zs.c revision 1.13 1 /*
2 * Copyright (c) 1992, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This software was developed by the Computer Systems Engineering group
6 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7 * contributed to Berkeley.
8 *
9 * All advertising materials mentioning features or use of this software
10 * must display the following acknowledgement:
11 * This product includes software developed by the University of
12 * California, Lawrence Berkeley Laboratory.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the University of
25 * California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 * may be used to endorse or promote products derived from this software
28 * without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 * @(#)zs.c 8.1 (Berkeley) 7/19/93
43 *
44 * from: Header: zs.c,v 1.30 93/07/19 23:44:42 torek Exp
45 * $Id: zs.c,v 1.13 1994/09/17 23:57:39 deraadt Exp $
46 */
47
48 /*
49 * Zilog Z8530 (ZSCC) driver.
50 *
51 * Runs two tty ports (ttya and ttyb) on zs0,
52 * and runs a keyboard and mouse on zs1.
53 *
54 * This driver knows far too much about chip to usage mappings.
55 */
56 #define NZS 2 /* XXX */
57
58 #include <sys/param.h>
59 #include <sys/proc.h>
60 #include <sys/device.h>
61 #include <sys/conf.h>
62 #include <sys/file.h>
63 #include <sys/ioctl.h>
64 #include <sys/tty.h>
65 #include <sys/time.h>
66 #include <sys/kernel.h>
67 #include <sys/syslog.h>
68
69 #include <machine/autoconf.h>
70 #include <machine/cpu.h>
71
72 #include <sparc/sparc/vaddrs.h>
73 #include <sparc/sparc/auxreg.h>
74
75 #include <machine/kbd.h>
76 #include <sparc/dev/zsreg.h>
77 #include <sparc/dev/zsvar.h>
78
79 #ifdef KGDB
80 #include <machine/remote-sl.h>
81 #endif
82
83 #define ZSMAJOR 12 /* XXX */
84
85 #define ZS_KBD 2 /* XXX */
86 #define ZS_MOUSE 3 /* XXX */
87
88 /* the magic number below was stolen from the Sprite source. */
89 #define PCLK (19660800/4) /* PCLK pin input clock rate */
90
91 /*
92 * Select software interrupt bit based on TTY ipl.
93 */
94 #if PIL_TTY == 1
95 # define IE_ZSSOFT IE_L1
96 #elif PIL_TTY == 4
97 # define IE_ZSSOFT IE_L4
98 #elif PIL_TTY == 6
99 # define IE_ZSSOFT IE_L6
100 #else
101 # error "no suitable software interrupt bit"
102 #endif
103
104 /*
105 * Software state per found chip. This would be called `zs_softc',
106 * but the previous driver had a rather different zs_softc....
107 */
108 struct zsinfo {
109 struct device zi_dev; /* base device */
110 volatile struct zsdevice *zi_zs;/* chip registers */
111 struct zs_chanstate zi_cs[2]; /* channel A and B software state */
112 };
113
114 struct tty *zs_tty[NZS * 2]; /* XXX should be dynamic */
115
116 /* Definition of the driver for autoconfig. */
117 static int zsmatch(struct device *, struct cfdata *, void *);
118 static void zsattach(struct device *, struct device *, void *);
119 struct cfdriver zscd =
120 { NULL, "zs", zsmatch, zsattach, DV_TTY, sizeof(struct zsinfo) };
121
122 /* Interrupt handlers. */
123 static int zshard(void *);
124 static struct intrhand levelhard = { zshard };
125 static int zssoft(void *);
126 static struct intrhand levelsoft = { zssoft };
127
128 struct zs_chanstate *zslist;
129
130 /* Routines called from other code. */
131 static void zsiopen(struct tty *);
132 static void zsiclose(struct tty *);
133 static void zsstart(struct tty *);
134 void zsstop(struct tty *, int);
135 static int zsparam(struct tty *, struct termios *);
136
137 /* Routines purely local to this driver. */
138 static int zs_getspeed(volatile struct zschan *);
139 static void zs_reset(volatile struct zschan *, int, int);
140 static void zs_modem(struct zs_chanstate *, int);
141 static void zs_loadchannelregs(volatile struct zschan *, u_char *);
142
143 /* Console stuff. */
144 static struct tty *zs_ctty; /* console `struct tty *' */
145 static int zs_consin = -1, zs_consout = -1;
146 static int zscnputc(int); /* console putc function */
147 static volatile struct zschan *zs_conschan;
148 static struct tty *zs_checkcons(struct zsinfo *, int, struct zs_chanstate *);
149
150 #ifdef KGDB
151 /* KGDB stuff. Must reboot to change zs_kgdbunit. */
152 extern int kgdb_dev, kgdb_rate;
153 static int zs_kgdb_savedspeed;
154 static void zs_checkkgdb(int, struct zs_chanstate *, struct tty *);
155 #endif
156
157 extern volatile struct zsdevice *findzs(int);
158 static volatile struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */
159
160 /*
161 * Console keyboard L1-A processing is done in the hardware interrupt code,
162 * so we need to duplicate some of the console keyboard decode state. (We
163 * must not use the regular state as the hardware code keeps ahead of the
164 * software state: the software state tracks the most recent ring input but
165 * the hardware state tracks the most recent ZSCC input.) See also kbd.h.
166 */
167 static struct conk_state { /* console keyboard state */
168 char conk_id; /* true => ID coming up (console only) */
169 char conk_l1; /* true => L1 pressed (console only) */
170 } zsconk_state;
171
172 int zshardscope;
173 int zsshortcuts; /* number of "shortcut" software interrupts */
174
175 #ifdef SUN4
176 static u_char
177 zs_read(zc, reg)
178 volatile struct zschan *zc;
179 u_char reg;
180 {
181 u_char val;
182
183 zc->zc_csr = reg;
184 ZS_DELAY();
185 val = zc->zc_csr;
186 ZS_DELAY();
187 return val;
188 }
189
190 static u_char
191 zs_write(zc, reg, val)
192 volatile struct zschan *zc;
193 u_char reg, val;
194 {
195 zc->zc_csr = reg;
196 ZS_DELAY();
197 zc->zc_csr = val;
198 ZS_DELAY();
199 return val;
200 }
201 #endif /* SUN4 */
202
203 /*
204 * Match slave number to zs unit number, so that misconfiguration will
205 * not set up the keyboard as ttya, etc.
206 */
207 static int
208 zsmatch(struct device *parent, struct cfdata *cf, void *aux)
209 {
210 struct confargs *ca = aux;
211 struct romaux *ra = &ca->ca_ra;
212
213 if (ca->ca_bustype == BUS_VME || ca->ca_bustype == BUS_OBIO) {
214 printf("[addr %8x %8x irq %d]", ra->ra_paddr, ra->ra_vaddr,
215 ra->ra_intr);
216 ra->ra_len = NBPG;
217 return (probeget(ra->ra_vaddr, 1) != 0);
218 }
219 return (getpropint(ra->ra_node, "slave", -2) == cf->cf_unit);
220 }
221
222 /*
223 * Attach a found zs.
224 *
225 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
226 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
227 */
228 static void
229 zsattach(struct device *parent, struct device *dev, void *aux)
230 {
231 register int zs = dev->dv_unit, unit;
232 register struct zsinfo *zi;
233 register struct zs_chanstate *cs;
234 register volatile struct zsdevice *addr;
235 register struct tty *tp, *ctp;
236 register struct confargs *ca = aux;
237 register struct romaux *ra = &ca->ca_ra;
238 int pri, softcar;
239 static int didintr, prevpri;
240
241 if ((addr = zsaddr[zs]) == NULL)
242 addr = zsaddr[zs] = findzs(zs);
243 if ((void *)addr != ra->ra_vaddr)
244 panic("zsattach");
245 if (ra->ra_nintr != 1) {
246 printf(": expected 1 interrupt, got %d\n", ra->ra_nintr);
247 return;
248 }
249 pri = ra->ra_intr[0].int_pri;
250 printf(" pri %d, softpri %d\n", pri, PIL_TTY);
251 if (!didintr) {
252 didintr = 1;
253 prevpri = pri;
254 intr_establish(pri, &levelhard);
255 intr_establish(PIL_TTY, &levelsoft);
256 } else if (pri != prevpri)
257 panic("broken zs interrupt scheme");
258 zi = (struct zsinfo *)dev;
259 zi->zi_zs = addr;
260 unit = zs * 2;
261 cs = zi->zi_cs;
262
263 if(!zs_tty[unit])
264 zs_tty[unit] = ttymalloc();
265 tp = zs_tty[unit];
266 if(!zs_tty[unit+1])
267 zs_tty[unit+1] = ttymalloc();
268
269 if (unit == 0) {
270 /* Get software carrier flags from options node in OPENPROM. */
271 extern int optionsnode;
272
273 softcar = 0;
274 if (*getpropstring(optionsnode, "ttya-ignore-cd") == 't')
275 softcar |= 1;
276 if (*getpropstring(optionsnode, "ttyb-ignore-cd") == 't')
277 softcar |= 2;
278 } else
279 softcar = dev->dv_cfdata->cf_flags;
280
281 /* link into interrupt list with order (A,B) (B=A+1) */
282 cs[0].cs_next = &cs[1];
283 cs[1].cs_next = zslist;
284 zslist = cs;
285
286 cs->cs_unit = unit;
287 cs->cs_speed = zs_getspeed(&addr->zs_chan[CHAN_A]);
288 cs->cs_softcar = softcar & 1;
289 cs->cs_zc = &addr->zs_chan[CHAN_A];
290 tp->t_dev = makedev(ZSMAJOR, unit);
291 tp->t_oproc = zsstart;
292 tp->t_param = zsparam;
293 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
294 tp = ctp;
295 cs->cs_ttyp = tp;
296 #ifdef KGDB
297 if (ctp == NULL)
298 zs_checkkgdb(unit, cs, tp);
299 #endif
300 if (unit == ZS_KBD) {
301 /*
302 * Keyboard: tell /dev/kbd driver how to talk to us.
303 */
304 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
305 tp->t_cflag = CS8;
306 kbd_serial(tp, zsiopen, zsiclose);
307 cs->cs_conk = 1; /* do L1-A processing */
308 }
309 unit++;
310 cs++;
311 tp = zs_tty[unit];
312 cs->cs_unit = unit;
313 cs->cs_speed = zs_getspeed(&addr->zs_chan[CHAN_B]);
314 cs->cs_softcar = softcar & 2;
315 cs->cs_zc = &addr->zs_chan[CHAN_B];
316 tp->t_dev = makedev(ZSMAJOR, unit);
317 tp->t_oproc = zsstart;
318 tp->t_param = zsparam;
319 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
320 tp = ctp;
321 cs->cs_ttyp = tp;
322 #ifdef KGDB
323 if (ctp == NULL)
324 zs_checkkgdb(unit, cs, tp);
325 #endif
326 if (unit == ZS_MOUSE) {
327 /*
328 * Mouse: tell /dev/mouse driver how to talk to us.
329 */
330 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
331 tp->t_cflag = CS8;
332 ms_serial(tp, zsiopen, zsiclose);
333 }
334 }
335
336 /*
337 * Put a channel in a known state. Interrupts may be left disabled
338 * or enabled, as desired.
339 */
340 static void
341 zs_reset(zc, inten, speed)
342 volatile struct zschan *zc;
343 int inten, speed;
344 {
345 int tconst;
346 static u_char reg[16] = {
347 0,
348 0,
349 0,
350 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
351 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
352 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
353 0,
354 0,
355 0,
356 0,
357 ZSWR10_NRZ,
358 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
359 0,
360 0,
361 ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
362 ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
363 };
364
365 reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
366 tconst = BPS_TO_TCONST(PCLK / 16, speed);
367 reg[12] = tconst;
368 reg[13] = tconst >> 8;
369 zs_loadchannelregs(zc, reg);
370 }
371
372 /*
373 * Declare the given tty (which is in fact &cons) as a console input
374 * or output. This happens before the zs chip is attached; the hookup
375 * is finished later, in zs_setcons() below.
376 *
377 * This is used only for ports a and b. The console keyboard is decoded
378 * independently (we always send unit-2 input to /dev/kbd, which will
379 * direct it to /dev/console if appropriate).
380 */
381 void
382 zsconsole(tp, unit, out, fnstop)
383 register struct tty *tp;
384 register int unit;
385 int out;
386 void (**fnstop) __P((struct tty *, int));
387 {
388 extern int (*v_putc)();
389 int zs;
390 volatile struct zsdevice *addr;
391
392 if (unit >= ZS_KBD)
393 panic("zsconsole");
394 if (out) {
395 zs_consout = unit;
396 zs = unit >> 1;
397 if ((addr = zsaddr[zs]) == NULL)
398 addr = zsaddr[zs] = findzs(zs);
399 zs_conschan = (unit & 1) == 0 ? &addr->zs_chan[CHAN_A] :
400 &addr->zs_chan[CHAN_B];
401 v_putc = zscnputc;
402 } else
403 zs_consin = unit;
404 if(fnstop)
405 *fnstop = &zsstop;
406 zs_ctty = tp;
407 }
408
409 /*
410 * Polled console output putchar.
411 */
412 static int
413 zscnputc(c)
414 int c;
415 {
416 register volatile struct zschan *zc = zs_conschan;
417 register int s;
418
419 if (c == '\n')
420 zscnputc('\r');
421 /*
422 * Must block output interrupts (i.e., raise to >= splzs) without
423 * lowering current ipl. Need a better way.
424 */
425 s = splhigh();
426 #ifdef SUN4C /* XXX */
427 if (s <= (12 << 8))
428 (void) splzs();
429 #endif
430 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
431 ZS_DELAY();
432 zc->zc_data = c;
433 ZS_DELAY();
434 splx(s);
435 }
436
437 /*
438 * Set up the given unit as console input, output, both, or neither, as
439 * needed. Return console tty if it is to receive console input.
440 */
441 static struct tty *
442 zs_checkcons(struct zsinfo *zi, int unit, struct zs_chanstate *cs)
443 {
444 register struct tty *tp;
445 char *i, *o;
446
447 if ((tp = zs_ctty) == NULL)
448 return (0);
449 i = zs_consin == unit ? "input" : NULL;
450 o = zs_consout == unit ? "output" : NULL;
451 if (i == NULL && o == NULL)
452 return (0);
453
454 /* rewire the minor device (gack) */
455 tp->t_dev = makedev(major(tp->t_dev), unit);
456
457 /*
458 * Rewire input and/or output. Note that baud rate reflects
459 * input settings, not output settings, but we can do no better
460 * if the console is split across two ports.
461 *
462 * XXX split consoles don't work anyway -- this needs to be
463 * thrown away and redone
464 */
465 if (i) {
466 tp->t_param = zsparam;
467 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
468 tp->t_cflag = CS8;
469 ttsetwater(tp);
470 }
471 if (o) {
472 tp->t_oproc = zsstart;
473 }
474 printf("%s%c: console %s\n",
475 zi->zi_dev.dv_xname, (unit & 1) + 'a', i ? (o ? "i/o" : i) : o);
476 cs->cs_consio = 1;
477 cs->cs_brkabort = 1;
478 return (tp);
479 }
480
481 #ifdef KGDB
482 /*
483 * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
484 * Pick up the current speed and character size and restore the original
485 * speed.
486 */
487 static void
488 zs_checkkgdb(int unit, struct zs_chanstate *cs, struct tty *tp)
489 {
490
491 if (kgdb_dev == makedev(ZSMAJOR, unit)) {
492 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
493 tp->t_cflag = CS8;
494 cs->cs_kgdb = 1;
495 cs->cs_speed = zs_kgdb_savedspeed;
496 (void) zsparam(tp, &tp->t_termios);
497 }
498 }
499 #endif
500
501 /*
502 * Compute the current baud rate given a ZSCC channel.
503 */
504 static int
505 zs_getspeed(zc)
506 register volatile struct zschan *zc;
507 {
508 register int tconst;
509
510 tconst = ZS_READ(zc, 12);
511 tconst |= ZS_READ(zc, 13) << 8;
512 return (TCONST_TO_BPS(PCLK / 16, tconst));
513 }
514
515
516 /*
517 * Do an internal open.
518 */
519 static void
520 zsiopen(struct tty *tp)
521 {
522
523 (void) zsparam(tp, &tp->t_termios);
524 ttsetwater(tp);
525 tp->t_state = TS_ISOPEN | TS_CARR_ON;
526 }
527
528 /*
529 * Do an internal close. Eventually we should shut off the chip when both
530 * ports on it are closed.
531 */
532 static void
533 zsiclose(struct tty *tp)
534 {
535
536 ttylclose(tp, 0); /* ??? */
537 ttyclose(tp); /* ??? */
538 tp->t_state = 0;
539 }
540
541
542 /*
543 * Open a zs serial port. This interface may not be used to open
544 * the keyboard and mouse ports. (XXX)
545 */
546 int
547 zsopen(dev_t dev, int flags, int mode, struct proc *p)
548 {
549 register struct tty *tp;
550 register struct zs_chanstate *cs;
551 struct zsinfo *zi;
552 int unit = minor(dev), zs = unit >> 1, error, s;
553
554 if (zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL ||
555 unit == ZS_KBD || unit == ZS_MOUSE)
556 return (ENXIO);
557 cs = &zi->zi_cs[unit & 1];
558 if (cs->cs_consio)
559 return (ENXIO); /* ??? */
560 tp = cs->cs_ttyp;
561 s = spltty();
562 if ((tp->t_state & TS_ISOPEN) == 0) {
563 ttychars(tp);
564 if (tp->t_ispeed == 0) {
565 tp->t_iflag = TTYDEF_IFLAG;
566 tp->t_oflag = TTYDEF_OFLAG;
567 tp->t_cflag = TTYDEF_CFLAG;
568 tp->t_lflag = TTYDEF_LFLAG;
569 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
570 }
571 (void) zsparam(tp, &tp->t_termios);
572 ttsetwater(tp);
573 } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
574 splx(s);
575 return (EBUSY);
576 }
577 error = 0;
578 for (;;) {
579 /* loop, turning on the device, until carrier present */
580 zs_modem(cs, 1);
581 if (cs->cs_softcar)
582 tp->t_state |= TS_CARR_ON;
583 if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
584 tp->t_state & TS_CARR_ON)
585 break;
586 tp->t_state |= TS_WOPEN;
587 if (error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
588 ttopen, 0))
589 break;
590 }
591 splx(s);
592 if (error == 0)
593 error = linesw[tp->t_line].l_open(dev, tp);
594 if (error)
595 zs_modem(cs, 0);
596 return (error);
597 }
598
599 /*
600 * Close a zs serial port.
601 */
602 int
603 zsclose(dev_t dev, int flags, int mode, struct proc *p)
604 {
605 register struct zs_chanstate *cs;
606 register struct tty *tp;
607 struct zsinfo *zi;
608 int unit = minor(dev), s;
609
610 zi = zscd.cd_devs[unit >> 1];
611 cs = &zi->zi_cs[unit & 1];
612 tp = cs->cs_ttyp;
613 linesw[tp->t_line].l_close(tp, flags);
614 if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
615 (tp->t_state & TS_ISOPEN) == 0) {
616 zs_modem(cs, 0);
617 /* hold low for 1 second */
618 (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
619 }
620 if (cs->cs_creg[5] & ZSWR5_BREAK)
621 {
622 s = splzs();
623 cs->cs_preg[5] &= ~ZSWR5_BREAK;
624 cs->cs_creg[5] &= ~ZSWR5_BREAK;
625 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
626 splx(s);
627 }
628 ttyclose(tp);
629 #ifdef KGDB
630 /* Reset the speed if we're doing kgdb on this port */
631 if (cs->cs_kgdb) {
632 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
633 (void) zsparam(tp, &tp->t_termios);
634 }
635 #endif
636 return (0);
637 }
638
639 /*
640 * Read/write zs serial port.
641 */
642 int
643 zsread(dev_t dev, struct uio *uio, int flags)
644 {
645 register struct tty *tp = zs_tty[minor(dev)];
646
647 return (linesw[tp->t_line].l_read(tp, uio, flags));
648 }
649
650 int
651 zswrite(dev_t dev, struct uio *uio, int flags)
652 {
653 register struct tty *tp = zs_tty[minor(dev)];
654
655 return (linesw[tp->t_line].l_write(tp, uio, flags));
656 }
657
658 /*
659 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
660 * channels are kept in (A,B) pairs.
661 *
662 * Do just a little, then get out; set a software interrupt if more
663 * work is needed.
664 *
665 * We deliberately ignore the vectoring Zilog gives us, and match up
666 * only the number of `reset interrupt under service' operations, not
667 * the order.
668 */
669 /* ARGSUSED */
670 int
671 zshard(void *intrarg)
672 {
673 register struct zs_chanstate *a;
674 #define b (a + 1)
675 register volatile struct zschan *zc;
676 register int rr3, intflags = 0, v, i;
677 static int zsrint(struct zs_chanstate *, volatile struct zschan *);
678 static int zsxint(struct zs_chanstate *, volatile struct zschan *);
679 static int zssint(struct zs_chanstate *, volatile struct zschan *);
680
681 for (a = zslist; a != NULL; a = b->cs_next) {
682 rr3 = ZS_READ(a->cs_zc, 3);
683 if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
684 intflags |= 2;
685 zc = a->cs_zc;
686 i = a->cs_rbput;
687 if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
688 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
689 intflags |= 1;
690 }
691 if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
692 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
693 intflags |= 1;
694 }
695 if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
696 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
697 intflags |= 1;
698 }
699 a->cs_rbput = i;
700 }
701 if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
702 intflags |= 2;
703 zc = b->cs_zc;
704 i = b->cs_rbput;
705 if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
706 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
707 intflags |= 1;
708 }
709 if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
710 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
711 intflags |= 1;
712 }
713 if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
714 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
715 intflags |= 1;
716 }
717 b->cs_rbput = i;
718 }
719 }
720 #undef b
721 if (intflags & 1) {
722 #ifdef SUN4C /* XXX -- but this will go away when zshard moves to locore.s */
723 struct clockframe *p = intrarg;
724
725 if ((p->psr & PSR_PIL) < (PIL_TTY << 8)) {
726 zsshortcuts++;
727 (void) spltty();
728 if (zshardscope) {
729 LED_ON;
730 LED_OFF;
731 }
732 return (zssoft(intrarg));
733 }
734 #endif
735 ienab_bis(IE_ZSSOFT);
736 }
737 return (intflags & 2);
738 }
739
740 static int
741 zsrint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
742 {
743 register int c = zc->zc_data;
744
745 if (cs->cs_conk) {
746 register struct conk_state *conk = &zsconk_state;
747
748 /*
749 * Check here for console abort function, so that we
750 * can abort even when interrupts are locking up the
751 * machine.
752 */
753 if (c == KBD_RESET) {
754 conk->conk_id = 1; /* ignore next byte */
755 conk->conk_l1 = 0;
756 } else if (conk->conk_id)
757 conk->conk_id = 0; /* stop ignoring bytes */
758 else if (c == KBD_L1)
759 conk->conk_l1 = 1; /* L1 went down */
760 else if (c == (KBD_L1|KBD_UP))
761 conk->conk_l1 = 0; /* L1 went up */
762 else if (c == KBD_A && conk->conk_l1) {
763 zsabort();
764 conk->conk_l1 = 0; /* we never see the up */
765 goto clearit; /* eat the A after L1-A */
766 }
767 }
768 #ifdef KGDB
769 if (c == FRAME_START && cs->cs_kgdb &&
770 (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
771 zskgdb(cs->cs_unit);
772 goto clearit;
773 }
774 #endif
775 /* compose receive character and status */
776 c <<= 8;
777 c |= ZS_READ(zc, 1);
778
779 /* clear receive error & interrupt condition */
780 zc->zc_csr = ZSWR0_RESET_ERRORS;
781 zc->zc_csr = ZSWR0_CLR_INTR;
782
783 return (ZRING_MAKE(ZRING_RINT, c));
784
785 clearit:
786 zc->zc_csr = ZSWR0_RESET_ERRORS;
787 zc->zc_csr = ZSWR0_CLR_INTR;
788 return (0);
789 }
790
791 static int
792 zsxint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
793 {
794 register int i = cs->cs_tbc;
795
796 if (i == 0) {
797 zc->zc_csr = ZSWR0_RESET_TXINT;
798 zc->zc_csr = ZSWR0_CLR_INTR;
799 return (ZRING_MAKE(ZRING_XINT, 0));
800 }
801 cs->cs_tbc = i - 1;
802 zc->zc_data = *cs->cs_tba++;
803 zc->zc_csr = ZSWR0_CLR_INTR;
804 return (0);
805 }
806
807 static int
808 zssint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
809 {
810 register int rr0;
811
812 rr0 = zc->zc_csr;
813 zc->zc_csr = ZSWR0_RESET_STATUS;
814 zc->zc_csr = ZSWR0_CLR_INTR;
815 /*
816 * The chip's hardware flow control is, as noted in zsreg.h,
817 * busted---if the DCD line goes low the chip shuts off the
818 * receiver (!). If we want hardware CTS flow control but do
819 * not have it, and carrier is now on, turn HFC on; if we have
820 * HFC now but carrier has gone low, turn it off.
821 */
822 if (rr0 & ZSRR0_DCD) {
823 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
824 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
825 cs->cs_creg[3] |= ZSWR3_HFC;
826 ZS_WRITE(zc, 3, cs->cs_creg[3]);
827 }
828 } else {
829 if (cs->cs_creg[3] & ZSWR3_HFC) {
830 cs->cs_creg[3] &= ~ZSWR3_HFC;
831 ZS_WRITE(zc, 3, cs->cs_creg[3]);
832 }
833 }
834 if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
835 #ifdef SUN4
836 /*
837 * XXX This might not be necessary. Test and
838 * delete if it isn't.
839 */
840 while (zc->zc_csr & ZSRR0_BREAK)
841 ZS_DELAY();
842 #endif
843 zsabort();
844 return (0);
845 }
846 return (ZRING_MAKE(ZRING_SINT, rr0));
847 }
848
849 zsabort()
850 {
851
852 #ifdef DDB
853 Debugger();
854 #else
855 printf("stopping on keyboard abort\n");
856 callrom();
857 #endif
858 }
859
860 #ifdef KGDB
861 /*
862 * KGDB framing character received: enter kernel debugger. This probably
863 * should time out after a few seconds to avoid hanging on spurious input.
864 */
865 zskgdb(int unit)
866 {
867
868 printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
869 kgdb_connect(1);
870 }
871 #endif
872
873 /*
874 * Print out a ring or fifo overrun error message.
875 */
876 static void
877 zsoverrun(int unit, long *ptime, char *what)
878 {
879
880 if (*ptime != time.tv_sec) {
881 *ptime = time.tv_sec;
882 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
883 (unit & 1) + 'a', what);
884 }
885 }
886
887 /*
888 * ZS software interrupt. Scan all channels for deferred interrupts.
889 */
890 int
891 zssoft(void *arg)
892 {
893 register struct zs_chanstate *cs;
894 register volatile struct zschan *zc;
895 register struct linesw *line;
896 register struct tty *tp;
897 register int get, n, c, cc, unit, s;
898
899 for (cs = zslist; cs != NULL; cs = cs->cs_next) {
900 get = cs->cs_rbget;
901 again:
902 n = cs->cs_rbput; /* atomic */
903 if (get == n) /* nothing more on this line */
904 continue;
905 unit = cs->cs_unit; /* set up to handle interrupts */
906 zc = cs->cs_zc;
907 tp = cs->cs_ttyp;
908 line = &linesw[tp->t_line];
909 /*
910 * Compute the number of interrupts in the receive ring.
911 * If the count is overlarge, we lost some events, and
912 * must advance to the first valid one. It may get
913 * overwritten if more data are arriving, but this is
914 * too expensive to check and gains nothing (we already
915 * lost out; all we can do at this point is trade one
916 * kind of loss for another).
917 */
918 n -= get;
919 if (n > ZLRB_RING_SIZE) {
920 zsoverrun(unit, &cs->cs_rotime, "ring");
921 get += n - ZLRB_RING_SIZE;
922 n = ZLRB_RING_SIZE;
923 }
924 while (--n >= 0) {
925 /* race to keep ahead of incoming interrupts */
926 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
927 switch (ZRING_TYPE(c)) {
928
929 case ZRING_RINT:
930 c = ZRING_VALUE(c);
931 if (c & ZSRR1_DO)
932 zsoverrun(unit, &cs->cs_fotime, "fifo");
933 cc = c >> 8;
934 if (c & ZSRR1_FE)
935 cc |= TTY_FE;
936 if (c & ZSRR1_PE)
937 cc |= TTY_PE;
938 /*
939 * this should be done through
940 * bstreams XXX gag choke
941 */
942 if (unit == ZS_KBD)
943 kbd_rint(cc);
944 else if (unit == ZS_MOUSE)
945 ms_rint(cc);
946 else
947 line->l_rint(cc, tp);
948 break;
949
950 case ZRING_XINT:
951 /*
952 * Transmit done: change registers and resume,
953 * or clear BUSY.
954 */
955 if (cs->cs_heldchange) {
956 s = splzs();
957 c = zc->zc_csr;
958 if ((c & ZSRR0_DCD) == 0)
959 cs->cs_preg[3] &= ~ZSWR3_HFC;
960 bcopy((caddr_t)cs->cs_preg,
961 (caddr_t)cs->cs_creg, 16);
962 zs_loadchannelregs(zc, cs->cs_creg);
963 splx(s);
964 cs->cs_heldchange = 0;
965 if (cs->cs_heldtbc &&
966 (tp->t_state & TS_TTSTOP) == 0) {
967 cs->cs_tbc = cs->cs_heldtbc - 1;
968 zc->zc_data = *cs->cs_tba++;
969 goto again;
970 }
971 }
972 tp->t_state &= ~TS_BUSY;
973 if (tp->t_state & TS_FLUSH)
974 tp->t_state &= ~TS_FLUSH;
975 else
976 ndflush(&tp->t_outq,
977 cs->cs_tba - (caddr_t)tp->t_outq.c_cf);
978 line->l_start(tp);
979 break;
980
981 case ZRING_SINT:
982 /*
983 * Status line change. HFC bit is run in
984 * hardware interrupt, to avoid locking
985 * at splzs here.
986 */
987 c = ZRING_VALUE(c);
988 if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
989 cc = (c & ZSRR0_DCD) != 0;
990 if (line->l_modem(tp, cc) == 0)
991 zs_modem(cs, cc);
992 }
993 cs->cs_rr0 = c;
994 break;
995
996 default:
997 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
998 unit >> 1, (unit & 1) + 'a', c);
999 break;
1000 }
1001 }
1002 cs->cs_rbget = get;
1003 goto again;
1004 }
1005 return (1);
1006 }
1007
1008 int
1009 zsioctl(dev_t dev, int cmd, caddr_t data, int flag, struct proc *p)
1010 {
1011 int unit = minor(dev);
1012 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1013 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
1014 register int error, s;
1015 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1016
1017 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
1018 if (error >= 0)
1019 return (error);
1020 error = ttioctl(tp, cmd, data, flag, p);
1021 if (error >= 0)
1022 return (error);
1023
1024 switch (cmd) {
1025
1026 case TIOCSBRK:
1027 {
1028 s = splzs();
1029 cs->cs_preg[5] |= ZSWR5_BREAK;
1030 cs->cs_creg[5] |= ZSWR5_BREAK;
1031 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1032 splx(s);
1033 break;
1034 }
1035
1036 case TIOCCBRK:
1037 {
1038 s = splzs();
1039 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1040 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1041 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1042 splx(s);
1043 break;
1044 }
1045
1046 case TIOCSDTR:
1047
1048 case TIOCCDTR:
1049
1050 case TIOCMSET:
1051
1052 case TIOCMBIS:
1053
1054 case TIOCMBIC:
1055
1056 case TIOCMGET:
1057
1058 default:
1059 return (ENOTTY);
1060 }
1061 return (0);
1062 }
1063
1064 /*
1065 * Start or restart transmission.
1066 */
1067 static void
1068 zsstart(register struct tty *tp)
1069 {
1070 register struct zs_chanstate *cs;
1071 register int s, nch;
1072 int unit = minor(tp->t_dev);
1073 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1074
1075 cs = &zi->zi_cs[unit & 1];
1076 s = spltty();
1077
1078 /*
1079 * If currently active or delaying, no need to do anything.
1080 */
1081 if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1082 goto out;
1083
1084 /*
1085 * If there are sleepers, and output has drained below low
1086 * water mark, awaken.
1087 */
1088 if (tp->t_outq.c_cc <= tp->t_lowat) {
1089 if (tp->t_state & TS_ASLEEP) {
1090 tp->t_state &= ~TS_ASLEEP;
1091 wakeup((caddr_t)&tp->t_outq);
1092 }
1093 selwakeup(&tp->t_wsel);
1094 }
1095
1096 nch = ndqb(&tp->t_outq, 0); /* XXX */
1097 if (nch) {
1098 register char *p = tp->t_outq.c_cf;
1099
1100 /* mark busy, enable tx done interrupts, & send first byte */
1101 tp->t_state |= TS_BUSY;
1102 (void) splzs();
1103 cs->cs_preg[1] |= ZSWR1_TIE;
1104 cs->cs_creg[1] |= ZSWR1_TIE;
1105 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1106 cs->cs_zc->zc_data = *p;
1107 cs->cs_tba = p + 1;
1108 cs->cs_tbc = nch - 1;
1109 } else {
1110 /*
1111 * Nothing to send, turn off transmit done interrupts.
1112 * This is useful if something is doing polled output.
1113 */
1114 (void) splzs();
1115 cs->cs_preg[1] &= ~ZSWR1_TIE;
1116 cs->cs_creg[1] &= ~ZSWR1_TIE;
1117 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1118 }
1119 out:
1120 splx(s);
1121 }
1122
1123 /*
1124 * Stop output, e.g., for ^S or output flush.
1125 */
1126 void
1127 zsstop(register struct tty *tp, int flag)
1128 {
1129 register struct zs_chanstate *cs;
1130 register int s, unit = minor(tp->t_dev);
1131 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1132
1133 cs = &zi->zi_cs[unit & 1];
1134 s = splzs();
1135 if (tp->t_state & TS_BUSY) {
1136 /*
1137 * Device is transmitting; must stop it.
1138 */
1139 cs->cs_tbc = 0;
1140 if ((tp->t_state & TS_TTSTOP) == 0)
1141 tp->t_state |= TS_FLUSH;
1142 }
1143 splx(s);
1144 }
1145
1146 /*
1147 * Set ZS tty parameters from termios.
1148 *
1149 * This routine makes use of the fact that only registers
1150 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1151 */
1152 static int
1153 zsparam(register struct tty *tp, register struct termios *t)
1154 {
1155 int unit = minor(tp->t_dev);
1156 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1157 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1158 register int tmp, tmp5, cflag, s;
1159
1160 /*
1161 * Because PCLK is only run at 4.9 MHz, the fastest we
1162 * can go is 51200 baud (this corresponds to TC=1).
1163 * This is somewhat unfortunate as there is no real
1164 * reason we should not be able to handle higher rates.
1165 */
1166 tmp = t->c_ospeed;
1167 if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
1168 return (EINVAL);
1169 if (tmp == 0) {
1170 /* stty 0 => drop DTR and RTS */
1171 zs_modem(cs, 0);
1172 return (0);
1173 }
1174 tmp = BPS_TO_TCONST(PCLK / 16, tmp);
1175 if (tmp < 2)
1176 return (EINVAL);
1177
1178 cflag = t->c_cflag;
1179 tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
1180 tp->t_cflag = cflag;
1181
1182 /*
1183 * Block interrupts so that state will not
1184 * be altered until we are done setting it up.
1185 */
1186 s = splzs();
1187 cs->cs_preg[12] = tmp;
1188 cs->cs_preg[13] = tmp >> 8;
1189 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1190 switch (cflag & CSIZE) {
1191 case CS5:
1192 tmp = ZSWR3_RX_5;
1193 tmp5 = ZSWR5_TX_5;
1194 break;
1195 case CS6:
1196 tmp = ZSWR3_RX_6;
1197 tmp5 = ZSWR5_TX_6;
1198 break;
1199 case CS7:
1200 tmp = ZSWR3_RX_7;
1201 tmp5 = ZSWR5_TX_7;
1202 break;
1203 case CS8:
1204 default:
1205 tmp = ZSWR3_RX_8;
1206 tmp5 = ZSWR5_TX_8;
1207 break;
1208 }
1209
1210 /*
1211 * Output hardware flow control on the chip is horrendous: if
1212 * carrier detect drops, the receiver is disabled. Hence we
1213 * can only do this when the carrier is on.
1214 */
1215 if (cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1216 tmp |= ZSWR3_HFC | ZSWR3_RX_ENABLE;
1217 else
1218 tmp |= ZSWR3_RX_ENABLE;
1219 cs->cs_preg[3] = tmp;
1220 cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1221
1222 tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
1223 if ((cflag & PARODD) == 0)
1224 tmp |= ZSWR4_EVENP;
1225 if (cflag & PARENB)
1226 tmp |= ZSWR4_PARENB;
1227 cs->cs_preg[4] = tmp;
1228 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR;
1229 cs->cs_preg[10] = ZSWR10_NRZ;
1230 cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
1231 cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
1232 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1233
1234 /*
1235 * If nothing is being transmitted, set up new current values,
1236 * else mark them as pending.
1237 */
1238 if (cs->cs_heldchange == 0) {
1239 if (cs->cs_ttyp->t_state & TS_BUSY) {
1240 cs->cs_heldtbc = cs->cs_tbc;
1241 cs->cs_tbc = 0;
1242 cs->cs_heldchange = 1;
1243 } else {
1244 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1245 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1246 }
1247 }
1248 splx(s);
1249 return (0);
1250 }
1251
1252 /*
1253 * Raise or lower modem control (DTR/RTS) signals. If a character is
1254 * in transmission, the change is deferred.
1255 */
1256 static void
1257 zs_modem(struct zs_chanstate *cs, int onoff)
1258 {
1259 int s, bis, and;
1260
1261 if (onoff) {
1262 bis = ZSWR5_DTR | ZSWR5_RTS;
1263 and = ~0;
1264 } else {
1265 bis = 0;
1266 and = ~(ZSWR5_DTR | ZSWR5_RTS);
1267 }
1268 s = splzs();
1269 cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
1270 if (cs->cs_heldchange == 0) {
1271 if (cs->cs_ttyp->t_state & TS_BUSY) {
1272 cs->cs_heldtbc = cs->cs_tbc;
1273 cs->cs_tbc = 0;
1274 cs->cs_heldchange = 1;
1275 } else {
1276 cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
1277 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1278 }
1279 }
1280 splx(s);
1281 }
1282
1283 /*
1284 * Write the given register set to the given zs channel in the proper order.
1285 * The channel must not be transmitting at the time. The receiver will
1286 * be disabled for the time it takes to write all the registers.
1287 */
1288 static void
1289 zs_loadchannelregs(volatile struct zschan *zc, u_char *reg)
1290 {
1291 int i;
1292
1293 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1294 i = zc->zc_data; /* drain fifo */
1295 i = zc->zc_data;
1296 i = zc->zc_data;
1297 ZS_WRITE(zc, 4, reg[4]);
1298 ZS_WRITE(zc, 10, reg[10]);
1299 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1300 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1301 ZS_WRITE(zc, 1, reg[1]);
1302 ZS_WRITE(zc, 9, reg[9]);
1303 ZS_WRITE(zc, 11, reg[11]);
1304 ZS_WRITE(zc, 12, reg[12]);
1305 ZS_WRITE(zc, 13, reg[13]);
1306 ZS_WRITE(zc, 14, reg[14]);
1307 ZS_WRITE(zc, 15, reg[15]);
1308 ZS_WRITE(zc, 3, reg[3]);
1309 ZS_WRITE(zc, 5, reg[5]);
1310 }
1311
1312 #ifdef KGDB
1313 /*
1314 * Get a character from the given kgdb channel. Called at splhigh().
1315 */
1316 static int
1317 zs_kgdb_getc(void *arg)
1318 {
1319 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1320
1321 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
1322 continue;
1323 return (zc->zc_data);
1324 }
1325
1326 /*
1327 * Put a character to the given kgdb channel. Called at splhigh().
1328 */
1329 static void
1330 zs_kgdb_putc(void *arg, int c)
1331 {
1332 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1333
1334 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
1335 continue;
1336 zc->zc_data = c;
1337 }
1338
1339 /*
1340 * Set up for kgdb; called at boot time before configuration.
1341 * KGDB interrupts will be enabled later when zs0 is configured.
1342 */
1343 void
1344 zs_kgdb_init()
1345 {
1346 volatile struct zsdevice *addr;
1347 volatile struct zschan *zc;
1348 int unit, zs;
1349
1350 if (major(kgdb_dev) != ZSMAJOR)
1351 return;
1352 unit = minor(kgdb_dev);
1353 /*
1354 * Unit must be 0 or 1 (zs0).
1355 */
1356 if ((unsigned)unit >= ZS_KBD) {
1357 printf("zs_kgdb_init: bad minor dev %d\n", unit);
1358 return;
1359 }
1360 zs = unit >> 1;
1361 if ((addr = zsaddr[zs]) == NULL)
1362 addr = zsaddr[zs] = findzs(zs);
1363 unit &= 1;
1364 zc = unit == 0 ? &addr->zs_chan[CHAN_A] : &addr->zs_chan[CHAN_B];
1365 zs_kgdb_savedspeed = zs_getspeed(zc);
1366 printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
1367 zs, unit + 'a', kgdb_rate);
1368 zs_reset(zc, 1, kgdb_rate);
1369 kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
1370 }
1371 #endif /* KGDB */
1372