zs.c revision 1.12 1 /*
2 * Copyright (c) 1992, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This software was developed by the Computer Systems Engineering group
6 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7 * contributed to Berkeley.
8 *
9 * All advertising materials mentioning features or use of this software
10 * must display the following acknowledgement:
11 * This product includes software developed by the University of
12 * California, Lawrence Berkeley Laboratory.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the University of
25 * California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 * may be used to endorse or promote products derived from this software
28 * without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 * @(#)zs.c 8.1 (Berkeley) 7/19/93
43 *
44 * from: Header: zs.c,v 1.30 93/07/19 23:44:42 torek Exp
45 * $Id: zs.c,v 1.12 1994/08/20 09:11:02 deraadt Exp $
46 */
47
48 /*
49 * Zilog Z8530 (ZSCC) driver.
50 *
51 * Runs two tty ports (ttya and ttyb) on zs0,
52 * and runs a keyboard and mouse on zs1.
53 *
54 * This driver knows far too much about chip to usage mappings.
55 */
56 #define NZS 2 /* XXX */
57
58 #include <sys/param.h>
59 #include <sys/proc.h>
60 #include <sys/device.h>
61 #include <sys/conf.h>
62 #include <sys/file.h>
63 #include <sys/ioctl.h>
64 #include <sys/tty.h>
65 #include <sys/time.h>
66 #include <sys/kernel.h>
67 #include <sys/syslog.h>
68
69 #include <machine/autoconf.h>
70 #include <machine/cpu.h>
71
72 #include <sparc/sparc/vaddrs.h>
73 #include <sparc/sparc/auxreg.h>
74
75 #include <machine/kbd.h>
76 #include <sparc/dev/zsreg.h>
77 #include <sparc/dev/zsvar.h>
78
79 #ifdef KGDB
80 #include <machine/remote-sl.h>
81 #endif
82
83 #define ZSMAJOR 12 /* XXX */
84
85 #define ZS_KBD 2 /* XXX */
86 #define ZS_MOUSE 3 /* XXX */
87
88 /* the magic number below was stolen from the Sprite source. */
89 #define PCLK (19660800/4) /* PCLK pin input clock rate */
90
91 /*
92 * Select software interrupt bit based on TTY ipl.
93 */
94 #if PIL_TTY == 1
95 # define IE_ZSSOFT IE_L1
96 #elif PIL_TTY == 4
97 # define IE_ZSSOFT IE_L4
98 #elif PIL_TTY == 6
99 # define IE_ZSSOFT IE_L6
100 #else
101 # error "no suitable software interrupt bit"
102 #endif
103
104 /*
105 * Software state per found chip. This would be called `zs_softc',
106 * but the previous driver had a rather different zs_softc....
107 */
108 struct zsinfo {
109 struct device zi_dev; /* base device */
110 volatile struct zsdevice *zi_zs;/* chip registers */
111 struct zs_chanstate zi_cs[2]; /* channel A and B software state */
112 };
113
114 struct tty *zs_tty[NZS * 2]; /* XXX should be dynamic */
115
116 /* Definition of the driver for autoconfig. */
117 static int zsmatch(struct device *, struct cfdata *, void *);
118 static void zsattach(struct device *, struct device *, void *);
119 struct cfdriver zscd =
120 { NULL, "zs", zsmatch, zsattach, DV_TTY, sizeof(struct zsinfo) };
121
122 /* Interrupt handlers. */
123 static int zshard(void *);
124 static struct intrhand levelhard = { zshard };
125 static int zssoft(void *);
126 static struct intrhand levelsoft = { zssoft };
127
128 struct zs_chanstate *zslist;
129
130 /* Routines called from other code. */
131 static void zsiopen(struct tty *);
132 static void zsiclose(struct tty *);
133 static void zsstart(struct tty *);
134 void zsstop(struct tty *, int);
135 static int zsparam(struct tty *, struct termios *);
136
137 /* Routines purely local to this driver. */
138 static int zs_getspeed(volatile struct zschan *);
139 static void zs_reset(volatile struct zschan *, int, int);
140 static void zs_modem(struct zs_chanstate *, int);
141 static void zs_loadchannelregs(volatile struct zschan *, u_char *);
142
143 /* Console stuff. */
144 static struct tty *zs_ctty; /* console `struct tty *' */
145 static int zs_consin = -1, zs_consout = -1;
146 static int zscnputc(int); /* console putc function */
147 static volatile struct zschan *zs_conschan;
148 static struct tty *zs_checkcons(struct zsinfo *, int, struct zs_chanstate *);
149
150 #ifdef KGDB
151 /* KGDB stuff. Must reboot to change zs_kgdbunit. */
152 extern int kgdb_dev, kgdb_rate;
153 static int zs_kgdb_savedspeed;
154 static void zs_checkkgdb(int, struct zs_chanstate *, struct tty *);
155 #endif
156
157 extern volatile struct zsdevice *findzs(int);
158 static volatile struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */
159
160 /*
161 * Console keyboard L1-A processing is done in the hardware interrupt code,
162 * so we need to duplicate some of the console keyboard decode state. (We
163 * must not use the regular state as the hardware code keeps ahead of the
164 * software state: the software state tracks the most recent ring input but
165 * the hardware state tracks the most recent ZSCC input.) See also kbd.h.
166 */
167 static struct conk_state { /* console keyboard state */
168 char conk_id; /* true => ID coming up (console only) */
169 char conk_l1; /* true => L1 pressed (console only) */
170 } zsconk_state;
171
172 int zshardscope;
173 int zsshortcuts; /* number of "shortcut" software interrupts */
174
175 #ifdef SUN4
176 static u_char
177 zs_read(zc, reg)
178 volatile struct zschan *zc;
179 u_char reg;
180 {
181 u_char val;
182
183 zc->zc_csr = reg;
184 ZS_DELAY();
185 val = zc->zc_csr;
186 ZS_DELAY();
187 return val;
188 }
189
190 static u_char
191 zs_write(zc, reg, val)
192 volatile struct zschan *zc;
193 u_char reg, val;
194 {
195 zc->zc_csr = reg;
196 ZS_DELAY();
197 zc->zc_csr = val;
198 ZS_DELAY();
199 return val;
200 }
201 #endif /* SUN4 */
202
203 /*
204 * Match slave number to zs unit number, so that misconfiguration will
205 * not set up the keyboard as ttya, etc.
206 */
207 static int
208 zsmatch(struct device *parent, struct cfdata *cf, void *aux)
209 {
210 struct romaux *ra = aux;
211
212 return (getpropint(ra->ra_node, "slave", -2) == cf->cf_unit);
213 }
214
215 /*
216 * Attach a found zs.
217 *
218 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
219 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
220 */
221 static void
222 zsattach(struct device *parent, struct device *dev, void *aux)
223 {
224 register int zs = dev->dv_unit, unit;
225 register struct zsinfo *zi;
226 register struct zs_chanstate *cs;
227 register volatile struct zsdevice *addr;
228 register struct tty *tp, *ctp;
229 register struct romaux *ra = aux;
230 int pri, softcar;
231 static int didintr, prevpri;
232
233 if ((addr = zsaddr[zs]) == NULL)
234 addr = zsaddr[zs] = findzs(zs);
235 if ((void *)addr != ra->ra_vaddr)
236 panic("zsattach");
237 if (ra->ra_nintr != 1) {
238 printf(": expected 1 interrupt, got %d\n", ra->ra_nintr);
239 return;
240 }
241 pri = ra->ra_intr[0].int_pri;
242 printf(" pri %d, softpri %d\n", pri, PIL_TTY);
243 if (!didintr) {
244 didintr = 1;
245 prevpri = pri;
246 intr_establish(pri, &levelhard);
247 intr_establish(PIL_TTY, &levelsoft);
248 } else if (pri != prevpri)
249 panic("broken zs interrupt scheme");
250 zi = (struct zsinfo *)dev;
251 zi->zi_zs = addr;
252 unit = zs * 2;
253 cs = zi->zi_cs;
254
255 if(!zs_tty[unit])
256 zs_tty[unit] = ttymalloc();
257 tp = zs_tty[unit];
258 if(!zs_tty[unit+1])
259 zs_tty[unit+1] = ttymalloc();
260
261 if (unit == 0) {
262 /* Get software carrier flags from options node in OPENPROM. */
263 extern int optionsnode;
264
265 softcar = 0;
266 if (*getpropstring(optionsnode, "ttya-ignore-cd") == 't')
267 softcar |= 1;
268 if (*getpropstring(optionsnode, "ttyb-ignore-cd") == 't')
269 softcar |= 2;
270 } else
271 softcar = dev->dv_cfdata->cf_flags;
272
273 /* link into interrupt list with order (A,B) (B=A+1) */
274 cs[0].cs_next = &cs[1];
275 cs[1].cs_next = zslist;
276 zslist = cs;
277
278 cs->cs_unit = unit;
279 cs->cs_speed = zs_getspeed(&addr->zs_chan[CHAN_A]);
280 cs->cs_softcar = softcar & 1;
281 cs->cs_zc = &addr->zs_chan[CHAN_A];
282 tp->t_dev = makedev(ZSMAJOR, unit);
283 tp->t_oproc = zsstart;
284 tp->t_param = zsparam;
285 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
286 tp = ctp;
287 cs->cs_ttyp = tp;
288 #ifdef KGDB
289 if (ctp == NULL)
290 zs_checkkgdb(unit, cs, tp);
291 #endif
292 if (unit == ZS_KBD) {
293 /*
294 * Keyboard: tell /dev/kbd driver how to talk to us.
295 */
296 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
297 tp->t_cflag = CS8;
298 kbd_serial(tp, zsiopen, zsiclose);
299 cs->cs_conk = 1; /* do L1-A processing */
300 }
301 unit++;
302 cs++;
303 tp = zs_tty[unit];
304 cs->cs_unit = unit;
305 cs->cs_speed = zs_getspeed(&addr->zs_chan[CHAN_B]);
306 cs->cs_softcar = softcar & 2;
307 cs->cs_zc = &addr->zs_chan[CHAN_B];
308 tp->t_dev = makedev(ZSMAJOR, unit);
309 tp->t_oproc = zsstart;
310 tp->t_param = zsparam;
311 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
312 tp = ctp;
313 cs->cs_ttyp = tp;
314 #ifdef KGDB
315 if (ctp == NULL)
316 zs_checkkgdb(unit, cs, tp);
317 #endif
318 if (unit == ZS_MOUSE) {
319 /*
320 * Mouse: tell /dev/mouse driver how to talk to us.
321 */
322 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
323 tp->t_cflag = CS8;
324 ms_serial(tp, zsiopen, zsiclose);
325 }
326 }
327
328 /*
329 * Put a channel in a known state. Interrupts may be left disabled
330 * or enabled, as desired.
331 */
332 static void
333 zs_reset(zc, inten, speed)
334 volatile struct zschan *zc;
335 int inten, speed;
336 {
337 int tconst;
338 static u_char reg[16] = {
339 0,
340 0,
341 0,
342 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
343 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
344 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
345 0,
346 0,
347 0,
348 0,
349 ZSWR10_NRZ,
350 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
351 0,
352 0,
353 ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
354 ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
355 };
356
357 reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
358 tconst = BPS_TO_TCONST(PCLK / 16, speed);
359 reg[12] = tconst;
360 reg[13] = tconst >> 8;
361 zs_loadchannelregs(zc, reg);
362 }
363
364 /*
365 * Declare the given tty (which is in fact &cons) as a console input
366 * or output. This happens before the zs chip is attached; the hookup
367 * is finished later, in zs_setcons() below.
368 *
369 * This is used only for ports a and b. The console keyboard is decoded
370 * independently (we always send unit-2 input to /dev/kbd, which will
371 * direct it to /dev/console if appropriate).
372 */
373 void
374 zsconsole(tp, unit, out, fnstop)
375 register struct tty *tp;
376 register int unit;
377 int out;
378 void (**fnstop) __P((struct tty *, int));
379 {
380 extern int (*v_putc)();
381 int zs;
382 volatile struct zsdevice *addr;
383
384 if (unit >= ZS_KBD)
385 panic("zsconsole");
386 if (out) {
387 zs_consout = unit;
388 zs = unit >> 1;
389 if ((addr = zsaddr[zs]) == NULL)
390 addr = zsaddr[zs] = findzs(zs);
391 zs_conschan = (unit & 1) == 0 ? &addr->zs_chan[CHAN_A] :
392 &addr->zs_chan[CHAN_B];
393 v_putc = zscnputc;
394 } else
395 zs_consin = unit;
396 if(fnstop)
397 *fnstop = &zsstop;
398 zs_ctty = tp;
399 }
400
401 /*
402 * Polled console output putchar.
403 */
404 static int
405 zscnputc(c)
406 int c;
407 {
408 register volatile struct zschan *zc = zs_conschan;
409 register int s;
410
411 if (c == '\n')
412 zscnputc('\r');
413 /*
414 * Must block output interrupts (i.e., raise to >= splzs) without
415 * lowering current ipl. Need a better way.
416 */
417 s = splhigh();
418 #ifdef SUN4C /* XXX */
419 if (s <= (12 << 8))
420 (void) splzs();
421 #endif
422 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
423 ZS_DELAY();
424 zc->zc_data = c;
425 ZS_DELAY();
426 splx(s);
427 }
428
429 /*
430 * Set up the given unit as console input, output, both, or neither, as
431 * needed. Return console tty if it is to receive console input.
432 */
433 static struct tty *
434 zs_checkcons(struct zsinfo *zi, int unit, struct zs_chanstate *cs)
435 {
436 register struct tty *tp;
437 char *i, *o;
438
439 if ((tp = zs_ctty) == NULL)
440 return (0);
441 i = zs_consin == unit ? "input" : NULL;
442 o = zs_consout == unit ? "output" : NULL;
443 if (i == NULL && o == NULL)
444 return (0);
445
446 /* rewire the minor device (gack) */
447 tp->t_dev = makedev(major(tp->t_dev), unit);
448
449 /*
450 * Rewire input and/or output. Note that baud rate reflects
451 * input settings, not output settings, but we can do no better
452 * if the console is split across two ports.
453 *
454 * XXX split consoles don't work anyway -- this needs to be
455 * thrown away and redone
456 */
457 if (i) {
458 tp->t_param = zsparam;
459 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
460 tp->t_cflag = CS8;
461 ttsetwater(tp);
462 }
463 if (o) {
464 tp->t_oproc = zsstart;
465 }
466 printf("%s%c: console %s\n",
467 zi->zi_dev.dv_xname, (unit & 1) + 'a', i ? (o ? "i/o" : i) : o);
468 cs->cs_consio = 1;
469 cs->cs_brkabort = 1;
470 return (tp);
471 }
472
473 #ifdef KGDB
474 /*
475 * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
476 * Pick up the current speed and character size and restore the original
477 * speed.
478 */
479 static void
480 zs_checkkgdb(int unit, struct zs_chanstate *cs, struct tty *tp)
481 {
482
483 if (kgdb_dev == makedev(ZSMAJOR, unit)) {
484 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
485 tp->t_cflag = CS8;
486 cs->cs_kgdb = 1;
487 cs->cs_speed = zs_kgdb_savedspeed;
488 (void) zsparam(tp, &tp->t_termios);
489 }
490 }
491 #endif
492
493 /*
494 * Compute the current baud rate given a ZSCC channel.
495 */
496 static int
497 zs_getspeed(zc)
498 register volatile struct zschan *zc;
499 {
500 register int tconst;
501
502 tconst = ZS_READ(zc, 12);
503 tconst |= ZS_READ(zc, 13) << 8;
504 return (TCONST_TO_BPS(PCLK / 16, tconst));
505 }
506
507
508 /*
509 * Do an internal open.
510 */
511 static void
512 zsiopen(struct tty *tp)
513 {
514
515 (void) zsparam(tp, &tp->t_termios);
516 ttsetwater(tp);
517 tp->t_state = TS_ISOPEN | TS_CARR_ON;
518 }
519
520 /*
521 * Do an internal close. Eventually we should shut off the chip when both
522 * ports on it are closed.
523 */
524 static void
525 zsiclose(struct tty *tp)
526 {
527
528 ttylclose(tp, 0); /* ??? */
529 ttyclose(tp); /* ??? */
530 tp->t_state = 0;
531 }
532
533
534 /*
535 * Open a zs serial port. This interface may not be used to open
536 * the keyboard and mouse ports. (XXX)
537 */
538 int
539 zsopen(dev_t dev, int flags, int mode, struct proc *p)
540 {
541 register struct tty *tp;
542 register struct zs_chanstate *cs;
543 struct zsinfo *zi;
544 int unit = minor(dev), zs = unit >> 1, error, s;
545
546 if (zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL ||
547 unit == ZS_KBD || unit == ZS_MOUSE)
548 return (ENXIO);
549 cs = &zi->zi_cs[unit & 1];
550 if (cs->cs_consio)
551 return (ENXIO); /* ??? */
552 tp = cs->cs_ttyp;
553 s = spltty();
554 if ((tp->t_state & TS_ISOPEN) == 0) {
555 ttychars(tp);
556 if (tp->t_ispeed == 0) {
557 tp->t_iflag = TTYDEF_IFLAG;
558 tp->t_oflag = TTYDEF_OFLAG;
559 tp->t_cflag = TTYDEF_CFLAG;
560 tp->t_lflag = TTYDEF_LFLAG;
561 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
562 }
563 (void) zsparam(tp, &tp->t_termios);
564 ttsetwater(tp);
565 } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
566 splx(s);
567 return (EBUSY);
568 }
569 error = 0;
570 for (;;) {
571 /* loop, turning on the device, until carrier present */
572 zs_modem(cs, 1);
573 if (cs->cs_softcar)
574 tp->t_state |= TS_CARR_ON;
575 if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
576 tp->t_state & TS_CARR_ON)
577 break;
578 tp->t_state |= TS_WOPEN;
579 if (error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
580 ttopen, 0))
581 break;
582 }
583 splx(s);
584 if (error == 0)
585 error = linesw[tp->t_line].l_open(dev, tp);
586 if (error)
587 zs_modem(cs, 0);
588 return (error);
589 }
590
591 /*
592 * Close a zs serial port.
593 */
594 int
595 zsclose(dev_t dev, int flags, int mode, struct proc *p)
596 {
597 register struct zs_chanstate *cs;
598 register struct tty *tp;
599 struct zsinfo *zi;
600 int unit = minor(dev), s;
601
602 zi = zscd.cd_devs[unit >> 1];
603 cs = &zi->zi_cs[unit & 1];
604 tp = cs->cs_ttyp;
605 linesw[tp->t_line].l_close(tp, flags);
606 if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
607 (tp->t_state & TS_ISOPEN) == 0) {
608 zs_modem(cs, 0);
609 /* hold low for 1 second */
610 (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
611 }
612 if (cs->cs_creg[5] & ZSWR5_BREAK)
613 {
614 s = splzs();
615 cs->cs_preg[5] &= ~ZSWR5_BREAK;
616 cs->cs_creg[5] &= ~ZSWR5_BREAK;
617 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
618 splx(s);
619 }
620 ttyclose(tp);
621 #ifdef KGDB
622 /* Reset the speed if we're doing kgdb on this port */
623 if (cs->cs_kgdb) {
624 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
625 (void) zsparam(tp, &tp->t_termios);
626 }
627 #endif
628 return (0);
629 }
630
631 /*
632 * Read/write zs serial port.
633 */
634 int
635 zsread(dev_t dev, struct uio *uio, int flags)
636 {
637 register struct tty *tp = zs_tty[minor(dev)];
638
639 return (linesw[tp->t_line].l_read(tp, uio, flags));
640 }
641
642 int
643 zswrite(dev_t dev, struct uio *uio, int flags)
644 {
645 register struct tty *tp = zs_tty[minor(dev)];
646
647 return (linesw[tp->t_line].l_write(tp, uio, flags));
648 }
649
650 /*
651 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
652 * channels are kept in (A,B) pairs.
653 *
654 * Do just a little, then get out; set a software interrupt if more
655 * work is needed.
656 *
657 * We deliberately ignore the vectoring Zilog gives us, and match up
658 * only the number of `reset interrupt under service' operations, not
659 * the order.
660 */
661 /* ARGSUSED */
662 int
663 zshard(void *intrarg)
664 {
665 register struct zs_chanstate *a;
666 #define b (a + 1)
667 register volatile struct zschan *zc;
668 register int rr3, intflags = 0, v, i;
669 static int zsrint(struct zs_chanstate *, volatile struct zschan *);
670 static int zsxint(struct zs_chanstate *, volatile struct zschan *);
671 static int zssint(struct zs_chanstate *, volatile struct zschan *);
672
673 for (a = zslist; a != NULL; a = b->cs_next) {
674 rr3 = ZS_READ(a->cs_zc, 3);
675 if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
676 intflags |= 2;
677 zc = a->cs_zc;
678 i = a->cs_rbput;
679 if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
680 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
681 intflags |= 1;
682 }
683 if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
684 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
685 intflags |= 1;
686 }
687 if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
688 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
689 intflags |= 1;
690 }
691 a->cs_rbput = i;
692 }
693 if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
694 intflags |= 2;
695 zc = b->cs_zc;
696 i = b->cs_rbput;
697 if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
698 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
699 intflags |= 1;
700 }
701 if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
702 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
703 intflags |= 1;
704 }
705 if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
706 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
707 intflags |= 1;
708 }
709 b->cs_rbput = i;
710 }
711 }
712 #undef b
713 if (intflags & 1) {
714 #ifdef SUN4C /* XXX -- but this will go away when zshard moves to locore.s */
715 struct clockframe *p = intrarg;
716
717 if ((p->psr & PSR_PIL) < (PIL_TTY << 8)) {
718 zsshortcuts++;
719 (void) spltty();
720 if (zshardscope) {
721 LED_ON;
722 LED_OFF;
723 }
724 return (zssoft(intrarg));
725 }
726 #endif
727 ienab_bis(IE_ZSSOFT);
728 }
729 return (intflags & 2);
730 }
731
732 static int
733 zsrint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
734 {
735 register int c = zc->zc_data;
736
737 if (cs->cs_conk) {
738 register struct conk_state *conk = &zsconk_state;
739
740 /*
741 * Check here for console abort function, so that we
742 * can abort even when interrupts are locking up the
743 * machine.
744 */
745 if (c == KBD_RESET) {
746 conk->conk_id = 1; /* ignore next byte */
747 conk->conk_l1 = 0;
748 } else if (conk->conk_id)
749 conk->conk_id = 0; /* stop ignoring bytes */
750 else if (c == KBD_L1)
751 conk->conk_l1 = 1; /* L1 went down */
752 else if (c == (KBD_L1|KBD_UP))
753 conk->conk_l1 = 0; /* L1 went up */
754 else if (c == KBD_A && conk->conk_l1) {
755 zsabort();
756 conk->conk_l1 = 0; /* we never see the up */
757 goto clearit; /* eat the A after L1-A */
758 }
759 }
760 #ifdef KGDB
761 if (c == FRAME_START && cs->cs_kgdb &&
762 (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
763 zskgdb(cs->cs_unit);
764 goto clearit;
765 }
766 #endif
767 /* compose receive character and status */
768 c <<= 8;
769 c |= ZS_READ(zc, 1);
770
771 /* clear receive error & interrupt condition */
772 zc->zc_csr = ZSWR0_RESET_ERRORS;
773 zc->zc_csr = ZSWR0_CLR_INTR;
774
775 return (ZRING_MAKE(ZRING_RINT, c));
776
777 clearit:
778 zc->zc_csr = ZSWR0_RESET_ERRORS;
779 zc->zc_csr = ZSWR0_CLR_INTR;
780 return (0);
781 }
782
783 static int
784 zsxint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
785 {
786 register int i = cs->cs_tbc;
787
788 if (i == 0) {
789 zc->zc_csr = ZSWR0_RESET_TXINT;
790 zc->zc_csr = ZSWR0_CLR_INTR;
791 return (ZRING_MAKE(ZRING_XINT, 0));
792 }
793 cs->cs_tbc = i - 1;
794 zc->zc_data = *cs->cs_tba++;
795 zc->zc_csr = ZSWR0_CLR_INTR;
796 return (0);
797 }
798
799 static int
800 zssint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
801 {
802 register int rr0;
803
804 rr0 = zc->zc_csr;
805 zc->zc_csr = ZSWR0_RESET_STATUS;
806 zc->zc_csr = ZSWR0_CLR_INTR;
807 /*
808 * The chip's hardware flow control is, as noted in zsreg.h,
809 * busted---if the DCD line goes low the chip shuts off the
810 * receiver (!). If we want hardware CTS flow control but do
811 * not have it, and carrier is now on, turn HFC on; if we have
812 * HFC now but carrier has gone low, turn it off.
813 */
814 if (rr0 & ZSRR0_DCD) {
815 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
816 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
817 cs->cs_creg[3] |= ZSWR3_HFC;
818 ZS_WRITE(zc, 3, cs->cs_creg[3]);
819 }
820 } else {
821 if (cs->cs_creg[3] & ZSWR3_HFC) {
822 cs->cs_creg[3] &= ~ZSWR3_HFC;
823 ZS_WRITE(zc, 3, cs->cs_creg[3]);
824 }
825 }
826 if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
827 #ifdef SUN4
828 /*
829 * XXX This might not be necessary. Test and
830 * delete if it isn't.
831 */
832 while (zc->zc_csr & ZSRR0_BREAK)
833 ZS_DELAY();
834 #endif
835 zsabort();
836 return (0);
837 }
838 return (ZRING_MAKE(ZRING_SINT, rr0));
839 }
840
841 zsabort()
842 {
843
844 #ifdef DDB
845 Debugger();
846 #else
847 printf("stopping on keyboard abort\n");
848 callrom();
849 #endif
850 }
851
852 #ifdef KGDB
853 /*
854 * KGDB framing character received: enter kernel debugger. This probably
855 * should time out after a few seconds to avoid hanging on spurious input.
856 */
857 zskgdb(int unit)
858 {
859
860 printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
861 kgdb_connect(1);
862 }
863 #endif
864
865 /*
866 * Print out a ring or fifo overrun error message.
867 */
868 static void
869 zsoverrun(int unit, long *ptime, char *what)
870 {
871
872 if (*ptime != time.tv_sec) {
873 *ptime = time.tv_sec;
874 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
875 (unit & 1) + 'a', what);
876 }
877 }
878
879 /*
880 * ZS software interrupt. Scan all channels for deferred interrupts.
881 */
882 int
883 zssoft(void *arg)
884 {
885 register struct zs_chanstate *cs;
886 register volatile struct zschan *zc;
887 register struct linesw *line;
888 register struct tty *tp;
889 register int get, n, c, cc, unit, s;
890
891 for (cs = zslist; cs != NULL; cs = cs->cs_next) {
892 get = cs->cs_rbget;
893 again:
894 n = cs->cs_rbput; /* atomic */
895 if (get == n) /* nothing more on this line */
896 continue;
897 unit = cs->cs_unit; /* set up to handle interrupts */
898 zc = cs->cs_zc;
899 tp = cs->cs_ttyp;
900 line = &linesw[tp->t_line];
901 /*
902 * Compute the number of interrupts in the receive ring.
903 * If the count is overlarge, we lost some events, and
904 * must advance to the first valid one. It may get
905 * overwritten if more data are arriving, but this is
906 * too expensive to check and gains nothing (we already
907 * lost out; all we can do at this point is trade one
908 * kind of loss for another).
909 */
910 n -= get;
911 if (n > ZLRB_RING_SIZE) {
912 zsoverrun(unit, &cs->cs_rotime, "ring");
913 get += n - ZLRB_RING_SIZE;
914 n = ZLRB_RING_SIZE;
915 }
916 while (--n >= 0) {
917 /* race to keep ahead of incoming interrupts */
918 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
919 switch (ZRING_TYPE(c)) {
920
921 case ZRING_RINT:
922 c = ZRING_VALUE(c);
923 if (c & ZSRR1_DO)
924 zsoverrun(unit, &cs->cs_fotime, "fifo");
925 cc = c >> 8;
926 if (c & ZSRR1_FE)
927 cc |= TTY_FE;
928 if (c & ZSRR1_PE)
929 cc |= TTY_PE;
930 /*
931 * this should be done through
932 * bstreams XXX gag choke
933 */
934 if (unit == ZS_KBD)
935 kbd_rint(cc);
936 else if (unit == ZS_MOUSE)
937 ms_rint(cc);
938 else
939 line->l_rint(cc, tp);
940 break;
941
942 case ZRING_XINT:
943 /*
944 * Transmit done: change registers and resume,
945 * or clear BUSY.
946 */
947 if (cs->cs_heldchange) {
948 s = splzs();
949 c = zc->zc_csr;
950 if ((c & ZSRR0_DCD) == 0)
951 cs->cs_preg[3] &= ~ZSWR3_HFC;
952 bcopy((caddr_t)cs->cs_preg,
953 (caddr_t)cs->cs_creg, 16);
954 zs_loadchannelregs(zc, cs->cs_creg);
955 splx(s);
956 cs->cs_heldchange = 0;
957 if (cs->cs_heldtbc &&
958 (tp->t_state & TS_TTSTOP) == 0) {
959 cs->cs_tbc = cs->cs_heldtbc - 1;
960 zc->zc_data = *cs->cs_tba++;
961 goto again;
962 }
963 }
964 tp->t_state &= ~TS_BUSY;
965 if (tp->t_state & TS_FLUSH)
966 tp->t_state &= ~TS_FLUSH;
967 else
968 ndflush(&tp->t_outq,
969 cs->cs_tba - (caddr_t)tp->t_outq.c_cf);
970 line->l_start(tp);
971 break;
972
973 case ZRING_SINT:
974 /*
975 * Status line change. HFC bit is run in
976 * hardware interrupt, to avoid locking
977 * at splzs here.
978 */
979 c = ZRING_VALUE(c);
980 if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
981 cc = (c & ZSRR0_DCD) != 0;
982 if (line->l_modem(tp, cc) == 0)
983 zs_modem(cs, cc);
984 }
985 cs->cs_rr0 = c;
986 break;
987
988 default:
989 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
990 unit >> 1, (unit & 1) + 'a', c);
991 break;
992 }
993 }
994 cs->cs_rbget = get;
995 goto again;
996 }
997 return (1);
998 }
999
1000 int
1001 zsioctl(dev_t dev, int cmd, caddr_t data, int flag, struct proc *p)
1002 {
1003 int unit = minor(dev);
1004 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1005 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
1006 register int error, s;
1007 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1008
1009 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
1010 if (error >= 0)
1011 return (error);
1012 error = ttioctl(tp, cmd, data, flag, p);
1013 if (error >= 0)
1014 return (error);
1015
1016 switch (cmd) {
1017
1018 case TIOCSBRK:
1019 {
1020 s = splzs();
1021 cs->cs_preg[5] |= ZSWR5_BREAK;
1022 cs->cs_creg[5] |= ZSWR5_BREAK;
1023 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1024 splx(s);
1025 break;
1026 }
1027
1028 case TIOCCBRK:
1029 {
1030 s = splzs();
1031 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1032 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1033 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1034 splx(s);
1035 break;
1036 }
1037
1038 case TIOCSDTR:
1039
1040 case TIOCCDTR:
1041
1042 case TIOCMSET:
1043
1044 case TIOCMBIS:
1045
1046 case TIOCMBIC:
1047
1048 case TIOCMGET:
1049
1050 default:
1051 return (ENOTTY);
1052 }
1053 return (0);
1054 }
1055
1056 /*
1057 * Start or restart transmission.
1058 */
1059 static void
1060 zsstart(register struct tty *tp)
1061 {
1062 register struct zs_chanstate *cs;
1063 register int s, nch;
1064 int unit = minor(tp->t_dev);
1065 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1066
1067 cs = &zi->zi_cs[unit & 1];
1068 s = spltty();
1069
1070 /*
1071 * If currently active or delaying, no need to do anything.
1072 */
1073 if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1074 goto out;
1075
1076 /*
1077 * If there are sleepers, and output has drained below low
1078 * water mark, awaken.
1079 */
1080 if (tp->t_outq.c_cc <= tp->t_lowat) {
1081 if (tp->t_state & TS_ASLEEP) {
1082 tp->t_state &= ~TS_ASLEEP;
1083 wakeup((caddr_t)&tp->t_outq);
1084 }
1085 selwakeup(&tp->t_wsel);
1086 }
1087
1088 nch = ndqb(&tp->t_outq, 0); /* XXX */
1089 if (nch) {
1090 register char *p = tp->t_outq.c_cf;
1091
1092 /* mark busy, enable tx done interrupts, & send first byte */
1093 tp->t_state |= TS_BUSY;
1094 (void) splzs();
1095 cs->cs_preg[1] |= ZSWR1_TIE;
1096 cs->cs_creg[1] |= ZSWR1_TIE;
1097 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1098 cs->cs_zc->zc_data = *p;
1099 cs->cs_tba = p + 1;
1100 cs->cs_tbc = nch - 1;
1101 } else {
1102 /*
1103 * Nothing to send, turn off transmit done interrupts.
1104 * This is useful if something is doing polled output.
1105 */
1106 (void) splzs();
1107 cs->cs_preg[1] &= ~ZSWR1_TIE;
1108 cs->cs_creg[1] &= ~ZSWR1_TIE;
1109 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1110 }
1111 out:
1112 splx(s);
1113 }
1114
1115 /*
1116 * Stop output, e.g., for ^S or output flush.
1117 */
1118 void
1119 zsstop(register struct tty *tp, int flag)
1120 {
1121 register struct zs_chanstate *cs;
1122 register int s, unit = minor(tp->t_dev);
1123 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1124
1125 cs = &zi->zi_cs[unit & 1];
1126 s = splzs();
1127 if (tp->t_state & TS_BUSY) {
1128 /*
1129 * Device is transmitting; must stop it.
1130 */
1131 cs->cs_tbc = 0;
1132 if ((tp->t_state & TS_TTSTOP) == 0)
1133 tp->t_state |= TS_FLUSH;
1134 }
1135 splx(s);
1136 }
1137
1138 /*
1139 * Set ZS tty parameters from termios.
1140 *
1141 * This routine makes use of the fact that only registers
1142 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1143 */
1144 static int
1145 zsparam(register struct tty *tp, register struct termios *t)
1146 {
1147 int unit = minor(tp->t_dev);
1148 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1149 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1150 register int tmp, tmp5, cflag, s;
1151
1152 /*
1153 * Because PCLK is only run at 4.9 MHz, the fastest we
1154 * can go is 51200 baud (this corresponds to TC=1).
1155 * This is somewhat unfortunate as there is no real
1156 * reason we should not be able to handle higher rates.
1157 */
1158 tmp = t->c_ospeed;
1159 if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
1160 return (EINVAL);
1161 if (tmp == 0) {
1162 /* stty 0 => drop DTR and RTS */
1163 zs_modem(cs, 0);
1164 return (0);
1165 }
1166 tmp = BPS_TO_TCONST(PCLK / 16, tmp);
1167 if (tmp < 2)
1168 return (EINVAL);
1169
1170 cflag = t->c_cflag;
1171 tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
1172 tp->t_cflag = cflag;
1173
1174 /*
1175 * Block interrupts so that state will not
1176 * be altered until we are done setting it up.
1177 */
1178 s = splzs();
1179 cs->cs_preg[12] = tmp;
1180 cs->cs_preg[13] = tmp >> 8;
1181 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1182 switch (cflag & CSIZE) {
1183 case CS5:
1184 tmp = ZSWR3_RX_5;
1185 tmp5 = ZSWR5_TX_5;
1186 break;
1187 case CS6:
1188 tmp = ZSWR3_RX_6;
1189 tmp5 = ZSWR5_TX_6;
1190 break;
1191 case CS7:
1192 tmp = ZSWR3_RX_7;
1193 tmp5 = ZSWR5_TX_7;
1194 break;
1195 case CS8:
1196 default:
1197 tmp = ZSWR3_RX_8;
1198 tmp5 = ZSWR5_TX_8;
1199 break;
1200 }
1201
1202 /*
1203 * Output hardware flow control on the chip is horrendous: if
1204 * carrier detect drops, the receiver is disabled. Hence we
1205 * can only do this when the carrier is on.
1206 */
1207 if (cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1208 tmp |= ZSWR3_HFC | ZSWR3_RX_ENABLE;
1209 else
1210 tmp |= ZSWR3_RX_ENABLE;
1211 cs->cs_preg[3] = tmp;
1212 cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1213
1214 tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
1215 if ((cflag & PARODD) == 0)
1216 tmp |= ZSWR4_EVENP;
1217 if (cflag & PARENB)
1218 tmp |= ZSWR4_PARENB;
1219 cs->cs_preg[4] = tmp;
1220 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR;
1221 cs->cs_preg[10] = ZSWR10_NRZ;
1222 cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
1223 cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
1224 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1225
1226 /*
1227 * If nothing is being transmitted, set up new current values,
1228 * else mark them as pending.
1229 */
1230 if (cs->cs_heldchange == 0) {
1231 if (cs->cs_ttyp->t_state & TS_BUSY) {
1232 cs->cs_heldtbc = cs->cs_tbc;
1233 cs->cs_tbc = 0;
1234 cs->cs_heldchange = 1;
1235 } else {
1236 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1237 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1238 }
1239 }
1240 splx(s);
1241 return (0);
1242 }
1243
1244 /*
1245 * Raise or lower modem control (DTR/RTS) signals. If a character is
1246 * in transmission, the change is deferred.
1247 */
1248 static void
1249 zs_modem(struct zs_chanstate *cs, int onoff)
1250 {
1251 int s, bis, and;
1252
1253 if (onoff) {
1254 bis = ZSWR5_DTR | ZSWR5_RTS;
1255 and = ~0;
1256 } else {
1257 bis = 0;
1258 and = ~(ZSWR5_DTR | ZSWR5_RTS);
1259 }
1260 s = splzs();
1261 cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
1262 if (cs->cs_heldchange == 0) {
1263 if (cs->cs_ttyp->t_state & TS_BUSY) {
1264 cs->cs_heldtbc = cs->cs_tbc;
1265 cs->cs_tbc = 0;
1266 cs->cs_heldchange = 1;
1267 } else {
1268 cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
1269 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1270 }
1271 }
1272 splx(s);
1273 }
1274
1275 /*
1276 * Write the given register set to the given zs channel in the proper order.
1277 * The channel must not be transmitting at the time. The receiver will
1278 * be disabled for the time it takes to write all the registers.
1279 */
1280 static void
1281 zs_loadchannelregs(volatile struct zschan *zc, u_char *reg)
1282 {
1283 int i;
1284
1285 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1286 i = zc->zc_data; /* drain fifo */
1287 i = zc->zc_data;
1288 i = zc->zc_data;
1289 ZS_WRITE(zc, 4, reg[4]);
1290 ZS_WRITE(zc, 10, reg[10]);
1291 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1292 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1293 ZS_WRITE(zc, 1, reg[1]);
1294 ZS_WRITE(zc, 9, reg[9]);
1295 ZS_WRITE(zc, 11, reg[11]);
1296 ZS_WRITE(zc, 12, reg[12]);
1297 ZS_WRITE(zc, 13, reg[13]);
1298 ZS_WRITE(zc, 14, reg[14]);
1299 ZS_WRITE(zc, 15, reg[15]);
1300 ZS_WRITE(zc, 3, reg[3]);
1301 ZS_WRITE(zc, 5, reg[5]);
1302 }
1303
1304 #ifdef KGDB
1305 /*
1306 * Get a character from the given kgdb channel. Called at splhigh().
1307 */
1308 static int
1309 zs_kgdb_getc(void *arg)
1310 {
1311 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1312
1313 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
1314 continue;
1315 return (zc->zc_data);
1316 }
1317
1318 /*
1319 * Put a character to the given kgdb channel. Called at splhigh().
1320 */
1321 static void
1322 zs_kgdb_putc(void *arg, int c)
1323 {
1324 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1325
1326 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
1327 continue;
1328 zc->zc_data = c;
1329 }
1330
1331 /*
1332 * Set up for kgdb; called at boot time before configuration.
1333 * KGDB interrupts will be enabled later when zs0 is configured.
1334 */
1335 void
1336 zs_kgdb_init()
1337 {
1338 volatile struct zsdevice *addr;
1339 volatile struct zschan *zc;
1340 int unit, zs;
1341
1342 if (major(kgdb_dev) != ZSMAJOR)
1343 return;
1344 unit = minor(kgdb_dev);
1345 /*
1346 * Unit must be 0 or 1 (zs0).
1347 */
1348 if ((unsigned)unit >= ZS_KBD) {
1349 printf("zs_kgdb_init: bad minor dev %d\n", unit);
1350 return;
1351 }
1352 zs = unit >> 1;
1353 if ((addr = zsaddr[zs]) == NULL)
1354 addr = zsaddr[zs] = findzs(zs);
1355 unit &= 1;
1356 zc = unit == 0 ? &addr->zs_chan[CHAN_A] : &addr->zs_chan[CHAN_B];
1357 zs_kgdb_savedspeed = zs_getspeed(zc);
1358 printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
1359 zs, unit + 'a', kgdb_rate);
1360 zs_reset(zc, 1, kgdb_rate);
1361 kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
1362 }
1363 #endif /* KGDB */
1364