zs.c revision 1.1 1 /*
2 * Copyright (c) 1992, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This software was developed by the Computer Systems Engineering group
6 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7 * contributed to Berkeley.
8 *
9 * All advertising materials mentioning features or use of this software
10 * must display the following acknowledgement:
11 * This product includes software developed by the University of
12 * California, Lawrence Berkeley Laboratory.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the University of
25 * California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 * may be used to endorse or promote products derived from this software
28 * without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 * @(#)zs.c 8.1 (Berkeley) 7/19/93
43 *
44 * from: Header: zs.c,v 1.30 93/07/19 23:44:42 torek Exp
45 * $Id: zs.c,v 1.1 1993/10/02 10:22:45 deraadt Exp $
46 */
47
48 /*
49 * Zilog Z8530 (ZSCC) driver.
50 *
51 * Runs two tty ports (ttya and ttyb) on zs0,
52 * and runs a keyboard and mouse on zs1.
53 *
54 * This driver knows far too much about chip to usage mappings.
55 */
56 #define NZS 2 /* XXX */
57
58 #include <sys/param.h>
59 #include <sys/proc.h>
60 #include <sys/device.h>
61 #include <sys/conf.h>
62 #include <sys/file.h>
63 #include <sys/ioctl.h>
64 #include <sys/tty.h>
65 #include <sys/time.h>
66 #include <sys/kernel.h>
67 #include <sys/syslog.h>
68
69 #include <machine/autoconf.h>
70 #include <machine/cpu.h>
71
72 #include <sparc/sparc/vaddrs.h>
73 #include <sparc/sparc/auxreg.h>
74
75 #include <sparc/dev/kbd.h>
76 #include <sparc/dev/zsreg.h>
77 #include <sparc/dev/zsvar.h>
78
79 #ifdef KGDB
80 #include <machine/remote-sl.h>
81 #endif
82
83 #define ZSMAJOR 12 /* XXX */
84
85 #define ZS_KBD 2 /* XXX */
86 #define ZS_MOUSE 3 /* XXX */
87
88 /* the magic number below was stolen from the Sprite source. */
89 #define PCLK (19660800/4) /* PCLK pin input clock rate */
90
91 /*
92 * Select software interrupt bit based on TTY ipl.
93 */
94 #if PIL_TTY == 1
95 # define IE_ZSSOFT IE_L1
96 #elif PIL_TTY == 4
97 # define IE_ZSSOFT IE_L4
98 #elif PIL_TTY == 6
99 # define IE_ZSSOFT IE_L6
100 #else
101 # error "no suitable software interrupt bit"
102 #endif
103
104 /*
105 * Software state per found chip. This would be called `zs_softc',
106 * but the previous driver had a rather different zs_softc....
107 */
108 struct zsinfo {
109 struct device zi_dev; /* base device */
110 volatile struct zsdevice *zi_zs;/* chip registers */
111 struct zs_chanstate zi_cs[2]; /* channel A and B software state */
112 };
113
114 struct tty zs_tty[NZS * 2]; /* XXX should be dynamic */
115
116 /* Definition of the driver for autoconfig. */
117 static int zsmatch(struct device *, struct cfdata *, void *);
118 static void zsattach(struct device *, struct device *, void *);
119 struct cfdriver zscd =
120 { NULL, "zs", zsmatch, zsattach, DV_TTY, sizeof(struct zsinfo) };
121
122 /* Interrupt handlers. */
123 static int zshard(void *);
124 static struct intrhand levelhard = { zshard };
125 static int zssoft(void *);
126 static struct intrhand levelsoft = { zssoft };
127
128 struct zs_chanstate *zslist;
129
130 /* Routines called from other code. */
131 static void zsiopen(struct tty *);
132 static void zsiclose(struct tty *);
133 static void zsstart(struct tty *);
134 static void zsstop(struct tty *, int);
135 static int zsparam(struct tty *, struct termios *);
136
137 /* Routines purely local to this driver. */
138 static int zs_getspeed(volatile struct zschan *);
139 static void zs_reset(volatile struct zschan *, int, int);
140 static void zs_modem(struct zs_chanstate *, int);
141 static void zs_loadchannelregs(volatile struct zschan *, u_char *);
142
143 /* Console stuff. */
144 static struct tty *zs_ctty; /* console `struct tty *' */
145 static int zs_consin = -1, zs_consout = -1;
146 static int zscnputc(int); /* console putc function */
147 static volatile struct zschan *zs_conschan;
148 static struct tty *zs_checkcons(struct zsinfo *, int, struct zs_chanstate *);
149
150 #ifdef KGDB
151 /* KGDB stuff. Must reboot to change zs_kgdbunit. */
152 extern int kgdb_dev, kgdb_rate;
153 static int zs_kgdb_savedspeed;
154 static void zs_checkkgdb(int, struct zs_chanstate *, struct tty *);
155 #endif
156
157 extern volatile struct zsdevice *findzs(int);
158 static volatile struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */
159
160 /*
161 * Console keyboard L1-A processing is done in the hardware interrupt code,
162 * so we need to duplicate some of the console keyboard decode state. (We
163 * must not use the regular state as the hardware code keeps ahead of the
164 * software state: the software state tracks the most recent ring input but
165 * the hardware state tracks the most recent ZSCC input.) See also kbd.h.
166 */
167 static struct conk_state { /* console keyboard state */
168 char conk_id; /* true => ID coming up (console only) */
169 char conk_l1; /* true => L1 pressed (console only) */
170 } zsconk_state;
171
172 int zshardscope;
173 int zsshortcuts; /* number of "shortcut" software interrupts */
174
175 /*
176 * Match slave number to zs unit number, so that misconfiguration will
177 * not set up the keyboard as ttya, etc.
178 */
179 static int
180 zsmatch(struct device *parent, struct cfdata *cf, void *aux)
181 {
182 struct romaux *ra = aux;
183
184 return (getpropint(ra->ra_node, "slave", -2) == cf->cf_unit);
185 }
186
187 /*
188 * Attach a found zs.
189 *
190 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
191 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
192 */
193 static void
194 zsattach(struct device *parent, struct device *dev, void *aux)
195 {
196 register int zs = dev->dv_unit, unit;
197 register struct zsinfo *zi;
198 register struct zs_chanstate *cs;
199 register volatile struct zsdevice *addr;
200 register struct tty *tp, *ctp;
201 register struct romaux *ra = aux;
202 int pri, softcar;
203 static int didintr, prevpri;
204
205 if ((addr = zsaddr[zs]) == NULL)
206 addr = zsaddr[zs] = findzs(zs);
207 if ((void *)addr != ra->ra_vaddr)
208 panic("zsattach");
209 if (ra->ra_nintr != 1) {
210 printf(": expected 1 interrupt, got %d\n", ra->ra_nintr);
211 return;
212 }
213 pri = ra->ra_intr[0].int_pri;
214 printf(" pri %d, softpri %d\n", pri, PIL_TTY);
215 if (!didintr) {
216 didintr = 1;
217 prevpri = pri;
218 intr_establish(pri, &levelhard);
219 intr_establish(PIL_TTY, &levelsoft);
220 } else if (pri != prevpri)
221 panic("broken zs interrupt scheme");
222 zi = (struct zsinfo *)dev;
223 zi->zi_zs = addr;
224 unit = zs * 2;
225 cs = zi->zi_cs;
226 tp = &zs_tty[unit];
227
228 if (unit == 0) {
229 /* Get software carrier flags from options node in OPENPROM. */
230 extern int optionsnode;
231
232 softcar = 0;
233 if (*getpropstring(optionsnode, "ttya-ignore-cd") == 't')
234 softcar |= 1;
235 if (*getpropstring(optionsnode, "ttyb-ignore-cd") == 't')
236 softcar |= 2;
237 } else
238 softcar = dev->dv_cfdata->cf_flags;
239
240 /* link into interrupt list with order (A,B) (B=A+1) */
241 cs[0].cs_next = &cs[1];
242 cs[1].cs_next = zslist;
243 zslist = cs;
244
245 cs->cs_unit = unit;
246 cs->cs_speed = zs_getspeed(&addr->zs_chan[CHAN_A]);
247 cs->cs_softcar = softcar & 1;
248 cs->cs_zc = &addr->zs_chan[CHAN_A];
249 tp->t_dev = makedev(ZSMAJOR, unit);
250 tp->t_oproc = zsstart;
251 tp->t_param = zsparam;
252 tp->t_stop = zsstop;
253 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
254 tp = ctp;
255 cs->cs_ttyp = tp;
256 #ifdef KGDB
257 if (ctp == NULL)
258 zs_checkkgdb(unit, cs, tp);
259 #endif
260 if (unit == ZS_KBD) {
261 /*
262 * Keyboard: tell /dev/kbd driver how to talk to us.
263 */
264 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
265 tp->t_cflag = CS8;
266 kbd_serial(tp, zsiopen, zsiclose);
267 cs->cs_conk = 1; /* do L1-A processing */
268 }
269 unit++;
270 cs++;
271 tp = &zs_tty[unit];
272 cs->cs_unit = unit;
273 cs->cs_speed = zs_getspeed(&addr->zs_chan[CHAN_B]);
274 cs->cs_softcar = softcar & 2;
275 cs->cs_zc = &addr->zs_chan[CHAN_B];
276 tp->t_dev = makedev(ZSMAJOR, unit);
277 tp->t_oproc = zsstart;
278 tp->t_param = zsparam;
279 tp->t_stop = zsstop;
280 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
281 tp = ctp;
282 cs->cs_ttyp = tp;
283 #ifdef KGDB
284 if (ctp == NULL)
285 zs_checkkgdb(unit, cs, tp);
286 #endif
287 if (unit == ZS_MOUSE) {
288 /*
289 * Mouse: tell /dev/mouse driver how to talk to us.
290 */
291 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
292 tp->t_cflag = CS8;
293 ms_serial(tp, zsiopen, zsiclose);
294 }
295 }
296
297 /*
298 * Put a channel in a known state. Interrupts may be left disabled
299 * or enabled, as desired.
300 */
301 static void
302 zs_reset(zc, inten, speed)
303 volatile struct zschan *zc;
304 int inten, speed;
305 {
306 int tconst;
307 static u_char reg[16] = {
308 0,
309 0,
310 0,
311 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
312 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
313 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
314 0,
315 0,
316 0,
317 0,
318 ZSWR10_NRZ,
319 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
320 0,
321 0,
322 ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
323 ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
324 };
325
326 reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
327 tconst = BPS_TO_TCONST(PCLK / 16, speed);
328 reg[12] = tconst;
329 reg[13] = tconst >> 8;
330 zs_loadchannelregs(zc, reg);
331 }
332
333 /*
334 * Declare the given tty (which is in fact &cons) as a console input
335 * or output. This happens before the zs chip is attached; the hookup
336 * is finished later, in zs_setcons() below.
337 *
338 * This is used only for ports a and b. The console keyboard is decoded
339 * independently (we always send unit-2 input to /dev/kbd, which will
340 * direct it to /dev/console if appropriate).
341 */
342 void
343 zsconsole(tp, unit, out)
344 register struct tty *tp;
345 register int unit;
346 int out;
347 {
348 extern int (*v_putc)();
349 int zs;
350 volatile struct zsdevice *addr;
351
352 if (unit >= ZS_KBD)
353 panic("zsconsole");
354 if (out) {
355 zs_consout = unit;
356 zs = unit >> 1;
357 if ((addr = zsaddr[zs]) == NULL)
358 addr = zsaddr[zs] = findzs(zs);
359 zs_conschan = (unit & 1) == 0 ? &addr->zs_chan[CHAN_A] :
360 &addr->zs_chan[CHAN_B];
361 v_putc = zscnputc;
362 } else
363 zs_consin = unit;
364 zs_ctty = tp;
365 }
366
367 /*
368 * Polled console output putchar.
369 */
370 static int
371 zscnputc(c)
372 int c;
373 {
374 register volatile struct zschan *zc = zs_conschan;
375 register int s;
376
377 if (c == '\n')
378 zscnputc('\r');
379 /*
380 * Must block output interrupts (i.e., raise to >= splzs) without
381 * lowering current ipl. Need a better way.
382 */
383 s = splhigh();
384 #ifdef sun4c /* XXX */
385 if (s <= (12 << 8))
386 (void) splzs();
387 #endif
388 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
389 continue;
390 zc->zc_data = c;
391 splx(s);
392 }
393
394 /*
395 * Set up the given unit as console input, output, both, or neither, as
396 * needed. Return console tty if it is to receive console input.
397 */
398 static struct tty *
399 zs_checkcons(struct zsinfo *zi, int unit, struct zs_chanstate *cs)
400 {
401 register struct tty *tp;
402 char *i, *o;
403
404 if ((tp = zs_ctty) == NULL)
405 return (0);
406 i = zs_consin == unit ? "input" : NULL;
407 o = zs_consout == unit ? "output" : NULL;
408 if (i == NULL && o == NULL)
409 return (0);
410
411 /* rewire the minor device (gack) */
412 tp->t_dev = makedev(major(tp->t_dev), unit);
413
414 /*
415 * Rewire input and/or output. Note that baud rate reflects
416 * input settings, not output settings, but we can do no better
417 * if the console is split across two ports.
418 *
419 * XXX split consoles don't work anyway -- this needs to be
420 * thrown away and redone
421 */
422 if (i) {
423 tp->t_param = zsparam;
424 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
425 tp->t_cflag = CS8;
426 ttsetwater(tp);
427 }
428 if (o) {
429 tp->t_oproc = zsstart;
430 tp->t_stop = zsstop;
431 }
432 printf("%s%c: console %s\n",
433 zi->zi_dev.dv_xname, (unit & 1) + 'a', i ? (o ? "i/o" : i) : o);
434 cs->cs_consio = 1;
435 cs->cs_brkabort = 1;
436 return (tp);
437 }
438
439 #ifdef KGDB
440 /*
441 * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
442 * Pick up the current speed and character size and restore the original
443 * speed.
444 */
445 static void
446 zs_checkkgdb(int unit, struct zs_chanstate *cs, struct tty *tp)
447 {
448
449 if (kgdb_dev == makedev(ZSMAJOR, unit)) {
450 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
451 tp->t_cflag = CS8;
452 cs->cs_kgdb = 1;
453 cs->cs_speed = zs_kgdb_savedspeed;
454 (void) zsparam(tp, &tp->t_termios);
455 }
456 }
457 #endif
458
459 /*
460 * Compute the current baud rate given a ZSCC channel.
461 */
462 static int
463 zs_getspeed(zc)
464 register volatile struct zschan *zc;
465 {
466 register int tconst;
467
468 tconst = ZS_READ(zc, 12);
469 tconst |= ZS_READ(zc, 13) << 8;
470 return (TCONST_TO_BPS(PCLK / 16, tconst));
471 }
472
473
474 /*
475 * Do an internal open.
476 */
477 static void
478 zsiopen(struct tty *tp)
479 {
480
481 (void) zsparam(tp, &tp->t_termios);
482 ttsetwater(tp);
483 tp->t_state = TS_ISOPEN | TS_CARR_ON;
484 }
485
486 /*
487 * Do an internal close. Eventually we should shut off the chip when both
488 * ports on it are closed.
489 */
490 static void
491 zsiclose(struct tty *tp)
492 {
493
494 ttylclose(tp, 0); /* ??? */
495 ttyclose(tp); /* ??? */
496 tp->t_state = 0;
497 }
498
499
500 /*
501 * Open a zs serial port. This interface may not be used to open
502 * the keyboard and mouse ports. (XXX)
503 */
504 int
505 zsopen(dev_t dev, int flags, int mode, struct proc *p)
506 {
507 register struct tty *tp;
508 register struct zs_chanstate *cs;
509 struct zsinfo *zi;
510 int unit = minor(dev), zs = unit >> 1, error, s;
511
512 if (zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL ||
513 unit == ZS_KBD || unit == ZS_MOUSE)
514 return (ENXIO);
515 cs = &zi->zi_cs[unit & 1];
516 if (cs->cs_consio)
517 return (ENXIO); /* ??? */
518 tp = cs->cs_ttyp;
519 s = spltty();
520 if ((tp->t_state & TS_ISOPEN) == 0) {
521 ttychars(tp);
522 if (tp->t_ispeed == 0) {
523 tp->t_iflag = TTYDEF_IFLAG;
524 tp->t_oflag = TTYDEF_OFLAG;
525 tp->t_cflag = TTYDEF_CFLAG;
526 tp->t_lflag = TTYDEF_LFLAG;
527 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
528 }
529 (void) zsparam(tp, &tp->t_termios);
530 ttsetwater(tp);
531 } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
532 splx(s);
533 return (EBUSY);
534 }
535 error = 0;
536 for (;;) {
537 /* loop, turning on the device, until carrier present */
538 zs_modem(cs, 1);
539 if (cs->cs_softcar)
540 tp->t_state |= TS_CARR_ON;
541 if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
542 tp->t_state & TS_CARR_ON)
543 break;
544 tp->t_state |= TS_WOPEN;
545 if (error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
546 ttopen, 0))
547 break;
548 }
549 splx(s);
550 if (error == 0)
551 error = linesw[tp->t_line].l_open(dev, tp);
552 if (error)
553 zs_modem(cs, 0);
554 return (error);
555 }
556
557 /*
558 * Close a zs serial port.
559 */
560 int
561 zsclose(dev_t dev, int flags, int mode, struct proc *p)
562 {
563 register struct zs_chanstate *cs;
564 register struct tty *tp;
565 struct zsinfo *zi;
566 int unit = minor(dev), s;
567
568 zi = zscd.cd_devs[unit >> 1];
569 cs = &zi->zi_cs[unit & 1];
570 tp = cs->cs_ttyp;
571 linesw[tp->t_line].l_close(tp, flags);
572 if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
573 (tp->t_state & TS_ISOPEN) == 0) {
574 zs_modem(cs, 0);
575 /* hold low for 1 second */
576 (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
577 }
578 ttyclose(tp);
579 #ifdef KGDB
580 /* Reset the speed if we're doing kgdb on this port */
581 if (cs->cs_kgdb) {
582 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
583 (void) zsparam(tp, &tp->t_termios);
584 }
585 #endif
586 return (0);
587 }
588
589 /*
590 * Read/write zs serial port.
591 */
592 int
593 zsread(dev_t dev, struct uio *uio, int flags)
594 {
595 register struct tty *tp = &zs_tty[minor(dev)];
596
597 return (linesw[tp->t_line].l_read(tp, uio, flags));
598 }
599
600 int
601 zswrite(dev_t dev, struct uio *uio, int flags)
602 {
603 register struct tty *tp = &zs_tty[minor(dev)];
604
605 return (linesw[tp->t_line].l_write(tp, uio, flags));
606 }
607
608 /*
609 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
610 * channels are kept in (A,B) pairs.
611 *
612 * Do just a little, then get out; set a software interrupt if more
613 * work is needed.
614 *
615 * We deliberately ignore the vectoring Zilog gives us, and match up
616 * only the number of `reset interrupt under service' operations, not
617 * the order.
618 */
619 /* ARGSUSED */
620 int
621 zshard(void *intrarg)
622 {
623 register struct zs_chanstate *a;
624 #define b (a + 1)
625 register volatile struct zschan *zc;
626 register int rr3, intflags = 0, v, i;
627 static int zsrint(struct zs_chanstate *, volatile struct zschan *);
628 static int zsxint(struct zs_chanstate *, volatile struct zschan *);
629 static int zssint(struct zs_chanstate *, volatile struct zschan *);
630
631 for (a = zslist; a != NULL; a = b->cs_next) {
632 rr3 = ZS_READ(a->cs_zc, 3);
633 if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
634 intflags |= 2;
635 zc = a->cs_zc;
636 i = a->cs_rbput;
637 if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
638 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
639 intflags |= 1;
640 }
641 if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
642 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
643 intflags |= 1;
644 }
645 if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
646 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
647 intflags |= 1;
648 }
649 a->cs_rbput = i;
650 }
651 if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
652 intflags |= 2;
653 zc = b->cs_zc;
654 i = b->cs_rbput;
655 if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
656 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
657 intflags |= 1;
658 }
659 if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
660 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
661 intflags |= 1;
662 }
663 if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
664 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
665 intflags |= 1;
666 }
667 b->cs_rbput = i;
668 }
669 }
670 #undef b
671 if (intflags & 1) {
672 #if sun4c /* XXX -- but this will go away when zshard moves to locore.s */
673 struct clockframe *p = intrarg;
674
675 if ((p->psr & PSR_PIL) < (PIL_TTY << 8)) {
676 zsshortcuts++;
677 (void) spltty();
678 if (zshardscope) {
679 LED_ON;
680 LED_OFF;
681 }
682 return (zssoft(intrarg));
683 }
684 #endif
685 ienab_bis(IE_ZSSOFT);
686 }
687 return (intflags & 2);
688 }
689
690 static int
691 zsrint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
692 {
693 register int c = zc->zc_data;
694
695 if (cs->cs_conk) {
696 register struct conk_state *conk = &zsconk_state;
697
698 /*
699 * Check here for console abort function, so that we
700 * can abort even when interrupts are locking up the
701 * machine.
702 */
703 if (c == KBD_RESET) {
704 conk->conk_id = 1; /* ignore next byte */
705 conk->conk_l1 = 0;
706 } else if (conk->conk_id)
707 conk->conk_id = 0; /* stop ignoring bytes */
708 else if (c == KBD_L1)
709 conk->conk_l1 = 1; /* L1 went down */
710 else if (c == (KBD_L1|KBD_UP))
711 conk->conk_l1 = 0; /* L1 went up */
712 else if (c == KBD_A && conk->conk_l1) {
713 zsabort();
714 conk->conk_l1 = 0; /* we never see the up */
715 goto clearit; /* eat the A after L1-A */
716 }
717 }
718 #ifdef KGDB
719 if (c == FRAME_START && cs->cs_kgdb &&
720 (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
721 zskgdb(cs->cs_unit);
722 goto clearit;
723 }
724 #endif
725 /* compose receive character and status */
726 c <<= 8;
727 c |= ZS_READ(zc, 1);
728
729 /* clear receive error & interrupt condition */
730 zc->zc_csr = ZSWR0_RESET_ERRORS;
731 zc->zc_csr = ZSWR0_CLR_INTR;
732
733 return (ZRING_MAKE(ZRING_RINT, c));
734
735 clearit:
736 zc->zc_csr = ZSWR0_RESET_ERRORS;
737 zc->zc_csr = ZSWR0_CLR_INTR;
738 return (0);
739 }
740
741 static int
742 zsxint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
743 {
744 register int i = cs->cs_tbc;
745
746 if (i == 0) {
747 zc->zc_csr = ZSWR0_RESET_TXINT;
748 zc->zc_csr = ZSWR0_CLR_INTR;
749 return (ZRING_MAKE(ZRING_XINT, 0));
750 }
751 cs->cs_tbc = i - 1;
752 zc->zc_data = *cs->cs_tba++;
753 zc->zc_csr = ZSWR0_CLR_INTR;
754 return (0);
755 }
756
757 static int
758 zssint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
759 {
760 register int rr0;
761
762 rr0 = zc->zc_csr;
763 zc->zc_csr = ZSWR0_RESET_STATUS;
764 zc->zc_csr = ZSWR0_CLR_INTR;
765 /*
766 * The chip's hardware flow control is, as noted in zsreg.h,
767 * busted---if the DCD line goes low the chip shuts off the
768 * receiver (!). If we want hardware CTS flow control but do
769 * not have it, and carrier is now on, turn HFC on; if we have
770 * HFC now but carrier has gone low, turn it off.
771 */
772 if (rr0 & ZSRR0_DCD) {
773 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
774 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
775 cs->cs_creg[3] |= ZSWR3_HFC;
776 ZS_WRITE(zc, 3, cs->cs_creg[3]);
777 }
778 } else {
779 if (cs->cs_creg[3] & ZSWR3_HFC) {
780 cs->cs_creg[3] &= ~ZSWR3_HFC;
781 ZS_WRITE(zc, 3, cs->cs_creg[3]);
782 }
783 }
784 if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
785 zsabort();
786 return (0);
787 }
788 return (ZRING_MAKE(ZRING_SINT, rr0));
789 }
790
791 zsabort()
792 {
793
794 printf("stopping on keyboard abort\n");
795 callrom();
796 }
797
798 #ifdef KGDB
799 /*
800 * KGDB framing character received: enter kernel debugger. This probably
801 * should time out after a few seconds to avoid hanging on spurious input.
802 */
803 zskgdb(int unit)
804 {
805
806 printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
807 kgdb_connect(1);
808 }
809 #endif
810
811 /*
812 * Print out a ring or fifo overrun error message.
813 */
814 static void
815 zsoverrun(int unit, long *ptime, char *what)
816 {
817
818 if (*ptime != time.tv_sec) {
819 *ptime = time.tv_sec;
820 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
821 (unit & 1) + 'a', what);
822 }
823 }
824
825 /*
826 * ZS software interrupt. Scan all channels for deferred interrupts.
827 */
828 int
829 zssoft(void *arg)
830 {
831 register struct zs_chanstate *cs;
832 register volatile struct zschan *zc;
833 register struct linesw *line;
834 register struct tty *tp;
835 register int get, n, c, cc, unit, s;
836
837 for (cs = zslist; cs != NULL; cs = cs->cs_next) {
838 get = cs->cs_rbget;
839 again:
840 n = cs->cs_rbput; /* atomic */
841 if (get == n) /* nothing more on this line */
842 continue;
843 unit = cs->cs_unit; /* set up to handle interrupts */
844 zc = cs->cs_zc;
845 tp = cs->cs_ttyp;
846 line = &linesw[tp->t_line];
847 /*
848 * Compute the number of interrupts in the receive ring.
849 * If the count is overlarge, we lost some events, and
850 * must advance to the first valid one. It may get
851 * overwritten if more data are arriving, but this is
852 * too expensive to check and gains nothing (we already
853 * lost out; all we can do at this point is trade one
854 * kind of loss for another).
855 */
856 n -= get;
857 if (n > ZLRB_RING_SIZE) {
858 zsoverrun(unit, &cs->cs_rotime, "ring");
859 get += n - ZLRB_RING_SIZE;
860 n = ZLRB_RING_SIZE;
861 }
862 while (--n >= 0) {
863 /* race to keep ahead of incoming interrupts */
864 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
865 switch (ZRING_TYPE(c)) {
866
867 case ZRING_RINT:
868 c = ZRING_VALUE(c);
869 if (c & ZSRR1_DO)
870 zsoverrun(unit, &cs->cs_fotime, "fifo");
871 cc = c >> 8;
872 if (c & ZSRR1_FE)
873 cc |= TTY_FE;
874 if (c & ZSRR1_PE)
875 cc |= TTY_PE;
876 /*
877 * this should be done through
878 * bstreams XXX gag choke
879 */
880 if (unit == ZS_KBD)
881 kbd_rint(cc);
882 else if (unit == ZS_MOUSE)
883 ms_rint(cc);
884 else
885 line->l_rint(cc, tp);
886 break;
887
888 case ZRING_XINT:
889 /*
890 * Transmit done: change registers and resume,
891 * or clear BUSY.
892 */
893 if (cs->cs_heldchange) {
894 s = splzs();
895 c = zc->zc_csr;
896 if ((c & ZSRR0_DCD) == 0)
897 cs->cs_preg[3] &= ~ZSWR3_HFC;
898 bcopy((caddr_t)cs->cs_preg,
899 (caddr_t)cs->cs_creg, 16);
900 zs_loadchannelregs(zc, cs->cs_creg);
901 splx(s);
902 cs->cs_heldchange = 0;
903 if (cs->cs_heldtbc &&
904 (tp->t_state & TS_TTSTOP) == 0) {
905 cs->cs_tbc = cs->cs_heldtbc - 1;
906 zc->zc_data = *cs->cs_tba++;
907 goto again;
908 }
909 }
910 tp->t_state &= ~TS_BUSY;
911 if (tp->t_state & TS_FLUSH)
912 tp->t_state &= ~TS_FLUSH;
913 else
914 ndflush(&tp->t_outq,
915 cs->cs_tba - tp->t_outq.c_cf);
916 line->l_start(tp);
917 break;
918
919 case ZRING_SINT:
920 /*
921 * Status line change. HFC bit is run in
922 * hardware interrupt, to avoid locking
923 * at splzs here.
924 */
925 c = ZRING_VALUE(c);
926 if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
927 cc = (c & ZSRR0_DCD) != 0;
928 if (line->l_modem(tp, cc) == 0)
929 zs_modem(cs, cc);
930 }
931 cs->cs_rr0 = c;
932 break;
933
934 default:
935 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
936 unit >> 1, (unit & 1) + 'a', c);
937 break;
938 }
939 }
940 cs->cs_rbget = get;
941 goto again;
942 }
943 return (1);
944 }
945
946 int
947 zsioctl(dev_t dev, int cmd, caddr_t data, int flag, struct proc *p)
948 {
949 int unit = minor(dev);
950 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
951 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
952 register int error;
953
954 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
955 if (error >= 0)
956 return (error);
957 error = ttioctl(tp, cmd, data, flag);
958 if (error >= 0)
959 return (error);
960
961 switch (cmd) {
962
963 case TIOCSBRK:
964 /* FINISH ME ... need implicit TIOCCBRK in zsclose as well */
965
966 case TIOCCBRK:
967
968 case TIOCSDTR:
969
970 case TIOCCDTR:
971
972 case TIOCMSET:
973
974 case TIOCMBIS:
975
976 case TIOCMBIC:
977
978 case TIOCMGET:
979
980 default:
981 return (ENOTTY);
982 }
983 return (0);
984 }
985
986 /*
987 * Start or restart transmission.
988 */
989 static void
990 zsstart(register struct tty *tp)
991 {
992 register struct zs_chanstate *cs;
993 register int s, nch;
994 int unit = minor(tp->t_dev);
995 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
996
997 cs = &zi->zi_cs[unit & 1];
998 s = spltty();
999
1000 /*
1001 * If currently active or delaying, no need to do anything.
1002 */
1003 if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1004 goto out;
1005
1006 /*
1007 * If there are sleepers, and output has drained below low
1008 * water mark, awaken.
1009 */
1010 if (tp->t_outq.c_cc <= tp->t_lowat) {
1011 if (tp->t_state & TS_ASLEEP) {
1012 tp->t_state &= ~TS_ASLEEP;
1013 wakeup((caddr_t)&tp->t_outq);
1014 }
1015 selwakeup(&tp->t_wsel);
1016 }
1017
1018 nch = ndqb(&tp->t_outq, 0); /* XXX */
1019 if (nch) {
1020 register char *p = tp->t_outq.c_cf;
1021
1022 /* mark busy, enable tx done interrupts, & send first byte */
1023 tp->t_state |= TS_BUSY;
1024 (void) splzs();
1025 cs->cs_preg[1] |= ZSWR1_TIE;
1026 cs->cs_creg[1] |= ZSWR1_TIE;
1027 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1028 cs->cs_zc->zc_data = *p;
1029 cs->cs_tba = p + 1;
1030 cs->cs_tbc = nch - 1;
1031 } else {
1032 /*
1033 * Nothing to send, turn off transmit done interrupts.
1034 * This is useful if something is doing polled output.
1035 */
1036 (void) splzs();
1037 cs->cs_preg[1] &= ~ZSWR1_TIE;
1038 cs->cs_creg[1] &= ~ZSWR1_TIE;
1039 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1040 }
1041 out:
1042 splx(s);
1043 }
1044
1045 /*
1046 * Stop output, e.g., for ^S or output flush.
1047 */
1048 static void
1049 zsstop(register struct tty *tp, int flag)
1050 {
1051 register struct zs_chanstate *cs;
1052 register int s, unit = minor(tp->t_dev);
1053 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1054
1055 cs = &zi->zi_cs[unit & 1];
1056 s = splzs();
1057 if (tp->t_state & TS_BUSY) {
1058 /*
1059 * Device is transmitting; must stop it.
1060 */
1061 cs->cs_tbc = 0;
1062 if ((tp->t_state & TS_TTSTOP) == 0)
1063 tp->t_state |= TS_FLUSH;
1064 }
1065 splx(s);
1066 }
1067
1068 /*
1069 * Set ZS tty parameters from termios.
1070 *
1071 * This routine makes use of the fact that only registers
1072 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1073 */
1074 static int
1075 zsparam(register struct tty *tp, register struct termios *t)
1076 {
1077 int unit = minor(tp->t_dev);
1078 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1079 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1080 register int tmp, tmp5, cflag, s;
1081
1082 /*
1083 * Because PCLK is only run at 4.9 MHz, the fastest we
1084 * can go is 51200 baud (this corresponds to TC=1).
1085 * This is somewhat unfortunate as there is no real
1086 * reason we should not be able to handle higher rates.
1087 */
1088 tmp = t->c_ospeed;
1089 if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
1090 return (EINVAL);
1091 if (tmp == 0) {
1092 /* stty 0 => drop DTR and RTS */
1093 zs_modem(cs, 0);
1094 return (0);
1095 }
1096 tmp = BPS_TO_TCONST(PCLK / 16, tmp);
1097 if (tmp < 2)
1098 return (EINVAL);
1099
1100 cflag = t->c_cflag;
1101 tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
1102 tp->t_cflag = cflag;
1103
1104 /*
1105 * Block interrupts so that state will not
1106 * be altered until we are done setting it up.
1107 */
1108 s = splzs();
1109 cs->cs_preg[12] = tmp;
1110 cs->cs_preg[13] = tmp >> 8;
1111 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1112 switch (cflag & CSIZE) {
1113 case CS5:
1114 tmp = ZSWR3_RX_5;
1115 tmp5 = ZSWR5_TX_5;
1116 break;
1117 case CS6:
1118 tmp = ZSWR3_RX_6;
1119 tmp5 = ZSWR5_TX_6;
1120 break;
1121 case CS7:
1122 tmp = ZSWR3_RX_7;
1123 tmp5 = ZSWR5_TX_7;
1124 break;
1125 case CS8:
1126 default:
1127 tmp = ZSWR3_RX_8;
1128 tmp5 = ZSWR5_TX_8;
1129 break;
1130 }
1131
1132 /*
1133 * Output hardware flow control on the chip is horrendous: if
1134 * carrier detect drops, the receiver is disabled. Hence we
1135 * can only do this when the carrier is on.
1136 */
1137 if (cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1138 tmp |= ZSWR3_HFC | ZSWR3_RX_ENABLE;
1139 else
1140 tmp |= ZSWR3_RX_ENABLE;
1141 cs->cs_preg[3] = tmp;
1142 cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1143
1144 tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
1145 if ((cflag & PARODD) == 0)
1146 tmp |= ZSWR4_EVENP;
1147 if (cflag & PARENB)
1148 tmp |= ZSWR4_PARENB;
1149 cs->cs_preg[4] = tmp;
1150 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR;
1151 cs->cs_preg[10] = ZSWR10_NRZ;
1152 cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
1153 cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
1154 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1155
1156 /*
1157 * If nothing is being transmitted, set up new current values,
1158 * else mark them as pending.
1159 */
1160 if (cs->cs_heldchange == 0) {
1161 if (cs->cs_ttyp->t_state & TS_BUSY) {
1162 cs->cs_heldtbc = cs->cs_tbc;
1163 cs->cs_tbc = 0;
1164 cs->cs_heldchange = 1;
1165 } else {
1166 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1167 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1168 }
1169 }
1170 splx(s);
1171 return (0);
1172 }
1173
1174 /*
1175 * Raise or lower modem control (DTR/RTS) signals. If a character is
1176 * in transmission, the change is deferred.
1177 */
1178 static void
1179 zs_modem(struct zs_chanstate *cs, int onoff)
1180 {
1181 int s, bis, and;
1182
1183 if (onoff) {
1184 bis = ZSWR5_DTR | ZSWR5_RTS;
1185 and = ~0;
1186 } else {
1187 bis = 0;
1188 and = ~(ZSWR5_DTR | ZSWR5_RTS);
1189 }
1190 s = splzs();
1191 cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
1192 if (cs->cs_heldchange == 0) {
1193 if (cs->cs_ttyp->t_state & TS_BUSY) {
1194 cs->cs_heldtbc = cs->cs_tbc;
1195 cs->cs_tbc = 0;
1196 cs->cs_heldchange = 1;
1197 } else {
1198 cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
1199 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1200 }
1201 }
1202 splx(s);
1203 }
1204
1205 /*
1206 * Write the given register set to the given zs channel in the proper order.
1207 * The channel must not be transmitting at the time. The receiver will
1208 * be disabled for the time it takes to write all the registers.
1209 */
1210 static void
1211 zs_loadchannelregs(volatile struct zschan *zc, u_char *reg)
1212 {
1213 int i;
1214
1215 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1216 i = zc->zc_data; /* drain fifo */
1217 i = zc->zc_data;
1218 i = zc->zc_data;
1219 ZS_WRITE(zc, 4, reg[4]);
1220 ZS_WRITE(zc, 10, reg[10]);
1221 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1222 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1223 ZS_WRITE(zc, 1, reg[1]);
1224 ZS_WRITE(zc, 9, reg[9]);
1225 ZS_WRITE(zc, 11, reg[11]);
1226 ZS_WRITE(zc, 12, reg[12]);
1227 ZS_WRITE(zc, 13, reg[13]);
1228 ZS_WRITE(zc, 14, reg[14]);
1229 ZS_WRITE(zc, 15, reg[15]);
1230 ZS_WRITE(zc, 3, reg[3]);
1231 ZS_WRITE(zc, 5, reg[5]);
1232 }
1233
1234 #ifdef KGDB
1235 /*
1236 * Get a character from the given kgdb channel. Called at splhigh().
1237 */
1238 static int
1239 zs_kgdb_getc(void *arg)
1240 {
1241 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1242
1243 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
1244 continue;
1245 return (zc->zc_data);
1246 }
1247
1248 /*
1249 * Put a character to the given kgdb channel. Called at splhigh().
1250 */
1251 static void
1252 zs_kgdb_putc(void *arg, int c)
1253 {
1254 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1255
1256 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
1257 continue;
1258 zc->zc_data = c;
1259 }
1260
1261 /*
1262 * Set up for kgdb; called at boot time before configuration.
1263 * KGDB interrupts will be enabled later when zs0 is configured.
1264 */
1265 void
1266 zs_kgdb_init()
1267 {
1268 volatile struct zsdevice *addr;
1269 volatile struct zschan *zc;
1270 int unit, zs;
1271
1272 if (major(kgdb_dev) != ZSMAJOR)
1273 return;
1274 unit = minor(kgdb_dev);
1275 /*
1276 * Unit must be 0 or 1 (zs0).
1277 */
1278 if ((unsigned)unit >= ZS_KBD) {
1279 printf("zs_kgdb_init: bad minor dev %d\n", unit);
1280 return;
1281 }
1282 zs = unit >> 1;
1283 if ((addr = zsaddr[zs]) == NULL)
1284 addr = zsaddr[zs] = findzs(zs);
1285 unit &= 1;
1286 zc = unit == 0 ? &addr->zs_chan[CHAN_A] : &addr->zs_chan[CHAN_B];
1287 zs_kgdb_savedspeed = zs_getspeed(zc);
1288 printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
1289 zs, unit + 'a', kgdb_rate);
1290 zs_reset(zc, 1, kgdb_rate);
1291 kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
1292 }
1293 #endif /* KGDB */
1294