zs.c revision 1.102 1 /* $NetBSD: zs.c,v 1.102 2005/06/30 12:07:51 macallan Exp $ */
2
3 /*-
4 * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Zilog Z8530 Dual UART driver (machine-dependent part)
41 *
42 * Runs two serial lines per chip using slave drivers.
43 * Plain tty/async lines use the zs_async slave.
44 * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
45 */
46
47 #include <sys/cdefs.h>
48 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.102 2005/06/30 12:07:51 macallan Exp $");
49
50 #include "opt_ddb.h"
51 #include "opt_kgdb.h"
52 #include "opt_sparc_arch.h"
53
54 #include <sys/param.h>
55 #include <sys/systm.h>
56 #include <sys/conf.h>
57 #include <sys/device.h>
58 #include <sys/file.h>
59 #include <sys/ioctl.h>
60 #include <sys/kernel.h>
61 #include <sys/proc.h>
62 #include <sys/tty.h>
63 #include <sys/time.h>
64 #include <sys/syslog.h>
65
66 #include <machine/bsd_openprom.h>
67 #include <machine/autoconf.h>
68 #include <machine/intr.h>
69 #include <machine/eeprom.h>
70 #include <machine/psl.h>
71 #include <machine/z8530var.h>
72
73 #include <dev/cons.h>
74 #include <dev/ic/z8530reg.h>
75
76 #include <sparc/sparc/vaddrs.h>
77 #include <sparc/sparc/auxreg.h>
78 #include <sparc/sparc/auxiotwo.h>
79 #include <sparc/dev/cons.h>
80 #include <dev/sun/kbd_ms_ttyvar.h>
81
82 #include "kbd.h"
83 #include "ms.h"
84
85 /*
86 * Some warts needed by z8530tty.c -
87 * The default parity REALLY needs to be the same as the PROM uses,
88 * or you can not see messages done with printf during boot-up...
89 */
90 int zs_def_cflag = (CREAD | CS8 | HUPCL);
91
92 /*
93 * The Sun provides a 4.9152 MHz clock to the ZS chips.
94 */
95 #define PCLK (9600 * 512) /* PCLK pin input clock rate */
96
97 #define ZS_DELAY() (CPU_ISSUN4C ? (0) : delay(2))
98
99 /* The layout of this is hardware-dependent (padding, order). */
100 struct zschan {
101 volatile u_char zc_csr; /* ctrl,status, and indirect access */
102 u_char zc_xxx0;
103 volatile u_char zc_data; /* data */
104 u_char zc_xxx1;
105 };
106 struct zsdevice {
107 /* Yes, they are backwards. */
108 struct zschan zs_chan_b;
109 struct zschan zs_chan_a;
110 };
111
112 /* ZS channel used as the console device (if any) */
113 void *zs_conschan_get, *zs_conschan_put;
114
115 static u_char zs_init_reg[16] = {
116 0, /* 0: CMD (reset, etc.) */
117 0, /* 1: No interrupts yet. */
118 0, /* 2: IVECT */
119 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
120 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
121 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
122 0, /* 6: TXSYNC/SYNCLO */
123 0, /* 7: RXSYNC/SYNCHI */
124 0, /* 8: alias for data port */
125 ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR,
126 0, /*10: Misc. TX/RX control bits */
127 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
128 ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */
129 0, /*13: BAUDHI (default=9600) */
130 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
131 ZSWR15_BREAK_IE,
132 };
133
134 /* Console ops */
135 static int zscngetc __P((dev_t));
136 static void zscnputc __P((dev_t, int));
137 static void zscnpollc __P((dev_t, int));
138
139 struct consdev zs_consdev = {
140 NULL,
141 NULL,
142 zscngetc,
143 zscnputc,
144 zscnpollc,
145 NULL,
146 };
147
148
149 /****************************************************************
150 * Autoconfig
151 ****************************************************************/
152
153 /* Definition of the driver for autoconfig. */
154 static int zs_match_mainbus __P((struct device *, struct cfdata *, void *));
155 static int zs_match_obio __P((struct device *, struct cfdata *, void *));
156 static void zs_attach_mainbus __P((struct device *, struct device *, void *));
157 static void zs_attach_obio __P((struct device *, struct device *, void *));
158
159 #if defined(SUN4D)
160 #include <sparc/dev/bootbusvar.h>
161
162 static int zs_match_bootbus __P((struct device *, struct cfdata *, void *));
163 static void zs_attach_bootbus __P((struct device *, struct device *, void *));
164
165 CFATTACH_DECL(zs_bootbus, sizeof(struct zsc_softc),
166 zs_match_bootbus, zs_attach_bootbus, NULL, NULL);
167 #endif /* SUN4D */
168
169 static void zs_attach __P((struct zsc_softc *, struct zsdevice *, int));
170 static int zs_print __P((void *, const char *name));
171
172 CFATTACH_DECL(zs_mainbus, sizeof(struct zsc_softc),
173 zs_match_mainbus, zs_attach_mainbus, NULL, NULL);
174
175 CFATTACH_DECL(zs_obio, sizeof(struct zsc_softc),
176 zs_match_obio, zs_attach_obio, NULL, NULL);
177
178 extern struct cfdriver zs_cd;
179
180 /* softintr(9) cookie, shared by all instances of this driver */
181 static void *zs_sicookie;
182
183 /* Interrupt handlers. */
184 static int zshard __P((void *));
185 static void zssoft __P((void *));
186
187 static int zs_get_speed __P((struct zs_chanstate *));
188
189 /* Console device support */
190 static int zs_console_flags __P((int, int, int));
191
192 /* Power management hooks */
193 int zs_enable __P((struct zs_chanstate *));
194 void zs_disable __P((struct zs_chanstate *));
195
196
197 /* XXX from dev/ic/z8530tty.c */
198 extern struct tty *zstty_get_tty_from_dev(struct device *);
199
200 /*
201 * Is the zs chip present?
202 */
203 static int
204 zs_match_mainbus(parent, cf, aux)
205 struct device *parent;
206 struct cfdata *cf;
207 void *aux;
208 {
209 struct mainbus_attach_args *ma = aux;
210
211 if (strcmp(cf->cf_name, ma->ma_name) != 0)
212 return (0);
213
214 return (1);
215 }
216
217 static int
218 zs_match_obio(parent, cf, aux)
219 struct device *parent;
220 struct cfdata *cf;
221 void *aux;
222 {
223 union obio_attach_args *uoba = aux;
224 struct obio4_attach_args *oba;
225
226 if (uoba->uoba_isobio4 == 0) {
227 struct sbus_attach_args *sa = &uoba->uoba_sbus;
228
229 if (strcmp(cf->cf_name, sa->sa_name) != 0)
230 return (0);
231
232 return (1);
233 }
234
235 oba = &uoba->uoba_oba4;
236 return (bus_space_probe(oba->oba_bustag, oba->oba_paddr,
237 1, 0, 0, NULL, NULL));
238 }
239
240 #if defined(SUN4D)
241 static int
242 zs_match_bootbus(parent, cf, aux)
243 struct device *parent;
244 struct cfdata *cf;
245 void *aux;
246 {
247 struct bootbus_attach_args *baa = aux;
248
249 return (strcmp(cf->cf_name, baa->ba_name) == 0);
250 }
251 #endif /* SUN4D */
252
253 static void
254 zs_attach_mainbus(parent, self, aux)
255 struct device *parent;
256 struct device *self;
257 void *aux;
258 {
259 struct zsc_softc *zsc = (void *) self;
260 struct mainbus_attach_args *ma = aux;
261
262 zsc->zsc_bustag = ma->ma_bustag;
263 zsc->zsc_dmatag = ma->ma_dmatag;
264 zsc->zsc_promunit = prom_getpropint(ma->ma_node, "slave", -2);
265 zsc->zsc_node = ma->ma_node;
266
267 /*
268 * For machines with zs on mainbus (all sun4c models), we expect
269 * the device registers to be mapped by the PROM.
270 */
271 zs_attach(zsc, ma->ma_promvaddr, ma->ma_pri);
272 }
273
274 static void
275 zs_attach_obio(parent, self, aux)
276 struct device *parent;
277 struct device *self;
278 void *aux;
279 {
280 struct zsc_softc *zsc = (void *) self;
281 union obio_attach_args *uoba = aux;
282
283 if (uoba->uoba_isobio4 == 0) {
284 struct sbus_attach_args *sa = &uoba->uoba_sbus;
285 void *va;
286 struct zs_chanstate *cs;
287 int channel;
288
289 if (sa->sa_nintr == 0) {
290 printf(" no interrupt lines\n");
291 return;
292 }
293
294 /*
295 * Some sun4m models (Javastations) may not map the zs device.
296 */
297 if (sa->sa_npromvaddrs > 0)
298 va = (void *)sa->sa_promvaddr;
299 else {
300 bus_space_handle_t bh;
301
302 if (sbus_bus_map(sa->sa_bustag,
303 sa->sa_slot,
304 sa->sa_offset,
305 sa->sa_size,
306 BUS_SPACE_MAP_LINEAR, &bh) != 0) {
307 printf(" cannot map zs registers\n");
308 return;
309 }
310 va = (void *)bh;
311 }
312
313 /*
314 * Check if power state can be set, e.g. Tadpole 3GX
315 */
316 if (prom_getpropint(sa->sa_node, "pwr-on-auxio2", 0))
317 {
318 printf (" powered via auxio2");
319 for (channel = 0; channel < 2; channel++) {
320 cs = &zsc->zsc_cs_store[channel];
321 cs->enable = zs_enable;
322 cs->disable = zs_disable;
323 }
324 }
325
326 zsc->zsc_bustag = sa->sa_bustag;
327 zsc->zsc_dmatag = sa->sa_dmatag;
328 zsc->zsc_promunit = prom_getpropint(sa->sa_node, "slave", -2);
329 zsc->zsc_node = sa->sa_node;
330 zs_attach(zsc, va, sa->sa_pri);
331 } else {
332 struct obio4_attach_args *oba = &uoba->uoba_oba4;
333 bus_space_handle_t bh;
334 bus_addr_t paddr = oba->oba_paddr;
335
336 /*
337 * As for zs on mainbus, we require a PROM mapping.
338 */
339 if (bus_space_map(oba->oba_bustag,
340 paddr,
341 sizeof(struct zsdevice),
342 BUS_SPACE_MAP_LINEAR | OBIO_BUS_MAP_USE_ROM,
343 &bh) != 0) {
344 printf(" cannot map zs registers\n");
345 return;
346 }
347 zsc->zsc_bustag = oba->oba_bustag;
348 zsc->zsc_dmatag = oba->oba_dmatag;
349 /*
350 * Find prom unit by physical address
351 * We're just comparing the address (not the iospace) here
352 */
353 paddr = BUS_ADDR_PADDR(paddr);
354 if (cpuinfo.cpu_type == CPUTYP_4_100)
355 /*
356 * On the sun4/100, the top-most 4 bits are zero
357 * on obio addresses; force them to 1's for the
358 * sake of the comparison here.
359 */
360 paddr |= 0xf0000000;
361 zsc->zsc_promunit =
362 (paddr == 0xf1000000) ? 0 :
363 (paddr == 0xf0000000) ? 1 :
364 (paddr == 0xe0000000) ? 2 : -2;
365
366 zs_attach(zsc, (void *)bh, oba->oba_pri);
367 }
368 }
369
370 #if defined(SUN4D)
371 static void
372 zs_attach_bootbus(parent, self, aux)
373 struct device *parent;
374 struct device *self;
375 void *aux;
376 {
377 struct zsc_softc *zsc = (void *) self;
378 struct bootbus_attach_args *baa = aux;
379 void *va;
380
381 if (baa->ba_nintr == 0) {
382 printf(": no interrupt lines\n");
383 return;
384 }
385
386 if (baa->ba_npromvaddrs > 0)
387 va = (void *) baa->ba_promvaddrs;
388 else {
389 bus_space_handle_t bh;
390
391 if (bus_space_map(baa->ba_bustag,
392 BUS_ADDR(baa->ba_slot, baa->ba_offset),
393 baa->ba_size, BUS_SPACE_MAP_LINEAR, &bh) != 0) {
394 printf(": cannot map zs registers\n");
395 return;
396 }
397 va = (void *) bh;
398 }
399
400 zsc->zsc_bustag = baa->ba_bustag;
401 zsc->zsc_promunit = prom_getpropint(baa->ba_node, "slave", -2);
402 zsc->zsc_node = baa->ba_node;
403 zs_attach(zsc, va, baa->ba_intr[0].oi_pri);
404 }
405 #endif /* SUN4D */
406
407 /*
408 * Attach a found zs.
409 *
410 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
411 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
412 */
413 static void
414 zs_attach(zsc, zsd, pri)
415 struct zsc_softc *zsc;
416 struct zsdevice *zsd;
417 int pri;
418 {
419 struct zsc_attach_args zsc_args;
420 struct zs_chanstate *cs;
421 int s, channel;
422 static int didintr, prevpri;
423
424 if (zsd == NULL) {
425 printf("configuration incomplete\n");
426 return;
427 }
428
429 if (!didintr) {
430 zs_sicookie = softintr_establish(IPL_SOFTSERIAL, zssoft, NULL);
431 if (zs_sicookie == NULL) {
432 printf("\n%s: cannot establish soft int handler\n",
433 zsc->zsc_dev.dv_xname);
434 return;
435 }
436 }
437 printf(" softpri %d\n", IPL_SOFTSERIAL);
438
439 /*
440 * Initialize software state for each channel.
441 */
442 for (channel = 0; channel < 2; channel++) {
443 struct zschan *zc;
444 struct device *child;
445
446 zsc_args.channel = channel;
447 cs = &zsc->zsc_cs_store[channel];
448 zsc->zsc_cs[channel] = cs;
449
450 simple_lock_init(&cs->cs_lock);
451 cs->cs_channel = channel;
452 cs->cs_private = NULL;
453 cs->cs_ops = &zsops_null;
454 cs->cs_brg_clk = PCLK / 16;
455
456 zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b;
457
458 zsc_args.hwflags = zs_console_flags(zsc->zsc_promunit,
459 zsc->zsc_node,
460 channel);
461
462 if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) {
463 zsc_args.hwflags |= ZS_HWFLAG_USE_CONSDEV;
464 zsc_args.consdev = &zs_consdev;
465 }
466
467 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
468 zs_conschan_get = zc;
469 }
470 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
471 zs_conschan_put = zc;
472 }
473 /* Childs need to set cn_dev, etc */
474
475 cs->cs_reg_csr = &zc->zc_csr;
476 cs->cs_reg_data = &zc->zc_data;
477
478 bcopy(zs_init_reg, cs->cs_creg, 16);
479 bcopy(zs_init_reg, cs->cs_preg, 16);
480
481 /* XXX: Consult PROM properties for this?! */
482 cs->cs_defspeed = zs_get_speed(cs);
483 cs->cs_defcflag = zs_def_cflag;
484
485 /* Make these correspond to cs_defcflag (-crtscts) */
486 cs->cs_rr0_dcd = ZSRR0_DCD;
487 cs->cs_rr0_cts = 0;
488 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
489 cs->cs_wr5_rts = 0;
490
491 /*
492 * Clear the master interrupt enable.
493 * The INTENA is common to both channels,
494 * so just do it on the A channel.
495 */
496 if (channel == 0) {
497 zs_write_reg(cs, 9, 0);
498 }
499
500 /*
501 * Look for a child driver for this channel.
502 * The child attach will setup the hardware.
503 */
504
505 child = config_found(&zsc->zsc_dev, &zsc_args, zs_print);
506 if (child == NULL) {
507 /* No sub-driver. Just reset it. */
508 u_char reset = (channel == 0) ?
509 ZSWR9_A_RESET : ZSWR9_B_RESET;
510 s = splzs();
511 zs_write_reg(cs, 9, reset);
512 splx(s);
513 }
514 #if (NKBD > 0) || (NMS > 0)
515 /*
516 * If this was a zstty it has a keyboard
517 * property on it we need to attach the
518 * sunkbd and sunms line disciplines.
519 */
520 if ((child != NULL)
521 && (strcmp(child->dv_cfdata->cf_name, "zstty") == 0)
522 && (prom_getproplen(zsc->zsc_node, "keyboard") == 0))
523 {
524 struct kbd_ms_tty_attach_args kma;
525 struct tty *tp = zstty_get_tty_from_dev(child);
526 kma.kmta_tp = tp;
527 kma.kmta_dev = tp->t_dev;
528 kma.kmta_consdev = zsc_args.consdev;
529
530 /* Attach 'em if we got 'em. */
531 #if (NKBD > 0)
532 if (channel == 0) {
533 kma.kmta_name = "keyboard";
534 config_found(child, &kma, NULL);
535 }
536 #endif
537 #if (NMS > 0)
538 if (channel == 1) {
539 kma.kmta_name = "mouse";
540 config_found(child, &kma, NULL);
541 }
542 #endif
543 }
544 #endif
545 }
546
547 /*
548 * Now safe to install interrupt handlers. Note the arguments
549 * to the interrupt handlers aren't used. Note, we only do this
550 * once since both SCCs interrupt at the same level and vector.
551 */
552 if (!didintr) {
553 didintr = 1;
554 prevpri = pri;
555 bus_intr_establish(zsc->zsc_bustag, pri, IPL_SERIAL,
556 zshard, NULL);
557 } else if (pri != prevpri)
558 panic("broken zs interrupt scheme");
559
560 evcnt_attach_dynamic(&zsc->zsc_intrcnt, EVCNT_TYPE_INTR, NULL,
561 zsc->zsc_dev.dv_xname, "intr");
562
563 /*
564 * Set the master interrupt enable and interrupt vector.
565 * (common to both channels, do it on A)
566 */
567 cs = zsc->zsc_cs[0];
568 s = splhigh();
569 /* interrupt vector */
570 zs_write_reg(cs, 2, zs_init_reg[2]);
571 /* master interrupt control (enable) */
572 zs_write_reg(cs, 9, zs_init_reg[9]);
573 splx(s);
574
575 #if 0
576 /*
577 * XXX: L1A hack - We would like to be able to break into
578 * the debugger during the rest of autoconfiguration, so
579 * lower interrupts just enough to let zs interrupts in.
580 * This is done after both zs devices are attached.
581 */
582 if (zsc->zsc_promunit == 1) {
583 printf("zs1: enabling zs interrupts\n");
584 (void)splfd(); /* XXX: splzs - 1 */
585 }
586 #endif
587
588 }
589
590 static int
591 zs_print(aux, name)
592 void *aux;
593 const char *name;
594 {
595 struct zsc_attach_args *args = aux;
596
597 if (name != NULL)
598 aprint_normal("%s: ", name);
599
600 if (args->channel != -1)
601 aprint_normal(" channel %d", args->channel);
602
603 return (UNCONF);
604 }
605
606 static volatile int zssoftpending;
607
608 /*
609 * Our ZS chips all share a common, autovectored interrupt,
610 * so we have to look at all of them on each interrupt.
611 */
612 static int
613 zshard(arg)
614 void *arg;
615 {
616 struct zsc_softc *zsc;
617 int unit, rr3, rval, softreq;
618
619 rval = softreq = 0;
620 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
621 struct zs_chanstate *cs;
622
623 zsc = zs_cd.cd_devs[unit];
624 if (zsc == NULL)
625 continue;
626 rr3 = zsc_intr_hard(zsc);
627 /* Count up the interrupts. */
628 if (rr3) {
629 rval |= rr3;
630 zsc->zsc_intrcnt.ev_count++;
631 }
632 if ((cs = zsc->zsc_cs[0]) != NULL)
633 softreq |= cs->cs_softreq;
634 if ((cs = zsc->zsc_cs[1]) != NULL)
635 softreq |= cs->cs_softreq;
636 }
637
638 /* We are at splzs here, so no need to lock. */
639 if (softreq && (zssoftpending == 0)) {
640 zssoftpending = 1;
641 softintr_schedule(zs_sicookie);
642 }
643 return (rval);
644 }
645
646 /*
647 * Similar scheme as for zshard (look at all of them)
648 */
649 static void
650 zssoft(arg)
651 void *arg;
652 {
653 struct zsc_softc *zsc;
654 int s, unit;
655
656 /* This is not the only ISR on this IPL. */
657 if (zssoftpending == 0)
658 return;
659
660 /*
661 * The soft intr. bit will be set by zshard only if
662 * the variable zssoftpending is zero. The order of
663 * these next two statements prevents our clearing
664 * the soft intr bit just after zshard has set it.
665 */
666 /* ienab_bic(IE_ZSSOFT); */
667 zssoftpending = 0;
668
669 /* Make sure we call the tty layer at spltty. */
670 s = spltty();
671 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
672 zsc = zs_cd.cd_devs[unit];
673 if (zsc == NULL)
674 continue;
675 (void)zsc_intr_soft(zsc);
676 }
677 splx(s);
678 }
679
680
681 /*
682 * Compute the current baud rate given a ZS channel.
683 */
684 static int
685 zs_get_speed(cs)
686 struct zs_chanstate *cs;
687 {
688 int tconst;
689
690 tconst = zs_read_reg(cs, 12);
691 tconst |= zs_read_reg(cs, 13) << 8;
692 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
693 }
694
695 /*
696 * MD functions for setting the baud rate and control modes.
697 */
698 int
699 zs_set_speed(cs, bps)
700 struct zs_chanstate *cs;
701 int bps; /* bits per second */
702 {
703 int tconst, real_bps;
704
705 if (bps == 0)
706 return (0);
707
708 #ifdef DIAGNOSTIC
709 if (cs->cs_brg_clk == 0)
710 panic("zs_set_speed");
711 #endif
712
713 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
714 if (tconst < 0)
715 return (EINVAL);
716
717 /* Convert back to make sure we can do it. */
718 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
719
720 /* XXX - Allow some tolerance here? */
721 if (real_bps != bps)
722 return (EINVAL);
723
724 cs->cs_preg[12] = tconst;
725 cs->cs_preg[13] = tconst >> 8;
726
727 /* Caller will stuff the pending registers. */
728 return (0);
729 }
730
731 int
732 zs_set_modes(cs, cflag)
733 struct zs_chanstate *cs;
734 int cflag; /* bits per second */
735 {
736 int s;
737
738 /*
739 * Output hardware flow control on the chip is horrendous:
740 * if carrier detect drops, the receiver is disabled, and if
741 * CTS drops, the transmitter is stoped IN MID CHARACTER!
742 * Therefore, NEVER set the HFC bit, and instead use the
743 * status interrupt to detect CTS changes.
744 */
745 s = splzs();
746 cs->cs_rr0_pps = 0;
747 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
748 cs->cs_rr0_dcd = 0;
749 if ((cflag & MDMBUF) == 0)
750 cs->cs_rr0_pps = ZSRR0_DCD;
751 } else
752 cs->cs_rr0_dcd = ZSRR0_DCD;
753 if ((cflag & CRTSCTS) != 0) {
754 cs->cs_wr5_dtr = ZSWR5_DTR;
755 cs->cs_wr5_rts = ZSWR5_RTS;
756 cs->cs_rr0_cts = ZSRR0_CTS;
757 } else if ((cflag & CDTRCTS) != 0) {
758 cs->cs_wr5_dtr = 0;
759 cs->cs_wr5_rts = ZSWR5_DTR;
760 cs->cs_rr0_cts = ZSRR0_CTS;
761 } else if ((cflag & MDMBUF) != 0) {
762 cs->cs_wr5_dtr = 0;
763 cs->cs_wr5_rts = ZSWR5_DTR;
764 cs->cs_rr0_cts = ZSRR0_DCD;
765 } else {
766 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
767 cs->cs_wr5_rts = 0;
768 cs->cs_rr0_cts = 0;
769 }
770 splx(s);
771
772 /* Caller will stuff the pending registers. */
773 return (0);
774 }
775
776
777 /*
778 * Read or write the chip with suitable delays.
779 */
780
781 u_char
782 zs_read_reg(cs, reg)
783 struct zs_chanstate *cs;
784 u_char reg;
785 {
786 u_char val;
787
788 *cs->cs_reg_csr = reg;
789 ZS_DELAY();
790 val = *cs->cs_reg_csr;
791 ZS_DELAY();
792 return (val);
793 }
794
795 void
796 zs_write_reg(cs, reg, val)
797 struct zs_chanstate *cs;
798 u_char reg, val;
799 {
800 *cs->cs_reg_csr = reg;
801 ZS_DELAY();
802 *cs->cs_reg_csr = val;
803 ZS_DELAY();
804 }
805
806 u_char
807 zs_read_csr(cs)
808 struct zs_chanstate *cs;
809 {
810 u_char val;
811
812 val = *cs->cs_reg_csr;
813 ZS_DELAY();
814 return (val);
815 }
816
817 void
818 zs_write_csr(cs, val)
819 struct zs_chanstate *cs;
820 u_char val;
821 {
822 *cs->cs_reg_csr = val;
823 ZS_DELAY();
824 }
825
826 u_char
827 zs_read_data(cs)
828 struct zs_chanstate *cs;
829 {
830 u_char val;
831
832 val = *cs->cs_reg_data;
833 ZS_DELAY();
834 return (val);
835 }
836
837 void zs_write_data(cs, val)
838 struct zs_chanstate *cs;
839 u_char val;
840 {
841 *cs->cs_reg_data = val;
842 ZS_DELAY();
843 }
844
845 /****************************************************************
846 * Console support functions (Sun specific!)
847 * Note: this code is allowed to know about the layout of
848 * the chip registers, and uses that to keep things simple.
849 * XXX - I think I like the mvme167 code better. -gwr
850 ****************************************************************/
851
852 /*
853 * Handle user request to enter kernel debugger.
854 */
855 void
856 zs_abort(cs)
857 struct zs_chanstate *cs;
858 {
859 struct zschan *zc = zs_conschan_get;
860 int rr0;
861
862 /* Wait for end of break to avoid PROM abort. */
863 /* XXX - Limit the wait? */
864 do {
865 rr0 = zc->zc_csr;
866 ZS_DELAY();
867 } while (rr0 & ZSRR0_BREAK);
868
869 #if defined(KGDB)
870 zskgdb(cs);
871 #elif defined(DDB)
872 Debugger();
873 #else
874 printf("stopping on keyboard abort\n");
875 callrom();
876 #endif
877 }
878
879 int zs_getc __P((void *arg));
880 void zs_putc __P((void *arg, int c));
881
882 /*
883 * Polled input char.
884 */
885 int
886 zs_getc(arg)
887 void *arg;
888 {
889 struct zschan *zc = arg;
890 int s, c, rr0;
891 u_int omid;
892
893 /* Temporarily direct interrupts at ourselves */
894 s = splhigh();
895 omid = setitr(cpuinfo.mid);
896
897 /* Wait for a character to arrive. */
898 do {
899 rr0 = zc->zc_csr;
900 ZS_DELAY();
901 } while ((rr0 & ZSRR0_RX_READY) == 0);
902
903 c = zc->zc_data;
904 ZS_DELAY();
905 setitr(omid);
906 splx(s);
907
908 /*
909 * This is used by the kd driver to read scan codes,
910 * so don't translate '\r' ==> '\n' here...
911 */
912 return (c);
913 }
914
915 /*
916 * Polled output char.
917 */
918 void
919 zs_putc(arg, c)
920 void *arg;
921 int c;
922 {
923 struct zschan *zc = arg;
924 int s, rr0;
925 u_int omid;
926
927 /* Temporarily direct interrupts at ourselves */
928 s = splhigh();
929 omid = setitr(cpuinfo.mid);
930
931 /* Wait for transmitter to become ready. */
932 do {
933 rr0 = zc->zc_csr;
934 ZS_DELAY();
935 } while ((rr0 & ZSRR0_TX_READY) == 0);
936
937 /*
938 * Send the next character.
939 * Now you'd think that this could be followed by a ZS_DELAY()
940 * just like all the other chip accesses, but it turns out that
941 * the `transmit-ready' interrupt isn't de-asserted until
942 * some period of time after the register write completes
943 * (more than a couple instructions). So to avoid stray
944 * interrupts we put in the 2us delay regardless of CPU model.
945 */
946 zc->zc_data = c;
947 delay(2);
948
949 setitr(omid);
950 splx(s);
951 }
952
953 /*****************************************************************/
954 /*
955 * Polled console input putchar.
956 */
957 int
958 zscngetc(dev)
959 dev_t dev;
960 {
961 return (zs_getc(zs_conschan_get));
962 }
963
964 /*
965 * Polled console output putchar.
966 */
967 void
968 zscnputc(dev, c)
969 dev_t dev;
970 int c;
971 {
972 zs_putc(zs_conschan_put, c);
973 }
974
975 void
976 zscnpollc(dev, on)
977 dev_t dev;
978 int on;
979 {
980 /* No action needed */
981 }
982
983 int
984 zs_console_flags(promunit, node, channel)
985 int promunit;
986 int node;
987 int channel;
988 {
989 int cookie, flags = 0;
990
991 switch (prom_version()) {
992 case PROM_OLDMON:
993 case PROM_OBP_V0:
994 /*
995 * Use `promunit' and `channel' to derive the PROM
996 * stdio handles that correspond to this device.
997 */
998 if (promunit == 0)
999 cookie = PROMDEV_TTYA + channel;
1000 else if (promunit == 1 && channel == 0)
1001 cookie = PROMDEV_KBD;
1002 else
1003 cookie = -1;
1004
1005 if (cookie == prom_stdin())
1006 flags |= ZS_HWFLAG_CONSOLE_INPUT;
1007
1008 /*
1009 * Prevent the keyboard from matching the output device
1010 * (note that PROMDEV_KBD == PROMDEV_SCREEN == 0!).
1011 */
1012 if (cookie != PROMDEV_KBD && cookie == prom_stdout())
1013 flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
1014
1015 break;
1016
1017 case PROM_OBP_V2:
1018 case PROM_OBP_V3:
1019 case PROM_OPENFIRM:
1020
1021 /*
1022 * Match the nodes and device arguments prepared by
1023 * consinit() against our device node and channel.
1024 * (The device argument is the part of the OBP path
1025 * following the colon, as in `/obio/zs@0,100000:a')
1026 */
1027
1028 /* Default to channel 0 if there are no explicit prom args */
1029 cookie = 0;
1030
1031 if (node == prom_stdin_node) {
1032 if (prom_stdin_args[0] != '\0')
1033 /* Translate (a,b) -> (0,1) */
1034 cookie = prom_stdin_args[0] - 'a';
1035
1036 if (channel == cookie)
1037 flags |= ZS_HWFLAG_CONSOLE_INPUT;
1038 }
1039
1040 if (node == prom_stdout_node) {
1041 if (prom_stdout_args[0] != '\0')
1042 /* Translate (a,b) -> (0,1) */
1043 cookie = prom_stdout_args[0] - 'a';
1044
1045 if (channel == cookie)
1046 flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
1047 }
1048
1049 break;
1050
1051 default:
1052 break;
1053 }
1054
1055 return (flags);
1056 }
1057
1058 /*
1059 * Power management hooks for zsopen() and zsclose().
1060 * We use them to power on/off the ports, if necessary.
1061 */
1062 int
1063 zs_enable(cs)
1064 struct zs_chanstate *cs;
1065 {
1066 auxiotwoserialendis (ZS_ENABLE);
1067 cs->enabled = 1;
1068 return(0);
1069 }
1070
1071 void
1072 zs_disable(cs)
1073 struct zs_chanstate *cs;
1074 {
1075 auxiotwoserialendis (ZS_DISABLE);
1076 cs->enabled = 0;
1077 }
1078
1079
1080
1081
1082
1083
1084