vme_machdep.c revision 1.50 1 /* $NetBSD: vme_machdep.c,v 1.50 2004/06/27 16:08:42 pk Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: vme_machdep.c,v 1.50 2004/06/27 16:08:42 pk Exp $");
41
42 #include <sys/param.h>
43 #include <sys/extent.h>
44 #include <sys/systm.h>
45 #include <sys/device.h>
46 #include <sys/malloc.h>
47 #include <sys/errno.h>
48
49 #include <sys/proc.h>
50 #include <sys/user.h>
51 #include <sys/syslog.h>
52
53 #include <uvm/uvm_extern.h>
54
55 #define _SPARC_BUS_DMA_PRIVATE
56 #include <machine/bus.h>
57 #include <sparc/sparc/iommuvar.h>
58 #include <machine/autoconf.h>
59 #include <machine/oldmon.h>
60 #include <machine/cpu.h>
61 #include <machine/ctlreg.h>
62
63 #include <dev/vme/vmereg.h>
64 #include <dev/vme/vmevar.h>
65
66 #include <sparc/sparc/asm.h>
67 #include <sparc/sparc/vaddrs.h>
68 #include <sparc/sparc/cpuvar.h>
69 #include <sparc/dev/vmereg.h>
70
71 struct sparcvme_softc {
72 struct device sc_dev; /* base device */
73 bus_space_tag_t sc_bustag;
74 bus_dma_tag_t sc_dmatag;
75 struct vmebusreg *sc_reg; /* VME control registers */
76 struct vmebusvec *sc_vec; /* VME interrupt vector */
77 struct rom_range *sc_range; /* ROM range property */
78 int sc_nrange;
79 volatile u_int32_t *sc_ioctags; /* VME IO-cache tag registers */
80 volatile u_int32_t *sc_iocflush;/* VME IO-cache flush registers */
81 int (*sc_vmeintr) __P((void *));
82 };
83 struct sparcvme_softc *sparcvme_sc;/*XXX*/
84
85 /* autoconfiguration driver */
86 static int vmematch_iommu __P((struct device *, struct cfdata *, void *));
87 static void vmeattach_iommu __P((struct device *, struct device *, void *));
88 static int vmematch_mainbus __P((struct device *, struct cfdata *, void *));
89 static void vmeattach_mainbus __P((struct device *, struct device *, void *));
90 #if defined(SUN4)
91 int vmeintr4 __P((void *));
92 #endif
93 #if defined(SUN4M)
94 int vmeintr4m __P((void *));
95 static int sparc_vme_error __P((void));
96 #endif
97
98
99 static int sparc_vme_probe __P((void *, vme_addr_t, vme_size_t,
100 vme_am_t, vme_datasize_t,
101 int (*) __P((void *, bus_space_tag_t, bus_space_handle_t)), void *));
102 static int sparc_vme_map __P((void *, vme_addr_t, vme_size_t, vme_am_t,
103 vme_datasize_t, vme_swap_t,
104 bus_space_tag_t *, bus_space_handle_t *,
105 vme_mapresc_t *));
106 static void sparc_vme_unmap __P((void *, vme_mapresc_t));
107 static int sparc_vme_intr_map __P((void *, int, int, vme_intr_handle_t *));
108 static const struct evcnt *sparc_vme_intr_evcnt __P((void *,
109 vme_intr_handle_t));
110 static void * sparc_vme_intr_establish __P((void *, vme_intr_handle_t, int,
111 int (*) __P((void *)), void *));
112 static void sparc_vme_intr_disestablish __P((void *, void *));
113
114 static int vmebus_translate __P((struct sparcvme_softc *, vme_am_t,
115 vme_addr_t, bus_addr_t *));
116 #ifdef notyet
117 #if defined(SUN4M)
118 static void sparc_vme_iommu_barrier __P(( bus_space_tag_t, bus_space_handle_t,
119 bus_size_t, bus_size_t, int));
120
121 #endif /* SUN4M */
122 #endif
123
124 /*
125 * DMA functions.
126 */
127 #if defined(SUN4) || defined(SUN4M)
128 static void sparc_vct_dmamap_destroy __P((void *, bus_dmamap_t));
129 #endif
130
131 #if defined(SUN4)
132 static int sparc_vct4_dmamap_create __P((void *, vme_size_t, vme_am_t,
133 vme_datasize_t, vme_swap_t, int, vme_size_t, vme_addr_t,
134 int, bus_dmamap_t *));
135 static int sparc_vme4_dmamap_load __P((bus_dma_tag_t, bus_dmamap_t, void *,
136 bus_size_t, struct proc *, int));
137 static void sparc_vme4_dmamap_unload __P((bus_dma_tag_t, bus_dmamap_t));
138 static void sparc_vme4_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t,
139 bus_addr_t, bus_size_t, int));
140 #endif /* SUN4 */
141
142 #if defined(SUN4M)
143 static int sparc_vct_iommu_dmamap_create __P((void *, vme_size_t, vme_am_t,
144 vme_datasize_t, vme_swap_t, int, vme_size_t, vme_addr_t,
145 int, bus_dmamap_t *));
146 static int sparc_vme_iommu_dmamap_create __P((bus_dma_tag_t, bus_size_t,
147 int, bus_size_t, bus_size_t, int, bus_dmamap_t *));
148
149 static int sparc_vme_iommu_dmamap_load __P((bus_dma_tag_t, bus_dmamap_t,
150 void *, bus_size_t, struct proc *, int));
151 static void sparc_vme_iommu_dmamap_unload __P((bus_dma_tag_t, bus_dmamap_t));
152 static void sparc_vme_iommu_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t,
153 bus_addr_t, bus_size_t, int));
154 #endif /* SUN4M */
155
156 #if defined(SUN4) || defined(SUN4M)
157 static int sparc_vme_dmamem_map __P((bus_dma_tag_t, bus_dma_segment_t *,
158 int, size_t, caddr_t *, int));
159 #endif
160
161 #if 0
162 static void sparc_vme_dmamap_destroy __P((bus_dma_tag_t, bus_dmamap_t));
163 static void sparc_vme_dmamem_unmap __P((bus_dma_tag_t, caddr_t, size_t));
164 static paddr_t sparc_vme_dmamem_mmap __P((bus_dma_tag_t,
165 bus_dma_segment_t *, int, off_t, int, int));
166 #endif
167
168 int sparc_vme_mmap_cookie __P((vme_addr_t, vme_am_t, bus_space_handle_t *));
169
170 CFATTACH_DECL(vme_mainbus, sizeof(struct sparcvme_softc),
171 vmematch_mainbus, vmeattach_mainbus, NULL, NULL);
172
173 CFATTACH_DECL(vme_iommu, sizeof(struct sparcvme_softc),
174 vmematch_iommu, vmeattach_iommu, NULL, NULL);
175
176 int (*vmeerr_handler) __P((void));
177
178 #define VMEMOD_D32 0x40 /* ??? */
179
180 /* If the PROM does not provide the `ranges' property, we make up our own */
181 struct rom_range vmebus_translations[] = {
182 #define _DS (VME_AM_MBO | VME_AM_SUPER | VME_AM_DATA)
183 { VME_AM_A16|_DS, 0, PMAP_VME16, 0xffff0000, 0 },
184 { VME_AM_A24|_DS, 0, PMAP_VME16, 0xff000000, 0 },
185 { VME_AM_A32|_DS, 0, PMAP_VME16, 0x00000000, 0 },
186 { VME_AM_A16|VMEMOD_D32|_DS, 0, PMAP_VME32, 0xffff0000, 0 },
187 { VME_AM_A24|VMEMOD_D32|_DS, 0, PMAP_VME32, 0xff000000, 0 },
188 { VME_AM_A32|VMEMOD_D32|_DS, 0, PMAP_VME32, 0x00000000, 0 }
189 #undef _DS
190 };
191
192 /*
193 * The VME bus logic on sun4 machines maps DMA requests in the first MB
194 * of VME space to the last MB of DVMA space. `vme_dvmamap' is used
195 * for DVMA space allocations. The DMA addresses returned by
196 * bus_dmamap_load*() must be relocated by -VME4_DVMA_BASE.
197 */
198 struct extent *vme_dvmamap;
199
200 /*
201 * The VME hardware on the sun4m IOMMU maps the first 8MB of 32-bit
202 * VME space to the last 8MB of DVMA space and the first 1MB of
203 * 24-bit VME space to the first 1MB of the last 8MB of DVMA space
204 * (thus 24-bit VME space overlaps the first 1MB of of 32-bit space).
205 * The following constants define subregions in the IOMMU DVMA map
206 * for VME DVMA allocations. The DMA addresses returned by
207 * bus_dmamap_load*() must be relocated by -VME_IOMMU_DVMA_BASE.
208 */
209 #define VME_IOMMU_DVMA_BASE 0xff800000
210 #define VME_IOMMU_DVMA_AM24_BASE VME_IOMMU_DVMA_BASE
211 #define VME_IOMMU_DVMA_AM24_END 0xff900000
212 #define VME_IOMMU_DVMA_AM32_BASE VME_IOMMU_DVMA_BASE
213 #define VME_IOMMU_DVMA_AM32_END IOMMU_DVMA_END
214
215 struct vme_chipset_tag sparc_vme_chipset_tag = {
216 NULL,
217 sparc_vme_map,
218 sparc_vme_unmap,
219 sparc_vme_probe,
220 sparc_vme_intr_map,
221 sparc_vme_intr_evcnt,
222 sparc_vme_intr_establish,
223 sparc_vme_intr_disestablish,
224 0, 0, 0 /* bus specific DMA stuff */
225 };
226
227
228 #if defined(SUN4)
229 struct sparc_bus_dma_tag sparc_vme4_dma_tag = {
230 NULL, /* cookie */
231 _bus_dmamap_create,
232 _bus_dmamap_destroy,
233 sparc_vme4_dmamap_load,
234 _bus_dmamap_load_mbuf,
235 _bus_dmamap_load_uio,
236 _bus_dmamap_load_raw,
237 sparc_vme4_dmamap_unload,
238 sparc_vme4_dmamap_sync,
239
240 _bus_dmamem_alloc,
241 _bus_dmamem_free,
242 sparc_vme_dmamem_map,
243 _bus_dmamem_unmap,
244 _bus_dmamem_mmap
245 };
246 #endif
247
248 #if defined(SUN4M)
249 struct sparc_bus_dma_tag sparc_vme_iommu_dma_tag = {
250 NULL, /* cookie */
251 sparc_vme_iommu_dmamap_create,
252 _bus_dmamap_destroy,
253 sparc_vme_iommu_dmamap_load,
254 _bus_dmamap_load_mbuf,
255 _bus_dmamap_load_uio,
256 _bus_dmamap_load_raw,
257 sparc_vme_iommu_dmamap_unload,
258 sparc_vme_iommu_dmamap_sync,
259
260 _bus_dmamem_alloc,
261 _bus_dmamem_free,
262 sparc_vme_dmamem_map,
263 _bus_dmamem_unmap,
264 _bus_dmamem_mmap
265 };
266 #endif
267
268
269 int
270 vmematch_mainbus(parent, cf, aux)
271 struct device *parent;
272 struct cfdata *cf;
273 void *aux;
274 {
275 struct mainbus_attach_args *ma = aux;
276
277 if (!CPU_ISSUN4)
278 return (0);
279
280 return (strcmp("vme", ma->ma_name) == 0);
281 }
282
283 int
284 vmematch_iommu(parent, cf, aux)
285 struct device *parent;
286 struct cfdata *cf;
287 void *aux;
288 {
289 struct iommu_attach_args *ia = aux;
290
291 return (strcmp("vme", ia->iom_name) == 0);
292 }
293
294
295 void
296 vmeattach_mainbus(parent, self, aux)
297 struct device *parent, *self;
298 void *aux;
299 {
300 #if defined(SUN4)
301 struct mainbus_attach_args *ma = aux;
302 struct sparcvme_softc *sc = (struct sparcvme_softc *)self;
303 struct vmebus_attach_args vba;
304
305 if (self->dv_unit > 0) {
306 printf(" unsupported\n");
307 return;
308 }
309
310 sc->sc_bustag = ma->ma_bustag;
311 sc->sc_dmatag = ma->ma_dmatag;
312
313 /* VME interrupt entry point */
314 sc->sc_vmeintr = vmeintr4;
315
316 /*XXX*/ sparc_vme_chipset_tag.cookie = self;
317 /*XXX*/ sparc_vme_chipset_tag.vct_dmamap_create = sparc_vct4_dmamap_create;
318 /*XXX*/ sparc_vme_chipset_tag.vct_dmamap_destroy = sparc_vct_dmamap_destroy;
319 /*XXX*/ sparc_vme4_dma_tag._cookie = self;
320
321 vba.va_vct = &sparc_vme_chipset_tag;
322 vba.va_bdt = &sparc_vme4_dma_tag;
323 vba.va_slaveconfig = 0;
324
325 /* Fall back to our own `range' construction */
326 sc->sc_range = vmebus_translations;
327 sc->sc_nrange =
328 sizeof(vmebus_translations)/sizeof(vmebus_translations[0]);
329
330 vme_dvmamap = extent_create("vmedvma", VME4_DVMA_BASE, VME4_DVMA_END,
331 M_DEVBUF, 0, 0, EX_NOWAIT);
332 if (vme_dvmamap == NULL)
333 panic("vme: unable to allocate DVMA map");
334
335 printf("\n");
336 (void)config_found(self, &vba, 0);
337
338 #endif
339 return;
340 }
341
342 /* sun4m vmebus */
343 void
344 vmeattach_iommu(parent, self, aux)
345 struct device *parent, *self;
346 void *aux;
347 {
348 #if defined(SUN4M)
349 struct sparcvme_softc *sc = (struct sparcvme_softc *)self;
350 struct iommu_attach_args *ia = aux;
351 struct vmebus_attach_args vba;
352 bus_space_handle_t bh;
353 int node;
354 int cline;
355
356 if (self->dv_unit > 0) {
357 printf(" unsupported\n");
358 return;
359 }
360
361 sc->sc_bustag = ia->iom_bustag;
362 sc->sc_dmatag = ia->iom_dmatag;
363
364 /* VME interrupt entry point */
365 sc->sc_vmeintr = vmeintr4m;
366
367 /*XXX*/ sparc_vme_chipset_tag.cookie = self;
368 /*XXX*/ sparc_vme_chipset_tag.vct_dmamap_create = sparc_vct_iommu_dmamap_create;
369 /*XXX*/ sparc_vme_chipset_tag.vct_dmamap_destroy = sparc_vct_dmamap_destroy;
370 /*XXX*/ sparc_vme_iommu_dma_tag._cookie = self;
371
372 vba.va_vct = &sparc_vme_chipset_tag;
373 vba.va_bdt = &sparc_vme_iommu_dma_tag;
374 vba.va_slaveconfig = 0;
375
376 node = ia->iom_node;
377
378 /*
379 * Map VME control space
380 */
381 if (ia->iom_nreg < 2) {
382 printf("%s: only %d register sets\n", self->dv_xname,
383 ia->iom_nreg);
384 return;
385 }
386
387 if (bus_space_map(ia->iom_bustag,
388 (bus_addr_t) BUS_ADDR(ia->iom_reg[0].oa_space,
389 ia->iom_reg[0].oa_base),
390 (bus_size_t)ia->iom_reg[0].oa_size,
391 BUS_SPACE_MAP_LINEAR,
392 &bh) != 0) {
393 panic("%s: can't map vmebusreg", self->dv_xname);
394 }
395 sc->sc_reg = (struct vmebusreg *)bh;
396
397 if (bus_space_map(ia->iom_bustag,
398 (bus_addr_t) BUS_ADDR(ia->iom_reg[1].oa_space,
399 ia->iom_reg[1].oa_base),
400 (bus_size_t)ia->iom_reg[1].oa_size,
401 BUS_SPACE_MAP_LINEAR,
402 &bh) != 0) {
403 panic("%s: can't map vmebusvec", self->dv_xname);
404 }
405 sc->sc_vec = (struct vmebusvec *)bh;
406
407 /*
408 * Map VME IO cache tags and flush control.
409 */
410 if (bus_space_map(ia->iom_bustag,
411 (bus_addr_t) BUS_ADDR(
412 ia->iom_reg[1].oa_space,
413 ia->iom_reg[1].oa_base + VME_IOC_TAGOFFSET),
414 VME_IOC_SIZE,
415 BUS_SPACE_MAP_LINEAR,
416 &bh) != 0) {
417 panic("%s: can't map IOC tags", self->dv_xname);
418 }
419 sc->sc_ioctags = (u_int32_t *)bh;
420
421 if (bus_space_map(ia->iom_bustag,
422 (bus_addr_t) BUS_ADDR(
423 ia->iom_reg[1].oa_space,
424 ia->iom_reg[1].oa_base + VME_IOC_FLUSHOFFSET),
425 VME_IOC_SIZE,
426 BUS_SPACE_MAP_LINEAR,
427 &bh) != 0) {
428 panic("%s: can't map IOC flush registers", self->dv_xname);
429 }
430 sc->sc_iocflush = (u_int32_t *)bh;
431
432 /*
433 * Get "range" property.
434 */
435 if (prom_getprop(node, "ranges", sizeof(struct rom_range),
436 &sc->sc_nrange, &sc->sc_range) != 0) {
437 panic("%s: can't get ranges property", self->dv_xname);
438 }
439
440 sparcvme_sc = sc;
441 vmeerr_handler = sparc_vme_error;
442
443 /*
444 * Invalidate all IO-cache entries.
445 */
446 for (cline = VME_IOC_SIZE/VME_IOC_LINESZ; cline > 0;) {
447 sc->sc_ioctags[--cline] = 0;
448 }
449
450 /* Enable IO-cache */
451 sc->sc_reg->vmebus_cr |= VMEBUS_CR_C;
452
453 printf(": version 0x%x\n",
454 sc->sc_reg->vmebus_cr & VMEBUS_CR_IMPL);
455
456 (void)config_found(self, &vba, 0);
457 #endif /* SUN4M */
458 }
459
460 #if defined(SUN4M)
461 static int
462 sparc_vme_error()
463 {
464 struct sparcvme_softc *sc = sparcvme_sc;
465 u_int32_t afsr, afpa;
466 char bits[64];
467
468 afsr = sc->sc_reg->vmebus_afsr;
469 afpa = sc->sc_reg->vmebus_afar;
470 printf("VME error:\n\tAFSR %s\n",
471 bitmask_snprintf(afsr, VMEBUS_AFSR_BITS, bits, sizeof(bits)));
472 printf("\taddress: 0x%x%x\n", afsr, afpa);
473 return (0);
474 }
475 #endif
476
477 int
478 vmebus_translate(sc, mod, addr, bap)
479 struct sparcvme_softc *sc;
480 vme_am_t mod;
481 vme_addr_t addr;
482 bus_addr_t *bap;
483 {
484 int i;
485
486 for (i = 0; i < sc->sc_nrange; i++) {
487 struct rom_range *rp = &sc->sc_range[i];
488
489 if (rp->cspace != mod)
490 continue;
491
492 /* We've found the connection to the parent bus */
493 *bap = BUS_ADDR(rp->pspace, rp->poffset + addr);
494 return (0);
495 }
496 return (ENOENT);
497 }
498
499 struct vmeprobe_myarg {
500 int (*cb) __P((void *, bus_space_tag_t, bus_space_handle_t));
501 void *cbarg;
502 bus_space_tag_t tag;
503 int res; /* backwards */
504 };
505
506 static int vmeprobe_mycb __P((void *, void *));
507 static int
508 vmeprobe_mycb(bh, arg)
509 void *bh, *arg;
510 {
511 struct vmeprobe_myarg *a = arg;
512
513 a->res = (*a->cb)(a->cbarg, a->tag, (bus_space_handle_t)bh);
514 return (!a->res);
515 }
516
517 int
518 sparc_vme_probe(cookie, addr, len, mod, datasize, callback, arg)
519 void *cookie;
520 vme_addr_t addr;
521 vme_size_t len;
522 vme_am_t mod;
523 vme_datasize_t datasize;
524 int (*callback) __P((void *, bus_space_tag_t, bus_space_handle_t));
525 void *arg;
526 {
527 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
528 bus_addr_t paddr;
529 bus_size_t size;
530 struct vmeprobe_myarg myarg;
531 int res, i;
532
533 if (vmebus_translate(sc, mod, addr, &paddr) != 0)
534 return (EINVAL);
535
536 size = (datasize == VME_D8 ? 1 : (datasize == VME_D16 ? 2 : 4));
537
538 if (callback) {
539 myarg.cb = callback;
540 myarg.cbarg = arg;
541 myarg.tag = sc->sc_bustag;
542 myarg.res = 0;
543 res = bus_space_probe(sc->sc_bustag, paddr, size, 0,
544 0, vmeprobe_mycb, &myarg);
545 return (res ? 0 : (myarg.res ? myarg.res : EIO));
546 }
547
548 for (i = 0; i < len / size; i++) {
549 myarg.res = 0;
550 res = bus_space_probe(sc->sc_bustag, paddr, size, 0,
551 0, 0, 0);
552 if (res == 0)
553 return (EIO);
554 paddr += size;
555 }
556 return (0);
557 }
558
559 int
560 sparc_vme_map(cookie, addr, size, mod, datasize, swap, tp, hp, rp)
561 void *cookie;
562 vme_addr_t addr;
563 vme_size_t size;
564 vme_am_t mod;
565 vme_datasize_t datasize;
566 vme_swap_t swap;
567 bus_space_tag_t *tp;
568 bus_space_handle_t *hp;
569 vme_mapresc_t *rp;
570 {
571 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
572 bus_addr_t paddr;
573 int error;
574
575 error = vmebus_translate(sc, mod, addr, &paddr);
576 if (error != 0)
577 return (error);
578
579 *tp = sc->sc_bustag;
580 return (bus_space_map(sc->sc_bustag, paddr, size, 0, hp));
581 }
582
583 int
584 sparc_vme_mmap_cookie(addr, mod, hp)
585 vme_addr_t addr;
586 vme_am_t mod;
587 bus_space_handle_t *hp;
588 {
589 struct sparcvme_softc *sc = sparcvme_sc;
590 bus_addr_t paddr;
591 int error;
592
593 error = vmebus_translate(sc, mod, addr, &paddr);
594 if (error != 0)
595 return (error);
596
597 return (bus_space_mmap(sc->sc_bustag, paddr, 0,
598 0/*prot is ignored*/, 0));
599 }
600
601 #ifdef notyet
602 #if defined(SUN4M)
603 void
604 sparc_vme_iommu_barrier(t, h, offset, size, flags)
605 bus_space_tag_t t;
606 bus_space_handle_t h;
607 bus_size_t offset;
608 bus_size_t size;
609 int flags;
610 {
611 struct vmebusreg *vbp = (struct vmebusreg *)t->cookie;
612
613 /* Read async fault status to flush write-buffers */
614 (*(volatile int *)&vbp->vmebus_afsr);
615 }
616 #endif /* SUN4M */
617 #endif
618
619
620
621 /*
622 * VME Interrupt Priority Level to sparc Processor Interrupt Level.
623 */
624 static int vme_ipl_to_pil[] = {
625 0,
626 2,
627 3,
628 5,
629 7,
630 9,
631 11,
632 13
633 };
634
635
636 /*
637 * All VME device interrupts go through vmeintr(). This function reads
638 * the VME vector from the bus, then dispatches the device interrupt
639 * handler. All handlers for devices that map to the same Processor
640 * Interrupt Level (according to the table above) are on a linked list
641 * of `sparc_vme_intr_handle' structures. The head of which is passed
642 * down as the argument to `vmeintr(void *arg)'.
643 */
644 struct sparc_vme_intr_handle {
645 struct intrhand ih;
646 struct sparc_vme_intr_handle *next;
647 int vec; /* VME interrupt vector */
648 int pri; /* VME interrupt priority */
649 struct sparcvme_softc *sc;/*XXX*/
650 };
651
652 #if defined(SUN4)
653 int
654 vmeintr4(arg)
655 void *arg;
656 {
657 struct sparc_vme_intr_handle *ihp = (vme_intr_handle_t)arg;
658 int level, vec;
659 int rv = 0;
660
661 level = (ihp->pri << 1) | 1;
662
663 vec = ldcontrolb((caddr_t)(AC_VMEINTVEC | level));
664
665 if (vec == -1) {
666 #ifdef DEBUG
667 /*
668 * This seems to happen only with the i82586 based
669 * `ie1' boards.
670 */
671 printf("vme: spurious interrupt at VME level %d\n", ihp->pri);
672 #endif
673 return (1); /* XXX - pretend we handled it, for now */
674 }
675
676 for (; ihp; ihp = ihp->next)
677 if (ihp->vec == vec && ihp->ih.ih_fun) {
678 splx(ihp->ih.ih_classipl);
679 rv |= (ihp->ih.ih_fun)(ihp->ih.ih_arg);
680 }
681
682 return (rv);
683 }
684 #endif
685
686 #if defined(SUN4M)
687 int
688 vmeintr4m(arg)
689 void *arg;
690 {
691 struct sparc_vme_intr_handle *ihp = (vme_intr_handle_t)arg;
692 int level, vec;
693 int rv = 0;
694
695 level = (ihp->pri << 1) | 1;
696
697 #if 0
698 int pending;
699
700 /* Flush VME <=> Sbus write buffers */
701 (*(volatile int *)&ihp->sc->sc_reg->vmebus_afsr);
702
703 pending = *((int*)ICR_SI_PEND);
704 if ((pending & SINTR_VME(ihp->pri)) == 0) {
705 printf("vmeintr: non pending at pri %x(p 0x%x)\n",
706 ihp->pri, pending);
707 return (0);
708 }
709 #endif
710 #if 0
711 /* Why gives this a bus timeout sometimes? */
712 vec = ihp->sc->sc_vec->vmebusvec[level];
713 #else
714 /* so, arrange to catch the fault... */
715 {
716 extern struct user *proc0paddr;
717 extern int fkbyte __P((caddr_t, struct pcb *));
718 caddr_t addr = (caddr_t)&ihp->sc->sc_vec->vmebusvec[level];
719 struct pcb *xpcb;
720 u_long saveonfault;
721 int s;
722
723 s = splhigh();
724 if (curlwp == NULL)
725 xpcb = (struct pcb *)proc0paddr;
726 else
727 xpcb = &curlwp->l_addr->u_pcb;
728
729 saveonfault = (u_long)xpcb->pcb_onfault;
730 vec = fkbyte(addr, xpcb);
731 xpcb->pcb_onfault = (caddr_t)saveonfault;
732
733 splx(s);
734 }
735 #endif
736
737 if (vec == -1) {
738 #ifdef DEBUG
739 /*
740 * This seems to happen only with the i82586 based
741 * `ie1' boards.
742 */
743 printf("vme: spurious interrupt at VME level %d\n", ihp->pri);
744 printf(" ICR_SI_PEND=0x%x; VME AFSR=0x%x; VME AFAR=0x%x\n",
745 *((int*)ICR_SI_PEND),
746 ihp->sc->sc_reg->vmebus_afsr,
747 ihp->sc->sc_reg->vmebus_afar);
748 #endif
749 return (1); /* XXX - pretend we handled it, for now */
750 }
751
752 for (; ihp; ihp = ihp->next)
753 if (ihp->vec == vec && ihp->ih.ih_fun) {
754 splx(ihp->ih.ih_classipl);
755 rv |= (ihp->ih.ih_fun)(ihp->ih.ih_arg);
756 }
757
758 return (rv);
759 }
760 #endif
761
762 int
763 sparc_vme_intr_map(cookie, level, vec, ihp)
764 void *cookie;
765 int level;
766 int vec;
767 vme_intr_handle_t *ihp;
768 {
769 struct sparc_vme_intr_handle *ih;
770
771 ih = (vme_intr_handle_t)
772 malloc(sizeof(struct sparc_vme_intr_handle), M_DEVBUF, M_NOWAIT);
773 ih->pri = level;
774 ih->vec = vec;
775 ih->sc = cookie;/*XXX*/
776 *ihp = ih;
777 return (0);
778 }
779
780 const struct evcnt *
781 sparc_vme_intr_evcnt(cookie, vih)
782 void *cookie;
783 vme_intr_handle_t vih;
784 {
785
786 /* XXX for now, no evcnt parent reported */
787 return NULL;
788 }
789
790 void *
791 sparc_vme_intr_establish(cookie, vih, level, func, arg)
792 void *cookie;
793 vme_intr_handle_t vih;
794 int level;
795 int (*func) __P((void *));
796 void *arg;
797 {
798 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
799 struct sparc_vme_intr_handle *svih =
800 (struct sparc_vme_intr_handle *)vih;
801 struct intrhand *ih;
802 int pil;
803
804 /* Translate VME priority to processor IPL */
805 pil = vme_ipl_to_pil[svih->pri];
806
807 if (level < pil)
808 panic("vme_intr_establish: class lvl (%d) < pil (%d)\n",
809 level, pil);
810
811 svih->ih.ih_fun = func;
812 svih->ih.ih_arg = arg;
813 svih->ih.ih_classipl = level; /* note: used slightly differently
814 than in intr.c (no shift) */
815 svih->next = NULL;
816
817 /* ensure the interrupt subsystem will call us at this level */
818 for (ih = intrhand[pil]; ih != NULL; ih = ih->ih_next)
819 if (ih->ih_fun == sc->sc_vmeintr)
820 break;
821
822 if (ih == NULL) {
823 ih = (struct intrhand *)
824 malloc(sizeof(struct intrhand), M_DEVBUF, M_NOWAIT);
825 if (ih == NULL)
826 panic("vme_addirq");
827 bzero(ih, sizeof *ih);
828 ih->ih_fun = sc->sc_vmeintr;
829 ih->ih_arg = vih;
830 intr_establish(pil, 0, ih, NULL);
831 } else {
832 svih->next = (vme_intr_handle_t)ih->ih_arg;
833 ih->ih_arg = vih;
834 }
835 return (NULL);
836 }
837
838 void
839 sparc_vme_unmap(cookie, resc)
840 void * cookie;
841 vme_mapresc_t resc;
842 {
843 /* Not implemented */
844 panic("sparc_vme_unmap");
845 }
846
847 void
848 sparc_vme_intr_disestablish(cookie, a)
849 void *cookie;
850 void *a;
851 {
852 /* Not implemented */
853 panic("sparc_vme_intr_disestablish");
854 }
855
856
857
858 /*
859 * VME DMA functions.
860 */
861
862 #if defined(SUN4) || defined(SUN4M)
863 static void
864 sparc_vct_dmamap_destroy(cookie, map)
865 void *cookie;
866 bus_dmamap_t map;
867 {
868 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
869 bus_dmamap_destroy(sc->sc_dmatag, map);
870 }
871 #endif
872
873 #if defined(SUN4)
874 static int
875 sparc_vct4_dmamap_create(cookie, size, am, datasize, swap, nsegments, maxsegsz,
876 boundary, flags, dmamp)
877 void *cookie;
878 vme_size_t size;
879 vme_am_t am;
880 vme_datasize_t datasize;
881 vme_swap_t swap;
882 int nsegments;
883 vme_size_t maxsegsz;
884 vme_addr_t boundary;
885 int flags;
886 bus_dmamap_t *dmamp;
887 {
888 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
889
890 /* Allocate a base map through parent bus ops */
891 return (bus_dmamap_create(sc->sc_dmatag, size, nsegments, maxsegsz,
892 boundary, flags, dmamp));
893 }
894
895 int
896 sparc_vme4_dmamap_load(t, map, buf, buflen, p, flags)
897 bus_dma_tag_t t;
898 bus_dmamap_t map;
899 void *buf;
900 bus_size_t buflen;
901 struct proc *p;
902 int flags;
903 {
904 bus_addr_t dva;
905 bus_size_t sgsize;
906 u_long ldva;
907 vaddr_t va, voff;
908 pmap_t pmap;
909 int pagesz = PAGE_SIZE;
910 int error;
911
912 cache_flush(buf, buflen); /* XXX - move to bus_dma_sync */
913
914 va = (vaddr_t)buf;
915 voff = va & (pagesz - 1);
916 va &= -pagesz;
917
918 /*
919 * Allocate an integral number of pages from DVMA space
920 * covering the passed buffer.
921 */
922 sgsize = (buflen + voff + pagesz - 1) & -pagesz;
923 error = extent_alloc(vme_dvmamap, sgsize, pagesz,
924 map->_dm_boundary,
925 (flags & BUS_DMA_NOWAIT) == 0
926 ? EX_WAITOK
927 : EX_NOWAIT,
928 &ldva);
929 if (error != 0)
930 return (error);
931 dva = (bus_addr_t)ldva;
932
933 map->dm_mapsize = buflen;
934 map->dm_nsegs = 1;
935 /* Adjust DVMA address to VME view */
936 map->dm_segs[0].ds_addr = dva + voff - VME4_DVMA_BASE;
937 map->dm_segs[0].ds_len = buflen;
938 map->dm_segs[0]._ds_sgsize = sgsize;
939
940 pmap = (p == NULL) ? pmap_kernel() : p->p_vmspace->vm_map.pmap;
941
942 for (; sgsize != 0; ) {
943 paddr_t pa;
944 /*
945 * Get the physical address for this page.
946 */
947 (void) pmap_extract(pmap, va, &pa);
948
949 #ifdef notyet
950 if (have_iocache)
951 pa |= PG_IOC;
952 #endif
953 pmap_enter(pmap_kernel(), dva,
954 pa | PMAP_NC,
955 VM_PROT_READ|VM_PROT_WRITE, PMAP_WIRED);
956
957 dva += pagesz;
958 va += pagesz;
959 sgsize -= pagesz;
960 }
961 pmap_update(pmap_kernel());
962
963 return (0);
964 }
965
966 void
967 sparc_vme4_dmamap_unload(t, map)
968 bus_dma_tag_t t;
969 bus_dmamap_t map;
970 {
971 bus_dma_segment_t *segs = map->dm_segs;
972 int nsegs = map->dm_nsegs;
973 bus_addr_t dva;
974 bus_size_t len;
975 int i, s, error;
976
977 for (i = 0; i < nsegs; i++) {
978 /* Go from VME to CPU view */
979 dva = segs[i].ds_addr + VME4_DVMA_BASE;
980 dva &= -PAGE_SIZE;
981 len = segs[i]._ds_sgsize;
982
983 /* Remove double-mapping in DVMA space */
984 pmap_remove(pmap_kernel(), dva, dva + len);
985
986 /* Release DVMA space */
987 s = splhigh();
988 error = extent_free(vme_dvmamap, dva, len, EX_NOWAIT);
989 splx(s);
990 if (error != 0)
991 printf("warning: %ld of DVMA space lost\n", len);
992 }
993 pmap_update(pmap_kernel());
994
995 /* Mark the mappings as invalid. */
996 map->dm_mapsize = 0;
997 map->dm_nsegs = 0;
998 }
999
1000 void
1001 sparc_vme4_dmamap_sync(t, map, offset, len, ops)
1002 bus_dma_tag_t t;
1003 bus_dmamap_t map;
1004 bus_addr_t offset;
1005 bus_size_t len;
1006 int ops;
1007 {
1008
1009 /*
1010 * XXX Should perform cache flushes as necessary (e.g. 4/200 W/B).
1011 * Currently the cache is flushed in bus_dma_load()...
1012 */
1013 }
1014 #endif /* SUN4 */
1015
1016 #if defined(SUN4M)
1017 static int
1018 sparc_vme_iommu_dmamap_create (t, size, nsegments, maxsegsz,
1019 boundary, flags, dmamp)
1020 bus_dma_tag_t t;
1021 bus_size_t size;
1022 int nsegments;
1023 bus_size_t maxsegsz;
1024 bus_size_t boundary;
1025 int flags;
1026 bus_dmamap_t *dmamp;
1027 {
1028
1029 printf("sparc_vme_dmamap_create: please use `vme_dmamap_create'\n");
1030 return (EINVAL);
1031 }
1032
1033 static int
1034 sparc_vct_iommu_dmamap_create(cookie, size, am, datasize, swap, nsegments,
1035 maxsegsz, boundary, flags, dmamp)
1036 void *cookie;
1037 vme_size_t size;
1038 vme_am_t am;
1039 vme_datasize_t datasize;
1040 vme_swap_t swap;
1041 int nsegments;
1042 vme_size_t maxsegsz;
1043 vme_addr_t boundary;
1044 int flags;
1045 bus_dmamap_t *dmamp;
1046 {
1047 struct sparcvme_softc *sc = (struct sparcvme_softc *)cookie;
1048 bus_dmamap_t map;
1049 int error;
1050
1051 /* Allocate a base map through parent bus ops */
1052 error = bus_dmamap_create(sc->sc_dmatag, size, nsegments, maxsegsz,
1053 boundary, flags, &map);
1054 if (error != 0)
1055 return (error);
1056
1057 /*
1058 * Each I/O cache line maps to a 8K section of VME DVMA space, so
1059 * we must ensure that DVMA alloctions are always 8K aligned.
1060 */
1061 map->_dm_align = VME_IOC_PAGESZ;
1062
1063 /* Set map region based on Address Modifier */
1064 switch ((am & VME_AM_ADRSIZEMASK)) {
1065 case VME_AM_A16:
1066 case VME_AM_A24:
1067 /* 1 MB of DVMA space */
1068 map->_dm_ex_start = VME_IOMMU_DVMA_AM24_BASE;
1069 map->_dm_ex_end = VME_IOMMU_DVMA_AM24_END;
1070 break;
1071 case VME_AM_A32:
1072 /* 8 MB of DVMA space */
1073 map->_dm_ex_start = VME_IOMMU_DVMA_AM32_BASE;
1074 map->_dm_ex_end = VME_IOMMU_DVMA_AM32_END;
1075 break;
1076 }
1077
1078 *dmamp = map;
1079 return (0);
1080 }
1081
1082 int
1083 sparc_vme_iommu_dmamap_load(t, map, buf, buflen, p, flags)
1084 bus_dma_tag_t t;
1085 bus_dmamap_t map;
1086 void *buf;
1087 bus_size_t buflen;
1088 struct proc *p;
1089 int flags;
1090 {
1091 struct sparcvme_softc *sc = (struct sparcvme_softc *)t->_cookie;
1092 volatile u_int32_t *ioctags;
1093 int error;
1094
1095 /* Round request to a multiple of the I/O cache size */
1096 buflen = (buflen + VME_IOC_PAGESZ - 1) & -VME_IOC_PAGESZ;
1097 error = bus_dmamap_load(sc->sc_dmatag, map, buf, buflen, p, flags);
1098 if (error != 0)
1099 return (error);
1100
1101 /* Allocate I/O cache entries for this range */
1102 ioctags = sc->sc_ioctags + VME_IOC_LINE(map->dm_segs[0].ds_addr);
1103 while (buflen > 0) {
1104 *ioctags = VME_IOC_IC | VME_IOC_W;
1105 ioctags += VME_IOC_LINESZ/sizeof(*ioctags);
1106 buflen -= VME_IOC_PAGESZ;
1107 }
1108
1109 /*
1110 * Adjust DVMA address to VME view.
1111 * Note: the DVMA base address is the same for all
1112 * VME address spaces.
1113 */
1114 map->dm_segs[0].ds_addr -= VME_IOMMU_DVMA_BASE;
1115 return (0);
1116 }
1117
1118
1119 void
1120 sparc_vme_iommu_dmamap_unload(t, map)
1121 bus_dma_tag_t t;
1122 bus_dmamap_t map;
1123 {
1124 struct sparcvme_softc *sc = (struct sparcvme_softc *)t->_cookie;
1125 volatile u_int32_t *flushregs;
1126 int len;
1127
1128 /* Go from VME to CPU view */
1129 map->dm_segs[0].ds_addr += VME_IOMMU_DVMA_BASE;
1130
1131 /* Flush VME I/O cache */
1132 len = map->dm_segs[0]._ds_sgsize;
1133 flushregs = sc->sc_iocflush + VME_IOC_LINE(map->dm_segs[0].ds_addr);
1134 while (len > 0) {
1135 *flushregs = 0;
1136 flushregs += VME_IOC_LINESZ/sizeof(*flushregs);
1137 len -= VME_IOC_PAGESZ;
1138 }
1139
1140 /*
1141 * Start a read from `tag space' which will not complete until
1142 * all cache flushes have finished
1143 */
1144 (*sc->sc_ioctags);
1145
1146 bus_dmamap_unload(sc->sc_dmatag, map);
1147 }
1148
1149 void
1150 sparc_vme_iommu_dmamap_sync(t, map, offset, len, ops)
1151 bus_dma_tag_t t;
1152 bus_dmamap_t map;
1153 bus_addr_t offset;
1154 bus_size_t len;
1155 int ops;
1156 {
1157
1158 /*
1159 * XXX Should perform cache flushes as necessary.
1160 */
1161 }
1162 #endif /* SUN4M */
1163
1164 #if defined(SUN4) || defined(SUN4M)
1165 int
1166 sparc_vme_dmamem_map(t, segs, nsegs, size, kvap, flags)
1167 bus_dma_tag_t t;
1168 bus_dma_segment_t *segs;
1169 int nsegs;
1170 size_t size;
1171 caddr_t *kvap;
1172 int flags;
1173 {
1174 struct sparcvme_softc *sc = (struct sparcvme_softc *)t->_cookie;
1175
1176 return (bus_dmamem_map(sc->sc_dmatag, segs, nsegs, size, kvap, flags));
1177 }
1178 #endif /* SUN4 || SUN4M */
1179