next)
701 if (ihp->vec == vec && ihp->ih.ih_fun) {
702 splx(ihp->ih.ih_classipl);
703 rv |= (ihp->ih.ih_fun)(ihp->ih.ih_arg);
704 }
705
706 return (rv);
707 }
708 #endif
709
710 #if defined(SUN4M)
711 int
712 vmeintr4m(arg)
713 void *arg;
714 {
715 struct sparc_vme_intr_handle *ihp = (vme_intr_handle_t)arg;
716 int level, vec;
717 int rv = 0;
718
719 level = (ihp->pri << 1) | 1;
720
721 #if 0
722 int pending;
723
724 /* Flush VME <=> Sbus write buffers */
725 (*(volatile int *)&ihp->sc->sc_reg->vmebus_afsr);
726
727 pending = *((int*)ICR_SI_PEND);
728 if ((pending & SINTR_VME(ihp->pri)) == 0) {
729 printf("vmeintr: non pending at pri %x(p 0x%x)\n",
730 ihp->pri, pending);
731 return (0);
732 }
733 #endif
734 #if 0
735 /* Why gives this a bus timeout sometimes? */
736 vec = ihp->sc->sc_vec->vmebusvec[level];
737 #else
738 /* so, arrange to catch the fault... */
739 {
740 extern struct user *proc0paddr;
741 extern int fkbyte __P((caddr_t, struct pcb *));
742 caddr_t addr = (caddr_t)&ihp->sc->sc_vec->vmebusvec[level];
743 struct pcb *xpcb;
744 u_long saveonfault;
745 int s;
746
747 s = splhigh();
748 if (curlwp == NULL)
749 xpcb = (struct pcb *)proc0paddr;
750 else
751 xpcb = &curlwp->l_addr->u_pcb;
752
753 saveonfault = (u_long)xpcb->pcb_onfault;
754 vec = fkbyte(addr, xpcb);
755 xpcb->pcb_onfault = (caddr_t)saveonfault;
756
757 splx(s);
758 }
759 #endif
760
761 if (vec == -1) {
762 #ifdef DEBUG
763 /*
764 * This seems to happen only with the i82586 based
765 * `ie1' boards.
766 */
767 printf("vme: spurious interrupt at VME level %d\n", ihp->pri);
768 printf(" ICR_SI_PEND=0x%x; VME AFSR=0x%x; VME AFAR=0x%x\n",
769 *((int*)ICR_SI_PEND),
770 ihp->sc->sc_reg->vmebus_afsr,
771 ihp->sc->sc_reg->vmebus_afar);
772 #endif
773 return (1); /* XXX - pretend we handled it, for now */
774 }
775
776 for (; ihp; ihp = ihp->next)
777 if (ihp->vec == vec && ihp->ih.ih_fun) {
778 splx(ihp->ih.ih_classipl);
779 rv |= (ihp->ih.ih_fun)(ihp->ih.ih_arg);
780 }
781
782 return (rv);
783 }
784 #endif
785
786 int
787 sparc_vme_intr_map(cookie, level, vec, ihp)
788 void *cookie;
789 int level;
790 int vec;
791 vme_intr_handle_t *ihp;
792 {
793 struct sparc_vme_intr_handle *ih;
794
795 ih = (vme_intr_handle_t)
796 malloc(sizeof(struct sparc_vme_intr_handle), M_DEVBUF, M_NOWAIT);
797 ih->pri = level;
798 ih->vec = vec;
799 ih->sc = cookie;/*XXX*/
800 *ihp = ih;
801 return (0);
802 }
803
804 const struct evcnt *
805 sparc_vme_intr_evcnt(cookie, vih)
806 void *cookie;
807 vme_intr_handle_t vih;
808 {
809
810 /* XXX for now, no evcnt parent reported */
811 return NULL;
812 }
813
814 void *
815 sparc_vme_intr_establish(cookie, vih, level, func, arg)
816 void *cookie;
817 vme_intr_handle_t vih;
818 int level;
819 int (*func) __P((void *));
820 void *arg;
821 {
822 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
823 struct sparc_vme_intr_handle *svih =
824 (struct sparc_vme_intr_handle *)vih;
825 struct intrhand *ih;
826 int pil;
827
828 /* Translate VME priority to processor IPL */
829 pil = vme_ipl_to_pil[svih->pri];
830
831 if (level < pil)
832 panic("vme_intr_establish: class lvl (%d) < pil (%d)\n",
833 level, pil);
834
835 svih->ih.ih_fun = func;
836 svih->ih.ih_arg = arg;
837 svih->ih.ih_classipl = level; /* note: used slightly differently
838 than in intr.c (no shift) */
839 svih->next = NULL;
840
841 /* ensure the interrupt subsystem will call us at this level */
842 for (ih = intrhand[pil]; ih != NULL; ih = ih->ih_next)
843 if (ih->ih_fun == sc->sc_vmeintr)
844 break;
845
846 if (ih == NULL) {
847 ih = (struct intrhand *)
848 malloc(sizeof(struct intrhand), M_DEVBUF, M_NOWAIT);
849 if (ih == NULL)
850 panic("vme_addirq");
851 bzero(ih, sizeof *ih);
852 ih->ih_fun = sc->sc_vmeintr;
853 ih->ih_arg = vih;
854 intr_establish(pil, 0, ih, NULL);
855 } else {
856 svih->next = (vme_intr_handle_t)ih->ih_arg;
857 ih->ih_arg = vih;
858 }
859 return (NULL);
860 }
861
862 void
863 sparc_vme_unmap(cookie, resc)
864 void * cookie;
865 vme_mapresc_t resc;
866 {
867 /* Not implemented */
868 panic("sparc_vme_unmap");
869 }
870
871 void
872 sparc_vme_intr_disestablish(cookie, a)
873 void *cookie;
874 void *a;
875 {
876 /* Not implemented */
877 panic("sparc_vme_intr_disestablish");
878 }
879
880
881
882 /*
883 * VME DMA functions.
884 */
885
886 static void
887 sparc_vct_dmamap_destroy(cookie, map)
888 void *cookie;
889 bus_dmamap_t map;
890 {
891 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
892 bus_dmamap_destroy(sc->sc_dmatag, map);
893 }
894
895 #if defined(SUN4)
896 static int
897 sparc_vct4_dmamap_create(cookie, size, am, datasize, swap, nsegments, maxsegsz,
898 boundary, flags, dmamp)
899 void *cookie;
900 vme_size_t size;
901 vme_am_t am;
902 vme_datasize_t datasize;
903 vme_swap_t swap;
904 int nsegments;
905 vme_size_t maxsegsz;
906 vme_addr_t boundary;
907 int flags;
908 bus_dmamap_t *dmamp;
909 {
910 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
911
912 /* Allocate a base map through parent bus ops */
913 return (bus_dmamap_create(sc->sc_dmatag, size, nsegments, maxsegsz,
914 boundary, flags, dmamp));
915 }
916
917 int
918 sparc_vme4_dmamap_load(t, map, buf, buflen, p, flags)
919 bus_dma_tag_t t;
920 bus_dmamap_t map;
921 void *buf;
922 bus_size_t buflen;
923 struct proc *p;
924 int flags;
925 {
926 bus_addr_t dva;
927 bus_size_t sgsize;
928 vaddr_t va, voff;
929 pmap_t pmap;
930 int pagesz = PAGE_SIZE;
931 int error;
932
933 cache_flush(buf, buflen); /* XXX - move to bus_dma_sync */
934
935 va = (vaddr_t)buf;
936 voff = va & (pagesz - 1);
937 va &= -pagesz;
938
939 /*
940 * Allocate an integral number of pages from DVMA space
941 * covering the passed buffer.
942 */
943 sgsize = (buflen + voff + pagesz - 1) & -pagesz;
944 error = extent_alloc(vme_dvmamap, sgsize, pagesz,
945 map->_dm_boundary,
946 (flags & BUS_DMA_NOWAIT) == 0
947 ? EX_WAITOK
948 : EX_NOWAIT,
949 (u_long *)&dva);
950 if (error != 0)
951 return (error);
952
953 map->dm_mapsize = buflen;
954 map->dm_nsegs = 1;
955 /* Adjust DVMA address to VME view */
956 map->dm_segs[0].ds_addr = dva + voff - VME4_DVMA_BASE;
957 map->dm_segs[0].ds_len = buflen;
958 map->dm_segs[0]._ds_sgsize = sgsize;
959
960 pmap = (p == NULL) ? pmap_kernel() : p->p_vmspace->vm_map.pmap;
961
962 for (; sgsize != 0; ) {
963 paddr_t pa;
964 /*
965 * Get the physical address for this page.
966 */
967 (void) pmap_extract(pmap, va, &pa);
968
969 #ifdef notyet
970 if (have_iocache)
971 pa |= PG_IOC;
972 #endif
973 pmap_enter(pmap_kernel(), dva,
974 pa | PMAP_NC,
975 VM_PROT_READ|VM_PROT_WRITE, PMAP_WIRED);
976
977 dva += pagesz;
978 va += pagesz;
979 sgsize -= pagesz;
980 }
981 pmap_update(pmap_kernel());
982
983 return (0);
984 }
985
986 void
987 sparc_vme4_dmamap_unload(t, map)
988 bus_dma_tag_t t;
989 bus_dmamap_t map;
990 {
991 bus_dma_segment_t *segs = map->dm_segs;
992 int nsegs = map->dm_nsegs;
993 bus_addr_t dva;
994 bus_size_t len;
995 int i, s, error;
996
997 for (i = 0; i < nsegs; i++) {
998 /* Go from VME to CPU view */
999 dva = segs[i].ds_addr + VME4_DVMA_BASE;
1000 dva &= -PAGE_SIZE;
1001 len = segs[i]._ds_sgsize;
1002
1003 /* Remove double-mapping in DVMA space */
1004 pmap_remove(pmap_kernel(), dva, dva + len);
1005
1006 /* Release DVMA space */
1007 s = splhigh();
1008 error = extent_free(vme_dvmamap, dva, len, EX_NOWAIT);
1009 splx(s);
1010 if (error != 0)
1011 printf("warning: %ld of DVMA space lost\n", len);
1012 }
1013 pmap_update(pmap_kernel());
1014
1015 /* Mark the mappings as invalid. */
1016 map->dm_mapsize = 0;
1017 map->dm_nsegs = 0;
1018 }
1019
1020 void
1021 sparc_vme4_dmamap_sync(t, map, offset, len, ops)
1022 bus_dma_tag_t t;
1023 bus_dmamap_t map;
1024 bus_addr_t offset;
1025 bus_size_t len;
1026 int ops;
1027 {
1028
1029 /*
1030 * XXX Should perform cache flushes as necessary (e.g. 4/200 W/B).
1031 * Currently the cache is flushed in bus_dma_load()...
1032 */
1033 }
1034 #endif /* SUN4 */
1035
1036 #if defined(SUN4M)
1037 static int
1038 sparc_vme_iommu_dmamap_create (t, size, nsegments, maxsegsz,
1039 boundary, flags, dmamp)
1040 bus_dma_tag_t t;
1041 bus_size_t size;
1042 int nsegments;
1043 bus_size_t maxsegsz;
1044 bus_size_t boundary;
1045 int flags;
1046 bus_dmamap_t *dmamp;
1047 {
1048
1049 printf("sparc_vme_dmamap_create: please use `vme_dmamap_create'\n");
1050 return (EINVAL);
1051 }
1052
1053 static int
1054 sparc_vct_iommu_dmamap_create(cookie, size, am, datasize, swap, nsegments,
1055 maxsegsz, boundary, flags, dmamp)
1056 void *cookie;
1057 vme_size_t size;
1058 vme_am_t am;
1059 vme_datasize_t datasize;
1060 vme_swap_t swap;
1061 int nsegments;
1062 vme_size_t maxsegsz;
1063 vme_addr_t boundary;
1064 int flags;
1065 bus_dmamap_t *dmamp;
1066 {
1067 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
1068 bus_dmamap_t map;
1069 int error;
1070
1071 /* Allocate a base map through parent bus ops */
1072 error = bus_dmamap_create(sc->sc_dmatag, size, nsegments, maxsegsz,
1073 boundary, flags, &map);
1074 if (error != 0)
1075 return (error);
1076
1077 /*
1078 * Each I/O cache line maps to a 8K section of VME DVMA space, so
1079 * we must ensure that DVMA alloctions are always 8K aligned.
1080 */
1081 map->_dm_align = VME_IOC_PAGESZ;
1082
1083 /* Set map region based on Address Modifier */
1084 switch ((am & VME_AM_ADRSIZEMASK)) {
1085 case VME_AM_A16:
1086 case VME_AM_A24:
1087 /* 1 MB of DVMA space */
1088 map->_dm_ex_start = VME_IOMMU_DVMA_AM24_BASE;
1089 map->_dm_ex_end = VME_IOMMU_DVMA_AM24_END;
1090 break;
1091 case VME_AM_A32:
1092 /* 8 MB of DVMA space */
1093 map->_dm_ex_start = VME_IOMMU_DVMA_AM32_BASE;
1094 map->_dm_ex_end = VME_IOMMU_DVMA_AM32_END;
1095 break;
1096 }
1097
1098 *dmamp = map;
1099 return (0);
1100 }
1101
1102 int
1103 sparc_vme_iommu_dmamap_load(t, map, buf, buflen, p, flags)
1104 bus_dma_tag_t t;
1105 bus_dmamap_t map;
1106 void *buf;
1107 bus_size_t buflen;
1108 struct proc *p;
1109 int flags;
1110 {
1111 struct sparcvme_softc *sc = (struct sparcvme_softc *)t->_cookie;
1112 volatile u_int32_t *ioctags;
1113 int error;
1114
1115 /* Round request to a multiple of the I/O cache size */
1116 buflen = (buflen + VME_IOC_PAGESZ - 1) & -VME_IOC_PAGESZ;
1117 error = bus_dmamap_load(sc->sc_dmatag, map, buf, buflen, p, flags);
1118 if (error != 0)
1119 return (error);
1120
1121 /* Allocate I/O cache entries for this range */
1122 ioctags = sc->sc_ioctags + VME_IOC_LINE(map->dm_segs[0].ds_addr);
1123 while (buflen > 0) {
1124 *ioctags = VME_IOC_IC | VME_IOC_W;
1125 ioctags += VME_IOC_LINESZ/sizeof(*ioctags);
1126 buflen -= VME_IOC_PAGESZ;
1127 }
1128
1129 /*
1130 * Adjust DVMA address to VME view.
1131 * Note: the DVMA base address is the same for all
1132 * VME address spaces.
1133 */
1134 map->dm_segs[0].ds_addr -= VME_IOMMU_DVMA_BASE;
1135 return (0);
1136 }
1137
1138
1139 void
1140 sparc_vme_iommu_dmamap_unload(t, map)
1141 bus_dma_tag_t t;
1142 bus_dmamap_t map;
1143 {
1144 struct sparcvme_softc *sc = (struct sparcvme_softc *)t->_cookie;
1145 volatile u_int32_t *flushregs;
1146 int len;
1147
1148 /* Go from VME to CPU view */
1149 map->dm_segs[0].ds_addr += VME_IOMMU_DVMA_BASE;
1150
1151 /* Flush VME I/O cache */
1152 len = map->dm_segs[0]._ds_sgsize;
1153 flushregs = sc->sc_iocflush + VME_IOC_LINE(map->dm_segs[0].ds_addr);
1154 while (len > 0) {
1155 *flushregs = 0;
1156 flushregs += VME_IOC_LINESZ/sizeof(*flushregs);
1157 len -= VME_IOC_PAGESZ;
1158 }
1159
1160 /*
1161 * Start a read from `tag space' which will not complete until
1162 * all cache flushes have finished
1163 */
1164 (*sc->sc_ioctags);
1165
1166 bus_dmamap_unload(sc->sc_dmatag, map);
1167 }
1168
1169 void
1170 sparc_vme_iommu_dmamap_sync(t, map, offset, len, ops)
1171 bus_dma_tag_t t;
1172 bus_dmamap_t map;
1173 bus_addr_t offset;
1174 bus_size_t len;
1175 int ops;
1176 {
1177
1178 /*
1179 * XXX Should perform cache flushes as necessary.
1180 */
1181 }
1182 #endif /* SUN4M */
1183
1184 int
1185 sparc_vme_dmamem_map(t, segs, nsegs, size, kvap, flags)
1186 bus_dma_tag_t t;
1187 bus_dma_segment_t *segs;
1188 int nsegs;
1189 size_t size;
1190 caddr_t *kvap;
1191 int flags;
1192 {
1193 struct sparcvme_softc *sc = (struct sparcvme_softc *)t->_cookie;
1194
1195 return (bus_dmamem_map(sc->sc_dmatag, segs, nsegs, size, kvap, flags));
1196 }
1197