zs.c revision 1.10 1 /*
2 * Copyright (c) 1992, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This software was developed by the Computer Systems Engineering group
6 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7 * contributed to Berkeley.
8 *
9 * All advertising materials mentioning features or use of this software
10 * must display the following acknowledgement:
11 * This product includes software developed by the University of
12 * California, Lawrence Berkeley Laboratory.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the University of
25 * California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 * may be used to endorse or promote products derived from this software
28 * without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 * @(#)zs.c 8.1 (Berkeley) 7/19/93
43 *
44 * from: Header: zs.c,v 1.30 93/07/19 23:44:42 torek Exp
45 * $Id: zs.c,v 1.10 1994/06/24 08:11:53 deraadt Exp $
46 */
47
48 /*
49 * Zilog Z8530 (ZSCC) driver.
50 *
51 * Runs two tty ports (ttya and ttyb) on zs0,
52 * and runs a keyboard and mouse on zs1.
53 *
54 * This driver knows far too much about chip to usage mappings.
55 */
56 #define NZS 2 /* XXX */
57
58 #include <sys/param.h>
59 #include <sys/proc.h>
60 #include <sys/device.h>
61 #include <sys/conf.h>
62 #include <sys/file.h>
63 #include <sys/ioctl.h>
64 #include <sys/tty.h>
65 #include <sys/time.h>
66 #include <sys/kernel.h>
67 #include <sys/syslog.h>
68
69 #include <machine/autoconf.h>
70 #include <machine/cpu.h>
71
72 #include <sparc/sparc/vaddrs.h>
73 #include <sparc/sparc/auxreg.h>
74
75 #include <sparc/dev/kbd.h>
76 #include <sparc/dev/zsreg.h>
77 #include <sparc/dev/zsvar.h>
78
79 #ifdef KGDB
80 #include <machine/remote-sl.h>
81 #endif
82
83 #define ZSMAJOR 12 /* XXX */
84
85 #define ZS_KBD 2 /* XXX */
86 #define ZS_MOUSE 3 /* XXX */
87
88 /* the magic number below was stolen from the Sprite source. */
89 #define PCLK (19660800/4) /* PCLK pin input clock rate */
90
91 /*
92 * Select software interrupt bit based on TTY ipl.
93 */
94 #if PIL_TTY == 1
95 # define IE_ZSSOFT IE_L1
96 #elif PIL_TTY == 4
97 # define IE_ZSSOFT IE_L4
98 #elif PIL_TTY == 6
99 # define IE_ZSSOFT IE_L6
100 #else
101 # error "no suitable software interrupt bit"
102 #endif
103
104 /*
105 * Software state per found chip. This would be called `zs_softc',
106 * but the previous driver had a rather different zs_softc....
107 */
108 struct zsinfo {
109 struct device zi_dev; /* base device */
110 volatile struct zsdevice *zi_zs;/* chip registers */
111 struct zs_chanstate zi_cs[2]; /* channel A and B software state */
112 };
113
114 struct tty *zs_tty[NZS * 2]; /* XXX should be dynamic */
115
116 /* Definition of the driver for autoconfig. */
117 static int zsmatch(struct device *, struct cfdata *, void *);
118 static void zsattach(struct device *, struct device *, void *);
119 struct cfdriver zscd =
120 { NULL, "zs", zsmatch, zsattach, DV_TTY, sizeof(struct zsinfo) };
121
122 /* Interrupt handlers. */
123 static int zshard(void *);
124 static struct intrhand levelhard = { zshard };
125 static int zssoft(void *);
126 static struct intrhand levelsoft = { zssoft };
127
128 struct zs_chanstate *zslist;
129
130 /* Routines called from other code. */
131 static void zsiopen(struct tty *);
132 static void zsiclose(struct tty *);
133 static void zsstart(struct tty *);
134 void zsstop(struct tty *, int);
135 static int zsparam(struct tty *, struct termios *);
136
137 /* Routines purely local to this driver. */
138 static int zs_getspeed(volatile struct zschan *);
139 static void zs_reset(volatile struct zschan *, int, int);
140 static void zs_modem(struct zs_chanstate *, int);
141 static void zs_loadchannelregs(volatile struct zschan *, u_char *);
142
143 /* Console stuff. */
144 static struct tty *zs_ctty; /* console `struct tty *' */
145 static int zs_consin = -1, zs_consout = -1;
146 static int zscnputc(int); /* console putc function */
147 static volatile struct zschan *zs_conschan;
148 static struct tty *zs_checkcons(struct zsinfo *, int, struct zs_chanstate *);
149
150 #ifdef KGDB
151 /* KGDB stuff. Must reboot to change zs_kgdbunit. */
152 extern int kgdb_dev, kgdb_rate;
153 static int zs_kgdb_savedspeed;
154 static void zs_checkkgdb(int, struct zs_chanstate *, struct tty *);
155 #endif
156
157 extern volatile struct zsdevice *findzs(int);
158 static volatile struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */
159
160 /*
161 * Console keyboard L1-A processing is done in the hardware interrupt code,
162 * so we need to duplicate some of the console keyboard decode state. (We
163 * must not use the regular state as the hardware code keeps ahead of the
164 * software state: the software state tracks the most recent ring input but
165 * the hardware state tracks the most recent ZSCC input.) See also kbd.h.
166 */
167 static struct conk_state { /* console keyboard state */
168 char conk_id; /* true => ID coming up (console only) */
169 char conk_l1; /* true => L1 pressed (console only) */
170 } zsconk_state;
171
172 int zshardscope;
173 int zsshortcuts; /* number of "shortcut" software interrupts */
174
175 /*
176 * Match slave number to zs unit number, so that misconfiguration will
177 * not set up the keyboard as ttya, etc.
178 */
179 static int
180 zsmatch(struct device *parent, struct cfdata *cf, void *aux)
181 {
182 struct romaux *ra = aux;
183
184 return (getpropint(ra->ra_node, "slave", -2) == cf->cf_unit);
185 }
186
187 /*
188 * Attach a found zs.
189 *
190 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
191 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
192 */
193 static void
194 zsattach(struct device *parent, struct device *dev, void *aux)
195 {
196 register int zs = dev->dv_unit, unit;
197 register struct zsinfo *zi;
198 register struct zs_chanstate *cs;
199 register volatile struct zsdevice *addr;
200 register struct tty *tp, *ctp;
201 register struct romaux *ra = aux;
202 int pri, softcar;
203 static int didintr, prevpri;
204
205 if ((addr = zsaddr[zs]) == NULL)
206 addr = zsaddr[zs] = findzs(zs);
207 if ((void *)addr != ra->ra_vaddr)
208 panic("zsattach");
209 if (ra->ra_nintr != 1) {
210 printf(": expected 1 interrupt, got %d\n", ra->ra_nintr);
211 return;
212 }
213 pri = ra->ra_intr[0].int_pri;
214 printf(" pri %d, softpri %d\n", pri, PIL_TTY);
215 if (!didintr) {
216 didintr = 1;
217 prevpri = pri;
218 intr_establish(pri, &levelhard);
219 intr_establish(PIL_TTY, &levelsoft);
220 } else if (pri != prevpri)
221 panic("broken zs interrupt scheme");
222 zi = (struct zsinfo *)dev;
223 zi->zi_zs = addr;
224 unit = zs * 2;
225 cs = zi->zi_cs;
226
227 if(!zs_tty[unit])
228 zs_tty[unit] = ttymalloc();
229 tp = zs_tty[unit];
230 if(!zs_tty[unit+1])
231 zs_tty[unit+1] = ttymalloc();
232
233 if (unit == 0) {
234 /* Get software carrier flags from options node in OPENPROM. */
235 extern int optionsnode;
236
237 softcar = 0;
238 if (*getpropstring(optionsnode, "ttya-ignore-cd") == 't')
239 softcar |= 1;
240 if (*getpropstring(optionsnode, "ttyb-ignore-cd") == 't')
241 softcar |= 2;
242 } else
243 softcar = dev->dv_cfdata->cf_flags;
244
245 /* link into interrupt list with order (A,B) (B=A+1) */
246 cs[0].cs_next = &cs[1];
247 cs[1].cs_next = zslist;
248 zslist = cs;
249
250 cs->cs_unit = unit;
251 cs->cs_speed = zs_getspeed(&addr->zs_chan[CHAN_A]);
252 cs->cs_softcar = softcar & 1;
253 cs->cs_zc = &addr->zs_chan[CHAN_A];
254 tp->t_dev = makedev(ZSMAJOR, unit);
255 tp->t_oproc = zsstart;
256 tp->t_param = zsparam;
257 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
258 tp = ctp;
259 cs->cs_ttyp = tp;
260 #ifdef KGDB
261 if (ctp == NULL)
262 zs_checkkgdb(unit, cs, tp);
263 #endif
264 if (unit == ZS_KBD) {
265 /*
266 * Keyboard: tell /dev/kbd driver how to talk to us.
267 */
268 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
269 tp->t_cflag = CS8;
270 kbd_serial(tp, zsiopen, zsiclose);
271 cs->cs_conk = 1; /* do L1-A processing */
272 }
273 unit++;
274 cs++;
275 tp = zs_tty[unit];
276 cs->cs_unit = unit;
277 cs->cs_speed = zs_getspeed(&addr->zs_chan[CHAN_B]);
278 cs->cs_softcar = softcar & 2;
279 cs->cs_zc = &addr->zs_chan[CHAN_B];
280 tp->t_dev = makedev(ZSMAJOR, unit);
281 tp->t_oproc = zsstart;
282 tp->t_param = zsparam;
283 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
284 tp = ctp;
285 cs->cs_ttyp = tp;
286 #ifdef KGDB
287 if (ctp == NULL)
288 zs_checkkgdb(unit, cs, tp);
289 #endif
290 if (unit == ZS_MOUSE) {
291 /*
292 * Mouse: tell /dev/mouse driver how to talk to us.
293 */
294 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
295 tp->t_cflag = CS8;
296 ms_serial(tp, zsiopen, zsiclose);
297 }
298 }
299
300 /*
301 * Put a channel in a known state. Interrupts may be left disabled
302 * or enabled, as desired.
303 */
304 static void
305 zs_reset(zc, inten, speed)
306 volatile struct zschan *zc;
307 int inten, speed;
308 {
309 int tconst;
310 static u_char reg[16] = {
311 0,
312 0,
313 0,
314 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
315 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
316 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
317 0,
318 0,
319 0,
320 0,
321 ZSWR10_NRZ,
322 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
323 0,
324 0,
325 ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
326 ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
327 };
328
329 reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
330 tconst = BPS_TO_TCONST(PCLK / 16, speed);
331 reg[12] = tconst;
332 reg[13] = tconst >> 8;
333 zs_loadchannelregs(zc, reg);
334 }
335
336 /*
337 * Declare the given tty (which is in fact &cons) as a console input
338 * or output. This happens before the zs chip is attached; the hookup
339 * is finished later, in zs_setcons() below.
340 *
341 * This is used only for ports a and b. The console keyboard is decoded
342 * independently (we always send unit-2 input to /dev/kbd, which will
343 * direct it to /dev/console if appropriate).
344 */
345 void
346 zsconsole(tp, unit, out, fnstop)
347 register struct tty *tp;
348 register int unit;
349 int out;
350 void (**fnstop) __P((struct tty *, int));
351 {
352 extern int (*v_putc)();
353 int zs;
354 volatile struct zsdevice *addr;
355
356 if (unit >= ZS_KBD)
357 panic("zsconsole");
358 if (out) {
359 zs_consout = unit;
360 zs = unit >> 1;
361 if ((addr = zsaddr[zs]) == NULL)
362 addr = zsaddr[zs] = findzs(zs);
363 zs_conschan = (unit & 1) == 0 ? &addr->zs_chan[CHAN_A] :
364 &addr->zs_chan[CHAN_B];
365 v_putc = zscnputc;
366 } else
367 zs_consin = unit;
368 if(fnstop)
369 *fnstop = &zsstop;
370 zs_ctty = tp;
371 }
372
373 /*
374 * Polled console output putchar.
375 */
376 static int
377 zscnputc(c)
378 int c;
379 {
380 register volatile struct zschan *zc = zs_conschan;
381 register int s;
382
383 if (c == '\n')
384 zscnputc('\r');
385 /*
386 * Must block output interrupts (i.e., raise to >= splzs) without
387 * lowering current ipl. Need a better way.
388 */
389 s = splhigh();
390 #ifdef SUN4C /* XXX */
391 if (s <= (12 << 8))
392 (void) splzs();
393 #endif
394 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
395 continue;
396 zc->zc_data = c;
397 splx(s);
398 }
399
400 /*
401 * Set up the given unit as console input, output, both, or neither, as
402 * needed. Return console tty if it is to receive console input.
403 */
404 static struct tty *
405 zs_checkcons(struct zsinfo *zi, int unit, struct zs_chanstate *cs)
406 {
407 register struct tty *tp;
408 char *i, *o;
409
410 if ((tp = zs_ctty) == NULL)
411 return (0);
412 i = zs_consin == unit ? "input" : NULL;
413 o = zs_consout == unit ? "output" : NULL;
414 if (i == NULL && o == NULL)
415 return (0);
416
417 /* rewire the minor device (gack) */
418 tp->t_dev = makedev(major(tp->t_dev), unit);
419
420 /*
421 * Rewire input and/or output. Note that baud rate reflects
422 * input settings, not output settings, but we can do no better
423 * if the console is split across two ports.
424 *
425 * XXX split consoles don't work anyway -- this needs to be
426 * thrown away and redone
427 */
428 if (i) {
429 tp->t_param = zsparam;
430 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
431 tp->t_cflag = CS8;
432 ttsetwater(tp);
433 }
434 if (o) {
435 tp->t_oproc = zsstart;
436 }
437 printf("%s%c: console %s\n",
438 zi->zi_dev.dv_xname, (unit & 1) + 'a', i ? (o ? "i/o" : i) : o);
439 cs->cs_consio = 1;
440 cs->cs_brkabort = 1;
441 return (tp);
442 }
443
444 #ifdef KGDB
445 /*
446 * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
447 * Pick up the current speed and character size and restore the original
448 * speed.
449 */
450 static void
451 zs_checkkgdb(int unit, struct zs_chanstate *cs, struct tty *tp)
452 {
453
454 if (kgdb_dev == makedev(ZSMAJOR, unit)) {
455 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
456 tp->t_cflag = CS8;
457 cs->cs_kgdb = 1;
458 cs->cs_speed = zs_kgdb_savedspeed;
459 (void) zsparam(tp, &tp->t_termios);
460 }
461 }
462 #endif
463
464 /*
465 * Compute the current baud rate given a ZSCC channel.
466 */
467 static int
468 zs_getspeed(zc)
469 register volatile struct zschan *zc;
470 {
471 register int tconst;
472
473 tconst = ZS_READ(zc, 12);
474 tconst |= ZS_READ(zc, 13) << 8;
475 return (TCONST_TO_BPS(PCLK / 16, tconst));
476 }
477
478
479 /*
480 * Do an internal open.
481 */
482 static void
483 zsiopen(struct tty *tp)
484 {
485
486 (void) zsparam(tp, &tp->t_termios);
487 ttsetwater(tp);
488 tp->t_state = TS_ISOPEN | TS_CARR_ON;
489 }
490
491 /*
492 * Do an internal close. Eventually we should shut off the chip when both
493 * ports on it are closed.
494 */
495 static void
496 zsiclose(struct tty *tp)
497 {
498
499 ttylclose(tp, 0); /* ??? */
500 ttyclose(tp); /* ??? */
501 tp->t_state = 0;
502 }
503
504
505 /*
506 * Open a zs serial port. This interface may not be used to open
507 * the keyboard and mouse ports. (XXX)
508 */
509 int
510 zsopen(dev_t dev, int flags, int mode, struct proc *p)
511 {
512 register struct tty *tp;
513 register struct zs_chanstate *cs;
514 struct zsinfo *zi;
515 int unit = minor(dev), zs = unit >> 1, error, s;
516
517 if (zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL ||
518 unit == ZS_KBD || unit == ZS_MOUSE)
519 return (ENXIO);
520 cs = &zi->zi_cs[unit & 1];
521 if (cs->cs_consio)
522 return (ENXIO); /* ??? */
523 tp = cs->cs_ttyp;
524 s = spltty();
525 if ((tp->t_state & TS_ISOPEN) == 0) {
526 ttychars(tp);
527 if (tp->t_ispeed == 0) {
528 tp->t_iflag = TTYDEF_IFLAG;
529 tp->t_oflag = TTYDEF_OFLAG;
530 tp->t_cflag = TTYDEF_CFLAG;
531 tp->t_lflag = TTYDEF_LFLAG;
532 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
533 }
534 (void) zsparam(tp, &tp->t_termios);
535 ttsetwater(tp);
536 } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
537 splx(s);
538 return (EBUSY);
539 }
540 error = 0;
541 for (;;) {
542 /* loop, turning on the device, until carrier present */
543 zs_modem(cs, 1);
544 if (cs->cs_softcar)
545 tp->t_state |= TS_CARR_ON;
546 if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
547 tp->t_state & TS_CARR_ON)
548 break;
549 tp->t_state |= TS_WOPEN;
550 if (error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
551 ttopen, 0))
552 break;
553 }
554 splx(s);
555 if (error == 0)
556 error = linesw[tp->t_line].l_open(dev, tp);
557 if (error)
558 zs_modem(cs, 0);
559 return (error);
560 }
561
562 /*
563 * Close a zs serial port.
564 */
565 int
566 zsclose(dev_t dev, int flags, int mode, struct proc *p)
567 {
568 register struct zs_chanstate *cs;
569 register struct tty *tp;
570 struct zsinfo *zi;
571 int unit = minor(dev), s;
572
573 zi = zscd.cd_devs[unit >> 1];
574 cs = &zi->zi_cs[unit & 1];
575 tp = cs->cs_ttyp;
576 linesw[tp->t_line].l_close(tp, flags);
577 if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
578 (tp->t_state & TS_ISOPEN) == 0) {
579 zs_modem(cs, 0);
580 /* hold low for 1 second */
581 (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
582 }
583 if (cs->cs_creg[5] & ZSWR5_BREAK)
584 {
585 s = splzs();
586 cs->cs_preg[5] &= ~ZSWR5_BREAK;
587 cs->cs_creg[5] &= ~ZSWR5_BREAK;
588 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
589 splx(s);
590 }
591 ttyclose(tp);
592 #ifdef KGDB
593 /* Reset the speed if we're doing kgdb on this port */
594 if (cs->cs_kgdb) {
595 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
596 (void) zsparam(tp, &tp->t_termios);
597 }
598 #endif
599 return (0);
600 }
601
602 /*
603 * Read/write zs serial port.
604 */
605 int
606 zsread(dev_t dev, struct uio *uio, int flags)
607 {
608 register struct tty *tp = zs_tty[minor(dev)];
609
610 return (linesw[tp->t_line].l_read(tp, uio, flags));
611 }
612
613 int
614 zswrite(dev_t dev, struct uio *uio, int flags)
615 {
616 register struct tty *tp = zs_tty[minor(dev)];
617
618 return (linesw[tp->t_line].l_write(tp, uio, flags));
619 }
620
621 /*
622 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
623 * channels are kept in (A,B) pairs.
624 *
625 * Do just a little, then get out; set a software interrupt if more
626 * work is needed.
627 *
628 * We deliberately ignore the vectoring Zilog gives us, and match up
629 * only the number of `reset interrupt under service' operations, not
630 * the order.
631 */
632 /* ARGSUSED */
633 int
634 zshard(void *intrarg)
635 {
636 register struct zs_chanstate *a;
637 #define b (a + 1)
638 register volatile struct zschan *zc;
639 register int rr3, intflags = 0, v, i;
640 static int zsrint(struct zs_chanstate *, volatile struct zschan *);
641 static int zsxint(struct zs_chanstate *, volatile struct zschan *);
642 static int zssint(struct zs_chanstate *, volatile struct zschan *);
643
644 for (a = zslist; a != NULL; a = b->cs_next) {
645 rr3 = ZS_READ(a->cs_zc, 3);
646 if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
647 intflags |= 2;
648 zc = a->cs_zc;
649 i = a->cs_rbput;
650 if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
651 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
652 intflags |= 1;
653 }
654 if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
655 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
656 intflags |= 1;
657 }
658 if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
659 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
660 intflags |= 1;
661 }
662 a->cs_rbput = i;
663 }
664 if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
665 intflags |= 2;
666 zc = b->cs_zc;
667 i = b->cs_rbput;
668 if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
669 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
670 intflags |= 1;
671 }
672 if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
673 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
674 intflags |= 1;
675 }
676 if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
677 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
678 intflags |= 1;
679 }
680 b->cs_rbput = i;
681 }
682 }
683 #undef b
684 if (intflags & 1) {
685 #ifdef SUN4C /* XXX -- but this will go away when zshard moves to locore.s */
686 struct clockframe *p = intrarg;
687
688 if ((p->psr & PSR_PIL) < (PIL_TTY << 8)) {
689 zsshortcuts++;
690 (void) spltty();
691 if (zshardscope) {
692 LED_ON;
693 LED_OFF;
694 }
695 return (zssoft(intrarg));
696 }
697 #endif
698 ienab_bis(IE_ZSSOFT);
699 }
700 return (intflags & 2);
701 }
702
703 static int
704 zsrint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
705 {
706 register int c = zc->zc_data;
707
708 if (cs->cs_conk) {
709 register struct conk_state *conk = &zsconk_state;
710
711 /*
712 * Check here for console abort function, so that we
713 * can abort even when interrupts are locking up the
714 * machine.
715 */
716 if (c == KBD_RESET) {
717 conk->conk_id = 1; /* ignore next byte */
718 conk->conk_l1 = 0;
719 } else if (conk->conk_id)
720 conk->conk_id = 0; /* stop ignoring bytes */
721 else if (c == KBD_L1)
722 conk->conk_l1 = 1; /* L1 went down */
723 else if (c == (KBD_L1|KBD_UP))
724 conk->conk_l1 = 0; /* L1 went up */
725 else if (c == KBD_A && conk->conk_l1) {
726 zsabort();
727 conk->conk_l1 = 0; /* we never see the up */
728 goto clearit; /* eat the A after L1-A */
729 }
730 }
731 #ifdef KGDB
732 if (c == FRAME_START && cs->cs_kgdb &&
733 (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
734 zskgdb(cs->cs_unit);
735 goto clearit;
736 }
737 #endif
738 /* compose receive character and status */
739 c <<= 8;
740 c |= ZS_READ(zc, 1);
741
742 /* clear receive error & interrupt condition */
743 zc->zc_csr = ZSWR0_RESET_ERRORS;
744 zc->zc_csr = ZSWR0_CLR_INTR;
745
746 return (ZRING_MAKE(ZRING_RINT, c));
747
748 clearit:
749 zc->zc_csr = ZSWR0_RESET_ERRORS;
750 zc->zc_csr = ZSWR0_CLR_INTR;
751 return (0);
752 }
753
754 static int
755 zsxint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
756 {
757 register int i = cs->cs_tbc;
758
759 if (i == 0) {
760 zc->zc_csr = ZSWR0_RESET_TXINT;
761 zc->zc_csr = ZSWR0_CLR_INTR;
762 return (ZRING_MAKE(ZRING_XINT, 0));
763 }
764 cs->cs_tbc = i - 1;
765 zc->zc_data = *cs->cs_tba++;
766 zc->zc_csr = ZSWR0_CLR_INTR;
767 return (0);
768 }
769
770 static int
771 zssint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
772 {
773 register int rr0;
774
775 rr0 = zc->zc_csr;
776 zc->zc_csr = ZSWR0_RESET_STATUS;
777 zc->zc_csr = ZSWR0_CLR_INTR;
778 /*
779 * The chip's hardware flow control is, as noted in zsreg.h,
780 * busted---if the DCD line goes low the chip shuts off the
781 * receiver (!). If we want hardware CTS flow control but do
782 * not have it, and carrier is now on, turn HFC on; if we have
783 * HFC now but carrier has gone low, turn it off.
784 */
785 if (rr0 & ZSRR0_DCD) {
786 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
787 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
788 cs->cs_creg[3] |= ZSWR3_HFC;
789 ZS_WRITE(zc, 3, cs->cs_creg[3]);
790 }
791 } else {
792 if (cs->cs_creg[3] & ZSWR3_HFC) {
793 cs->cs_creg[3] &= ~ZSWR3_HFC;
794 ZS_WRITE(zc, 3, cs->cs_creg[3]);
795 }
796 }
797 if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
798 zsabort();
799 return (0);
800 }
801 return (ZRING_MAKE(ZRING_SINT, rr0));
802 }
803
804 zsabort()
805 {
806
807 #ifdef DDB
808 Debugger();
809 #else
810 printf("stopping on keyboard abort\n");
811 callrom();
812 #endif
813 }
814
815 #ifdef KGDB
816 /*
817 * KGDB framing character received: enter kernel debugger. This probably
818 * should time out after a few seconds to avoid hanging on spurious input.
819 */
820 zskgdb(int unit)
821 {
822
823 printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
824 kgdb_connect(1);
825 }
826 #endif
827
828 /*
829 * Print out a ring or fifo overrun error message.
830 */
831 static void
832 zsoverrun(int unit, long *ptime, char *what)
833 {
834
835 if (*ptime != time.tv_sec) {
836 *ptime = time.tv_sec;
837 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
838 (unit & 1) + 'a', what);
839 }
840 }
841
842 /*
843 * ZS software interrupt. Scan all channels for deferred interrupts.
844 */
845 int
846 zssoft(void *arg)
847 {
848 register struct zs_chanstate *cs;
849 register volatile struct zschan *zc;
850 register struct linesw *line;
851 register struct tty *tp;
852 register int get, n, c, cc, unit, s;
853
854 for (cs = zslist; cs != NULL; cs = cs->cs_next) {
855 get = cs->cs_rbget;
856 again:
857 n = cs->cs_rbput; /* atomic */
858 if (get == n) /* nothing more on this line */
859 continue;
860 unit = cs->cs_unit; /* set up to handle interrupts */
861 zc = cs->cs_zc;
862 tp = cs->cs_ttyp;
863 line = &linesw[tp->t_line];
864 /*
865 * Compute the number of interrupts in the receive ring.
866 * If the count is overlarge, we lost some events, and
867 * must advance to the first valid one. It may get
868 * overwritten if more data are arriving, but this is
869 * too expensive to check and gains nothing (we already
870 * lost out; all we can do at this point is trade one
871 * kind of loss for another).
872 */
873 n -= get;
874 if (n > ZLRB_RING_SIZE) {
875 zsoverrun(unit, &cs->cs_rotime, "ring");
876 get += n - ZLRB_RING_SIZE;
877 n = ZLRB_RING_SIZE;
878 }
879 while (--n >= 0) {
880 /* race to keep ahead of incoming interrupts */
881 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
882 switch (ZRING_TYPE(c)) {
883
884 case ZRING_RINT:
885 c = ZRING_VALUE(c);
886 if (c & ZSRR1_DO)
887 zsoverrun(unit, &cs->cs_fotime, "fifo");
888 cc = c >> 8;
889 if (c & ZSRR1_FE)
890 cc |= TTY_FE;
891 if (c & ZSRR1_PE)
892 cc |= TTY_PE;
893 /*
894 * this should be done through
895 * bstreams XXX gag choke
896 */
897 if (unit == ZS_KBD)
898 kbd_rint(cc);
899 else if (unit == ZS_MOUSE)
900 ms_rint(cc);
901 else
902 line->l_rint(cc, tp);
903 break;
904
905 case ZRING_XINT:
906 /*
907 * Transmit done: change registers and resume,
908 * or clear BUSY.
909 */
910 if (cs->cs_heldchange) {
911 s = splzs();
912 c = zc->zc_csr;
913 if ((c & ZSRR0_DCD) == 0)
914 cs->cs_preg[3] &= ~ZSWR3_HFC;
915 bcopy((caddr_t)cs->cs_preg,
916 (caddr_t)cs->cs_creg, 16);
917 zs_loadchannelregs(zc, cs->cs_creg);
918 splx(s);
919 cs->cs_heldchange = 0;
920 if (cs->cs_heldtbc &&
921 (tp->t_state & TS_TTSTOP) == 0) {
922 cs->cs_tbc = cs->cs_heldtbc - 1;
923 zc->zc_data = *cs->cs_tba++;
924 goto again;
925 }
926 }
927 tp->t_state &= ~TS_BUSY;
928 if (tp->t_state & TS_FLUSH)
929 tp->t_state &= ~TS_FLUSH;
930 else
931 ndflush(&tp->t_outq,
932 cs->cs_tba - (caddr_t)tp->t_outq.c_cf);
933 line->l_start(tp);
934 break;
935
936 case ZRING_SINT:
937 /*
938 * Status line change. HFC bit is run in
939 * hardware interrupt, to avoid locking
940 * at splzs here.
941 */
942 c = ZRING_VALUE(c);
943 if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
944 cc = (c & ZSRR0_DCD) != 0;
945 if (line->l_modem(tp, cc) == 0)
946 zs_modem(cs, cc);
947 }
948 cs->cs_rr0 = c;
949 break;
950
951 default:
952 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
953 unit >> 1, (unit & 1) + 'a', c);
954 break;
955 }
956 }
957 cs->cs_rbget = get;
958 goto again;
959 }
960 return (1);
961 }
962
963 int
964 zsioctl(dev_t dev, int cmd, caddr_t data, int flag, struct proc *p)
965 {
966 int unit = minor(dev);
967 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
968 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
969 register int error, s;
970 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
971
972 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
973 if (error >= 0)
974 return (error);
975 error = ttioctl(tp, cmd, data, flag, p);
976 if (error >= 0)
977 return (error);
978
979 switch (cmd) {
980
981 case TIOCSBRK:
982 {
983 s = splzs();
984 cs->cs_preg[5] |= ZSWR5_BREAK;
985 cs->cs_creg[5] |= ZSWR5_BREAK;
986 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
987 splx(s);
988 break;
989 }
990
991 case TIOCCBRK:
992 {
993 s = splzs();
994 cs->cs_preg[5] &= ~ZSWR5_BREAK;
995 cs->cs_creg[5] &= ~ZSWR5_BREAK;
996 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
997 splx(s);
998 break;
999 }
1000
1001 case TIOCSDTR:
1002
1003 case TIOCCDTR:
1004
1005 case TIOCMSET:
1006
1007 case TIOCMBIS:
1008
1009 case TIOCMBIC:
1010
1011 case TIOCMGET:
1012
1013 default:
1014 return (ENOTTY);
1015 }
1016 return (0);
1017 }
1018
1019 /*
1020 * Start or restart transmission.
1021 */
1022 static void
1023 zsstart(register struct tty *tp)
1024 {
1025 register struct zs_chanstate *cs;
1026 register int s, nch;
1027 int unit = minor(tp->t_dev);
1028 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1029
1030 cs = &zi->zi_cs[unit & 1];
1031 s = spltty();
1032
1033 /*
1034 * If currently active or delaying, no need to do anything.
1035 */
1036 if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1037 goto out;
1038
1039 /*
1040 * If there are sleepers, and output has drained below low
1041 * water mark, awaken.
1042 */
1043 if (tp->t_outq.c_cc <= tp->t_lowat) {
1044 if (tp->t_state & TS_ASLEEP) {
1045 tp->t_state &= ~TS_ASLEEP;
1046 wakeup((caddr_t)&tp->t_outq);
1047 }
1048 selwakeup(&tp->t_wsel);
1049 }
1050
1051 nch = ndqb(&tp->t_outq, 0); /* XXX */
1052 if (nch) {
1053 register char *p = tp->t_outq.c_cf;
1054
1055 /* mark busy, enable tx done interrupts, & send first byte */
1056 tp->t_state |= TS_BUSY;
1057 (void) splzs();
1058 cs->cs_preg[1] |= ZSWR1_TIE;
1059 cs->cs_creg[1] |= ZSWR1_TIE;
1060 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1061 cs->cs_zc->zc_data = *p;
1062 cs->cs_tba = p + 1;
1063 cs->cs_tbc = nch - 1;
1064 } else {
1065 /*
1066 * Nothing to send, turn off transmit done interrupts.
1067 * This is useful if something is doing polled output.
1068 */
1069 (void) splzs();
1070 cs->cs_preg[1] &= ~ZSWR1_TIE;
1071 cs->cs_creg[1] &= ~ZSWR1_TIE;
1072 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1073 }
1074 out:
1075 splx(s);
1076 }
1077
1078 /*
1079 * Stop output, e.g., for ^S or output flush.
1080 */
1081 void
1082 zsstop(register struct tty *tp, int flag)
1083 {
1084 register struct zs_chanstate *cs;
1085 register int s, unit = minor(tp->t_dev);
1086 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1087
1088 cs = &zi->zi_cs[unit & 1];
1089 s = splzs();
1090 if (tp->t_state & TS_BUSY) {
1091 /*
1092 * Device is transmitting; must stop it.
1093 */
1094 cs->cs_tbc = 0;
1095 if ((tp->t_state & TS_TTSTOP) == 0)
1096 tp->t_state |= TS_FLUSH;
1097 }
1098 splx(s);
1099 }
1100
1101 /*
1102 * Set ZS tty parameters from termios.
1103 *
1104 * This routine makes use of the fact that only registers
1105 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1106 */
1107 static int
1108 zsparam(register struct tty *tp, register struct termios *t)
1109 {
1110 int unit = minor(tp->t_dev);
1111 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1112 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1113 register int tmp, tmp5, cflag, s;
1114
1115 /*
1116 * Because PCLK is only run at 4.9 MHz, the fastest we
1117 * can go is 51200 baud (this corresponds to TC=1).
1118 * This is somewhat unfortunate as there is no real
1119 * reason we should not be able to handle higher rates.
1120 */
1121 tmp = t->c_ospeed;
1122 if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
1123 return (EINVAL);
1124 if (tmp == 0) {
1125 /* stty 0 => drop DTR and RTS */
1126 zs_modem(cs, 0);
1127 return (0);
1128 }
1129 tmp = BPS_TO_TCONST(PCLK / 16, tmp);
1130 if (tmp < 2)
1131 return (EINVAL);
1132
1133 cflag = t->c_cflag;
1134 tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
1135 tp->t_cflag = cflag;
1136
1137 /*
1138 * Block interrupts so that state will not
1139 * be altered until we are done setting it up.
1140 */
1141 s = splzs();
1142 cs->cs_preg[12] = tmp;
1143 cs->cs_preg[13] = tmp >> 8;
1144 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1145 switch (cflag & CSIZE) {
1146 case CS5:
1147 tmp = ZSWR3_RX_5;
1148 tmp5 = ZSWR5_TX_5;
1149 break;
1150 case CS6:
1151 tmp = ZSWR3_RX_6;
1152 tmp5 = ZSWR5_TX_6;
1153 break;
1154 case CS7:
1155 tmp = ZSWR3_RX_7;
1156 tmp5 = ZSWR5_TX_7;
1157 break;
1158 case CS8:
1159 default:
1160 tmp = ZSWR3_RX_8;
1161 tmp5 = ZSWR5_TX_8;
1162 break;
1163 }
1164
1165 /*
1166 * Output hardware flow control on the chip is horrendous: if
1167 * carrier detect drops, the receiver is disabled. Hence we
1168 * can only do this when the carrier is on.
1169 */
1170 if (cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1171 tmp |= ZSWR3_HFC | ZSWR3_RX_ENABLE;
1172 else
1173 tmp |= ZSWR3_RX_ENABLE;
1174 cs->cs_preg[3] = tmp;
1175 cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1176
1177 tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
1178 if ((cflag & PARODD) == 0)
1179 tmp |= ZSWR4_EVENP;
1180 if (cflag & PARENB)
1181 tmp |= ZSWR4_PARENB;
1182 cs->cs_preg[4] = tmp;
1183 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR;
1184 cs->cs_preg[10] = ZSWR10_NRZ;
1185 cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
1186 cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
1187 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1188
1189 /*
1190 * If nothing is being transmitted, set up new current values,
1191 * else mark them as pending.
1192 */
1193 if (cs->cs_heldchange == 0) {
1194 if (cs->cs_ttyp->t_state & TS_BUSY) {
1195 cs->cs_heldtbc = cs->cs_tbc;
1196 cs->cs_tbc = 0;
1197 cs->cs_heldchange = 1;
1198 } else {
1199 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1200 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1201 }
1202 }
1203 splx(s);
1204 return (0);
1205 }
1206
1207 /*
1208 * Raise or lower modem control (DTR/RTS) signals. If a character is
1209 * in transmission, the change is deferred.
1210 */
1211 static void
1212 zs_modem(struct zs_chanstate *cs, int onoff)
1213 {
1214 int s, bis, and;
1215
1216 if (onoff) {
1217 bis = ZSWR5_DTR | ZSWR5_RTS;
1218 and = ~0;
1219 } else {
1220 bis = 0;
1221 and = ~(ZSWR5_DTR | ZSWR5_RTS);
1222 }
1223 s = splzs();
1224 cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
1225 if (cs->cs_heldchange == 0) {
1226 if (cs->cs_ttyp->t_state & TS_BUSY) {
1227 cs->cs_heldtbc = cs->cs_tbc;
1228 cs->cs_tbc = 0;
1229 cs->cs_heldchange = 1;
1230 } else {
1231 cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
1232 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1233 }
1234 }
1235 splx(s);
1236 }
1237
1238 /*
1239 * Write the given register set to the given zs channel in the proper order.
1240 * The channel must not be transmitting at the time. The receiver will
1241 * be disabled for the time it takes to write all the registers.
1242 */
1243 static void
1244 zs_loadchannelregs(volatile struct zschan *zc, u_char *reg)
1245 {
1246 int i;
1247
1248 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1249 i = zc->zc_data; /* drain fifo */
1250 i = zc->zc_data;
1251 i = zc->zc_data;
1252 ZS_WRITE(zc, 4, reg[4]);
1253 ZS_WRITE(zc, 10, reg[10]);
1254 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1255 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1256 ZS_WRITE(zc, 1, reg[1]);
1257 ZS_WRITE(zc, 9, reg[9]);
1258 ZS_WRITE(zc, 11, reg[11]);
1259 ZS_WRITE(zc, 12, reg[12]);
1260 ZS_WRITE(zc, 13, reg[13]);
1261 ZS_WRITE(zc, 14, reg[14]);
1262 ZS_WRITE(zc, 15, reg[15]);
1263 ZS_WRITE(zc, 3, reg[3]);
1264 ZS_WRITE(zc, 5, reg[5]);
1265 }
1266
1267 #ifdef KGDB
1268 /*
1269 * Get a character from the given kgdb channel. Called at splhigh().
1270 */
1271 static int
1272 zs_kgdb_getc(void *arg)
1273 {
1274 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1275
1276 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
1277 continue;
1278 return (zc->zc_data);
1279 }
1280
1281 /*
1282 * Put a character to the given kgdb channel. Called at splhigh().
1283 */
1284 static void
1285 zs_kgdb_putc(void *arg, int c)
1286 {
1287 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1288
1289 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
1290 continue;
1291 zc->zc_data = c;
1292 }
1293
1294 /*
1295 * Set up for kgdb; called at boot time before configuration.
1296 * KGDB interrupts will be enabled later when zs0 is configured.
1297 */
1298 void
1299 zs_kgdb_init()
1300 {
1301 volatile struct zsdevice *addr;
1302 volatile struct zschan *zc;
1303 int unit, zs;
1304
1305 if (major(kgdb_dev) != ZSMAJOR)
1306 return;
1307 unit = minor(kgdb_dev);
1308 /*
1309 * Unit must be 0 or 1 (zs0).
1310 */
1311 if ((unsigned)unit >= ZS_KBD) {
1312 printf("zs_kgdb_init: bad minor dev %d\n", unit);
1313 return;
1314 }
1315 zs = unit >> 1;
1316 if ((addr = zsaddr[zs]) == NULL)
1317 addr = zsaddr[zs] = findzs(zs);
1318 unit &= 1;
1319 zc = unit == 0 ? &addr->zs_chan[CHAN_A] : &addr->zs_chan[CHAN_B];
1320 zs_kgdb_savedspeed = zs_getspeed(zc);
1321 printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
1322 zs, unit + 'a', kgdb_rate);
1323 zs_reset(zc, 1, kgdb_rate);
1324 kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
1325 }
1326 #endif /* KGDB */
1327