zs.c revision 1.14 1 /*
2 * Copyright (c) 1992, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This software was developed by the Computer Systems Engineering group
6 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7 * contributed to Berkeley.
8 *
9 * All advertising materials mentioning features or use of this software
10 * must display the following acknowledgement:
11 * This product includes software developed by the University of
12 * California, Lawrence Berkeley Laboratory.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the University of
25 * California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 * may be used to endorse or promote products derived from this software
28 * without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 * @(#)zs.c 8.1 (Berkeley) 7/19/93
43 *
44 * from: Header: zs.c,v 1.30 93/07/19 23:44:42 torek Exp
45 * $Id: zs.c,v 1.14 1994/10/02 22:00:32 deraadt Exp $
46 */
47
48 /*
49 * Zilog Z8530 (ZSCC) driver.
50 *
51 * Runs two tty ports (ttya and ttyb) on zs0,
52 * and runs a keyboard and mouse on zs1.
53 *
54 * This driver knows far too much about chip to usage mappings.
55 */
56 #define NZS 2 /* XXX */
57
58 #include <sys/param.h>
59 #include <sys/proc.h>
60 #include <sys/device.h>
61 #include <sys/conf.h>
62 #include <sys/file.h>
63 #include <sys/ioctl.h>
64 #include <sys/tty.h>
65 #include <sys/time.h>
66 #include <sys/kernel.h>
67 #include <sys/syslog.h>
68
69 #include <machine/autoconf.h>
70 #include <machine/cpu.h>
71
72 #include <sparc/sparc/vaddrs.h>
73 #include <sparc/sparc/auxreg.h>
74
75 #include <machine/kbd.h>
76 #include <sparc/dev/zsreg.h>
77 #include <sparc/dev/zsvar.h>
78
79 #ifdef KGDB
80 #include <machine/remote-sl.h>
81 #endif
82
83 #define ZSMAJOR 12 /* XXX */
84
85 #define ZS_KBD 2 /* XXX */
86 #define ZS_MOUSE 3 /* XXX */
87
88 /* the magic number below was stolen from the Sprite source. */
89 #define PCLK (19660800/4) /* PCLK pin input clock rate */
90
91 /*
92 * Select software interrupt bit based on TTY ipl.
93 */
94 #if PIL_TTY == 1
95 # define IE_ZSSOFT IE_L1
96 #elif PIL_TTY == 4
97 # define IE_ZSSOFT IE_L4
98 #elif PIL_TTY == 6
99 # define IE_ZSSOFT IE_L6
100 #else
101 # error "no suitable software interrupt bit"
102 #endif
103
104 /*
105 * Software state per found chip. This would be called `zs_softc',
106 * but the previous driver had a rather different zs_softc....
107 */
108 struct zsinfo {
109 struct device zi_dev; /* base device */
110 volatile struct zsdevice *zi_zs;/* chip registers */
111 struct zs_chanstate zi_cs[2]; /* channel A and B software state */
112 };
113
114 struct tty *zs_tty[NZS * 2]; /* XXX should be dynamic */
115
116 /* Definition of the driver for autoconfig. */
117 static int zsmatch(struct device *, struct cfdata *, void *);
118 static void zsattach(struct device *, struct device *, void *);
119 struct cfdriver zscd =
120 { NULL, "zs", zsmatch, zsattach, DV_TTY, sizeof(struct zsinfo) };
121
122 /* Interrupt handlers. */
123 static int zshard(void *);
124 static struct intrhand levelhard = { zshard };
125 static int zssoft(void *);
126 static struct intrhand levelsoft = { zssoft };
127
128 struct zs_chanstate *zslist;
129
130 /* Routines called from other code. */
131 static void zsiopen(struct tty *);
132 static void zsiclose(struct tty *);
133 static void zsstart(struct tty *);
134 void zsstop(struct tty *, int);
135 static int zsparam(struct tty *, struct termios *);
136
137 /* Routines purely local to this driver. */
138 static int zs_getspeed(volatile struct zschan *);
139 static void zs_reset(volatile struct zschan *, int, int);
140 static void zs_modem(struct zs_chanstate *, int);
141 static void zs_loadchannelregs(volatile struct zschan *, u_char *);
142
143 /* Console stuff. */
144 static struct tty *zs_ctty; /* console `struct tty *' */
145 static int zs_consin = -1, zs_consout = -1;
146 static int zscnputc(int); /* console putc function */
147 static volatile struct zschan *zs_conschan;
148 static struct tty *zs_checkcons(struct zsinfo *, int, struct zs_chanstate *);
149
150 #ifdef KGDB
151 /* KGDB stuff. Must reboot to change zs_kgdbunit. */
152 extern int kgdb_dev, kgdb_rate;
153 static int zs_kgdb_savedspeed;
154 static void zs_checkkgdb(int, struct zs_chanstate *, struct tty *);
155 #endif
156
157 extern volatile struct zsdevice *findzs(int);
158 static volatile struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */
159
160 /*
161 * Console keyboard L1-A processing is done in the hardware interrupt code,
162 * so we need to duplicate some of the console keyboard decode state. (We
163 * must not use the regular state as the hardware code keeps ahead of the
164 * software state: the software state tracks the most recent ring input but
165 * the hardware state tracks the most recent ZSCC input.) See also kbd.h.
166 */
167 static struct conk_state { /* console keyboard state */
168 char conk_id; /* true => ID coming up (console only) */
169 char conk_l1; /* true => L1 pressed (console only) */
170 } zsconk_state;
171
172 int zshardscope;
173 int zsshortcuts; /* number of "shortcut" software interrupts */
174
175 #ifdef SUN4
176 static u_char
177 zs_read(zc, reg)
178 volatile struct zschan *zc;
179 u_char reg;
180 {
181 u_char val;
182
183 zc->zc_csr = reg;
184 ZS_DELAY();
185 val = zc->zc_csr;
186 ZS_DELAY();
187 return val;
188 }
189
190 static u_char
191 zs_write(zc, reg, val)
192 volatile struct zschan *zc;
193 u_char reg, val;
194 {
195 zc->zc_csr = reg;
196 ZS_DELAY();
197 zc->zc_csr = val;
198 ZS_DELAY();
199 return val;
200 }
201 #endif /* SUN4 */
202
203 /*
204 * Match slave number to zs unit number, so that misconfiguration will
205 * not set up the keyboard as ttya, etc.
206 */
207 static int
208 zsmatch(struct device *parent, struct cfdata *cf, void *aux)
209 {
210 struct confargs *ca = aux;
211 struct romaux *ra = &ca->ca_ra;
212
213 if (strcmp(cf->cf_driver->cd_name, ra->ra_name))
214 return (0);
215 if (ca->ca_bustype == BUS_VME || ca->ca_bustype == BUS_OBIO) {
216 ra->ra_len = NBPG;
217 return (probeget(ra->ra_vaddr, 1) != -1);
218 }
219 if (ca->ca_bustype == BUS_MAIN && cputyp!=CPU_SUN4)
220 return (getpropint(ra->ra_node, "slave", -2) == cf->cf_unit);
221 return (0);
222 }
223
224 /*
225 * Attach a found zs.
226 *
227 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
228 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
229 */
230 static void
231 zsattach(struct device *parent, struct device *dev, void *aux)
232 {
233 register int zs = dev->dv_unit, unit;
234 register struct zsinfo *zi;
235 register struct zs_chanstate *cs;
236 register volatile struct zsdevice *addr;
237 register struct tty *tp, *ctp;
238 register struct confargs *ca = aux;
239 register struct romaux *ra = &ca->ca_ra;
240 int pri, softcar;
241 static int didintr, prevpri;
242
243 if ((addr = zsaddr[zs]) == NULL)
244 addr = zsaddr[zs] = findzs(zs);
245 if (ca->ca_bustype==BUS_MAIN)
246 if ((void *)addr != ra->ra_vaddr)
247 panic("zsattach");
248 if (ra->ra_nintr != 1) {
249 printf(": expected 1 interrupt, got %d\n", ra->ra_nintr);
250 return;
251 }
252 pri = ra->ra_intr[0].int_pri;
253 printf(" pri %d, softpri %d\n", pri, PIL_TTY);
254 if (!didintr) {
255 didintr = 1;
256 prevpri = pri;
257 intr_establish(pri, &levelhard);
258 intr_establish(PIL_TTY, &levelsoft);
259 } else if (pri != prevpri)
260 panic("broken zs interrupt scheme");
261 zi = (struct zsinfo *)dev;
262 zi->zi_zs = addr;
263 unit = zs * 2;
264 cs = zi->zi_cs;
265
266 if(!zs_tty[unit])
267 zs_tty[unit] = ttymalloc();
268 tp = zs_tty[unit];
269 if(!zs_tty[unit+1])
270 zs_tty[unit+1] = ttymalloc();
271
272 if (unit == 0) {
273 /* Get software carrier flags from options node in OPENPROM. */
274 extern int optionsnode;
275
276 softcar = 0;
277 #ifdef notdef
278 if (*getpropstring(optionsnode, "ttya-ignore-cd") == 't')
279 softcar |= 1;
280 if (*getpropstring(optionsnode, "ttyb-ignore-cd") == 't')
281 softcar |= 2;
282 #endif
283 } else
284 softcar = dev->dv_cfdata->cf_flags;
285
286 /* link into interrupt list with order (A,B) (B=A+1) */
287 cs[0].cs_next = &cs[1];
288 cs[1].cs_next = zslist;
289 zslist = cs;
290
291 cs->cs_unit = unit;
292 cs->cs_speed = zs_getspeed(&addr->zs_chan[CHAN_A]);
293 cs->cs_softcar = softcar & 1;
294 cs->cs_zc = &addr->zs_chan[CHAN_A];
295 tp->t_dev = makedev(ZSMAJOR, unit);
296 tp->t_oproc = zsstart;
297 tp->t_param = zsparam;
298 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
299 tp = ctp;
300 cs->cs_ttyp = tp;
301 #ifdef KGDB
302 if (ctp == NULL)
303 zs_checkkgdb(unit, cs, tp);
304 #endif
305 if (unit == ZS_KBD) {
306 /*
307 * Keyboard: tell /dev/kbd driver how to talk to us.
308 */
309 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
310 tp->t_cflag = CS8;
311 kbd_serial(tp, zsiopen, zsiclose);
312 cs->cs_conk = 1; /* do L1-A processing */
313 }
314 unit++;
315 cs++;
316 tp = zs_tty[unit];
317 cs->cs_unit = unit;
318 cs->cs_speed = zs_getspeed(&addr->zs_chan[CHAN_B]);
319 cs->cs_softcar = softcar & 2;
320 cs->cs_zc = &addr->zs_chan[CHAN_B];
321 tp->t_dev = makedev(ZSMAJOR, unit);
322 tp->t_oproc = zsstart;
323 tp->t_param = zsparam;
324 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
325 tp = ctp;
326 cs->cs_ttyp = tp;
327 #ifdef KGDB
328 if (ctp == NULL)
329 zs_checkkgdb(unit, cs, tp);
330 #endif
331 if (unit == ZS_MOUSE) {
332 /*
333 * Mouse: tell /dev/mouse driver how to talk to us.
334 */
335 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
336 tp->t_cflag = CS8;
337 ms_serial(tp, zsiopen, zsiclose);
338 }
339 }
340
341 /*
342 * Put a channel in a known state. Interrupts may be left disabled
343 * or enabled, as desired.
344 */
345 static void
346 zs_reset(zc, inten, speed)
347 volatile struct zschan *zc;
348 int inten, speed;
349 {
350 int tconst;
351 static u_char reg[16] = {
352 0,
353 0,
354 0,
355 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
356 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
357 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
358 0,
359 0,
360 0,
361 0,
362 ZSWR10_NRZ,
363 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
364 0,
365 0,
366 ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
367 ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
368 };
369
370 reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
371 tconst = BPS_TO_TCONST(PCLK / 16, speed);
372 reg[12] = tconst;
373 reg[13] = tconst >> 8;
374 zs_loadchannelregs(zc, reg);
375 }
376
377 /*
378 * Declare the given tty (which is in fact &cons) as a console input
379 * or output. This happens before the zs chip is attached; the hookup
380 * is finished later, in zs_setcons() below.
381 *
382 * This is used only for ports a and b. The console keyboard is decoded
383 * independently (we always send unit-2 input to /dev/kbd, which will
384 * direct it to /dev/console if appropriate).
385 */
386 void
387 zsconsole(tp, unit, out, fnstop)
388 register struct tty *tp;
389 register int unit;
390 int out;
391 void (**fnstop) __P((struct tty *, int));
392 {
393 extern int (*v_putc)();
394 int zs;
395 volatile struct zsdevice *addr;
396
397 if (unit >= ZS_KBD)
398 panic("zsconsole");
399 if (out) {
400 zs_consout = unit;
401 zs = unit >> 1;
402 if ((addr = zsaddr[zs]) == NULL)
403 addr = zsaddr[zs] = findzs(zs);
404 zs_conschan = (unit & 1) == 0 ? &addr->zs_chan[CHAN_A] :
405 &addr->zs_chan[CHAN_B];
406 v_putc = zscnputc;
407 } else
408 zs_consin = unit;
409 if(fnstop)
410 *fnstop = &zsstop;
411 zs_ctty = tp;
412 }
413
414 /*
415 * Polled console output putchar.
416 */
417 static int
418 zscnputc(c)
419 int c;
420 {
421 register volatile struct zschan *zc = zs_conschan;
422 register int s;
423
424 if (c == '\n')
425 zscnputc('\r');
426 /*
427 * Must block output interrupts (i.e., raise to >= splzs) without
428 * lowering current ipl. Need a better way.
429 */
430 s = splhigh();
431 #ifdef SUN4C /* XXX */
432 if (cputyp==CPU_SUN4C && s <= (12 << 8))
433 (void) splzs();
434 #endif
435 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
436 ZS_DELAY();
437 zc->zc_data = c;
438 ZS_DELAY();
439 splx(s);
440 }
441
442 /*
443 * Set up the given unit as console input, output, both, or neither, as
444 * needed. Return console tty if it is to receive console input.
445 */
446 static struct tty *
447 zs_checkcons(struct zsinfo *zi, int unit, struct zs_chanstate *cs)
448 {
449 register struct tty *tp;
450 char *i, *o;
451
452 if ((tp = zs_ctty) == NULL)
453 return (0);
454 i = zs_consin == unit ? "input" : NULL;
455 o = zs_consout == unit ? "output" : NULL;
456 if (i == NULL && o == NULL)
457 return (0);
458
459 /* rewire the minor device (gack) */
460 tp->t_dev = makedev(major(tp->t_dev), unit);
461
462 /*
463 * Rewire input and/or output. Note that baud rate reflects
464 * input settings, not output settings, but we can do no better
465 * if the console is split across two ports.
466 *
467 * XXX split consoles don't work anyway -- this needs to be
468 * thrown away and redone
469 */
470 if (i) {
471 tp->t_param = zsparam;
472 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
473 tp->t_cflag = CS8;
474 ttsetwater(tp);
475 }
476 if (o) {
477 tp->t_oproc = zsstart;
478 }
479 printf("%s%c: console %s\n",
480 zi->zi_dev.dv_xname, (unit & 1) + 'a', i ? (o ? "i/o" : i) : o);
481 cs->cs_consio = 1;
482 cs->cs_brkabort = 1;
483 return (tp);
484 }
485
486 #ifdef KGDB
487 /*
488 * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
489 * Pick up the current speed and character size and restore the original
490 * speed.
491 */
492 static void
493 zs_checkkgdb(int unit, struct zs_chanstate *cs, struct tty *tp)
494 {
495
496 if (kgdb_dev == makedev(ZSMAJOR, unit)) {
497 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
498 tp->t_cflag = CS8;
499 cs->cs_kgdb = 1;
500 cs->cs_speed = zs_kgdb_savedspeed;
501 (void) zsparam(tp, &tp->t_termios);
502 }
503 }
504 #endif
505
506 /*
507 * Compute the current baud rate given a ZSCC channel.
508 */
509 static int
510 zs_getspeed(zc)
511 register volatile struct zschan *zc;
512 {
513 register int tconst;
514
515 tconst = ZS_READ(zc, 12);
516 tconst |= ZS_READ(zc, 13) << 8;
517 return (TCONST_TO_BPS(PCLK / 16, tconst));
518 }
519
520
521 /*
522 * Do an internal open.
523 */
524 static void
525 zsiopen(struct tty *tp)
526 {
527
528 (void) zsparam(tp, &tp->t_termios);
529 ttsetwater(tp);
530 tp->t_state = TS_ISOPEN | TS_CARR_ON;
531 }
532
533 /*
534 * Do an internal close. Eventually we should shut off the chip when both
535 * ports on it are closed.
536 */
537 static void
538 zsiclose(struct tty *tp)
539 {
540
541 ttylclose(tp, 0); /* ??? */
542 ttyclose(tp); /* ??? */
543 tp->t_state = 0;
544 }
545
546
547 /*
548 * Open a zs serial port. This interface may not be used to open
549 * the keyboard and mouse ports. (XXX)
550 */
551 int
552 zsopen(dev_t dev, int flags, int mode, struct proc *p)
553 {
554 register struct tty *tp;
555 register struct zs_chanstate *cs;
556 struct zsinfo *zi;
557 int unit = minor(dev), zs = unit >> 1, error, s;
558
559 if (zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL ||
560 unit == ZS_KBD || unit == ZS_MOUSE)
561 return (ENXIO);
562 cs = &zi->zi_cs[unit & 1];
563 if (cs->cs_consio)
564 return (ENXIO); /* ??? */
565 tp = cs->cs_ttyp;
566 s = spltty();
567 if ((tp->t_state & TS_ISOPEN) == 0) {
568 ttychars(tp);
569 if (tp->t_ispeed == 0) {
570 tp->t_iflag = TTYDEF_IFLAG;
571 tp->t_oflag = TTYDEF_OFLAG;
572 tp->t_cflag = TTYDEF_CFLAG;
573 tp->t_lflag = TTYDEF_LFLAG;
574 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
575 }
576 (void) zsparam(tp, &tp->t_termios);
577 ttsetwater(tp);
578 } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
579 splx(s);
580 return (EBUSY);
581 }
582 error = 0;
583 for (;;) {
584 /* loop, turning on the device, until carrier present */
585 zs_modem(cs, 1);
586 if (cs->cs_softcar)
587 tp->t_state |= TS_CARR_ON;
588 if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
589 tp->t_state & TS_CARR_ON)
590 break;
591 tp->t_state |= TS_WOPEN;
592 if (error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
593 ttopen, 0))
594 break;
595 }
596 splx(s);
597 if (error == 0)
598 error = linesw[tp->t_line].l_open(dev, tp);
599 if (error)
600 zs_modem(cs, 0);
601 return (error);
602 }
603
604 /*
605 * Close a zs serial port.
606 */
607 int
608 zsclose(dev_t dev, int flags, int mode, struct proc *p)
609 {
610 register struct zs_chanstate *cs;
611 register struct tty *tp;
612 struct zsinfo *zi;
613 int unit = minor(dev), s;
614
615 zi = zscd.cd_devs[unit >> 1];
616 cs = &zi->zi_cs[unit & 1];
617 tp = cs->cs_ttyp;
618 linesw[tp->t_line].l_close(tp, flags);
619 if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
620 (tp->t_state & TS_ISOPEN) == 0) {
621 zs_modem(cs, 0);
622 /* hold low for 1 second */
623 (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
624 }
625 if (cs->cs_creg[5] & ZSWR5_BREAK)
626 {
627 s = splzs();
628 cs->cs_preg[5] &= ~ZSWR5_BREAK;
629 cs->cs_creg[5] &= ~ZSWR5_BREAK;
630 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
631 splx(s);
632 }
633 ttyclose(tp);
634 #ifdef KGDB
635 /* Reset the speed if we're doing kgdb on this port */
636 if (cs->cs_kgdb) {
637 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
638 (void) zsparam(tp, &tp->t_termios);
639 }
640 #endif
641 return (0);
642 }
643
644 /*
645 * Read/write zs serial port.
646 */
647 int
648 zsread(dev_t dev, struct uio *uio, int flags)
649 {
650 register struct tty *tp = zs_tty[minor(dev)];
651
652 return (linesw[tp->t_line].l_read(tp, uio, flags));
653 }
654
655 int
656 zswrite(dev_t dev, struct uio *uio, int flags)
657 {
658 register struct tty *tp = zs_tty[minor(dev)];
659
660 return (linesw[tp->t_line].l_write(tp, uio, flags));
661 }
662
663 /*
664 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
665 * channels are kept in (A,B) pairs.
666 *
667 * Do just a little, then get out; set a software interrupt if more
668 * work is needed.
669 *
670 * We deliberately ignore the vectoring Zilog gives us, and match up
671 * only the number of `reset interrupt under service' operations, not
672 * the order.
673 */
674 /* ARGSUSED */
675 int
676 zshard(void *intrarg)
677 {
678 register struct zs_chanstate *a;
679 #define b (a + 1)
680 register volatile struct zschan *zc;
681 register int rr3, intflags = 0, v, i;
682 static int zsrint(struct zs_chanstate *, volatile struct zschan *);
683 static int zsxint(struct zs_chanstate *, volatile struct zschan *);
684 static int zssint(struct zs_chanstate *, volatile struct zschan *);
685
686 for (a = zslist; a != NULL; a = b->cs_next) {
687 rr3 = ZS_READ(a->cs_zc, 3);
688 if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
689 intflags |= 2;
690 zc = a->cs_zc;
691 i = a->cs_rbput;
692 if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
693 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
694 intflags |= 1;
695 }
696 if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
697 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
698 intflags |= 1;
699 }
700 if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
701 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
702 intflags |= 1;
703 }
704 a->cs_rbput = i;
705 }
706 if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
707 intflags |= 2;
708 zc = b->cs_zc;
709 i = b->cs_rbput;
710 if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
711 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
712 intflags |= 1;
713 }
714 if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
715 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
716 intflags |= 1;
717 }
718 if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
719 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
720 intflags |= 1;
721 }
722 b->cs_rbput = i;
723 }
724 }
725 #undef b
726
727 if (intflags & 1) {
728 #if defined(SUN4C) || defined(SUN4M)
729 if (cputyp==CPU_SUN4M || cputyp==CPU_SUN4C) {
730 /* XXX -- but this will go away when zshard moves to locore.s */
731 struct clockframe *p = intrarg;
732
733 if ((p->psr & PSR_PIL) < (PIL_TTY << 8)) {
734 zsshortcuts++;
735 (void) spltty();
736 if (zshardscope) {
737 LED_ON;
738 LED_OFF;
739 }
740 return (zssoft(intrarg));
741 }
742 }
743 #endif
744 ienab_bis(IE_ZSSOFT);
745 }
746 return (intflags & 2);
747 }
748
749 static int
750 zsrint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
751 {
752 register int c = zc->zc_data;
753
754 if (cs->cs_conk) {
755 register struct conk_state *conk = &zsconk_state;
756
757 /*
758 * Check here for console abort function, so that we
759 * can abort even when interrupts are locking up the
760 * machine.
761 */
762 if (c == KBD_RESET) {
763 conk->conk_id = 1; /* ignore next byte */
764 conk->conk_l1 = 0;
765 } else if (conk->conk_id)
766 conk->conk_id = 0; /* stop ignoring bytes */
767 else if (c == KBD_L1)
768 conk->conk_l1 = 1; /* L1 went down */
769 else if (c == (KBD_L1|KBD_UP))
770 conk->conk_l1 = 0; /* L1 went up */
771 else if (c == KBD_A && conk->conk_l1) {
772 zsabort();
773 conk->conk_l1 = 0; /* we never see the up */
774 goto clearit; /* eat the A after L1-A */
775 }
776 }
777 #ifdef KGDB
778 if (c == FRAME_START && cs->cs_kgdb &&
779 (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
780 zskgdb(cs->cs_unit);
781 goto clearit;
782 }
783 #endif
784 /* compose receive character and status */
785 c <<= 8;
786 c |= ZS_READ(zc, 1);
787
788 /* clear receive error & interrupt condition */
789 zc->zc_csr = ZSWR0_RESET_ERRORS;
790 ZS_DELAY();
791 zc->zc_csr = ZSWR0_CLR_INTR;
792 ZS_DELAY();
793
794 return (ZRING_MAKE(ZRING_RINT, c));
795
796 clearit:
797 zc->zc_csr = ZSWR0_RESET_ERRORS;
798 ZS_DELAY();
799 zc->zc_csr = ZSWR0_CLR_INTR;
800 ZS_DELAY();
801 return (0);
802 }
803
804 static int
805 zsxint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
806 {
807 register int i = cs->cs_tbc;
808
809 if (i == 0) {
810 zc->zc_csr = ZSWR0_RESET_TXINT;
811 ZS_DELAY();
812 zc->zc_csr = ZSWR0_CLR_INTR;
813 ZS_DELAY();
814 return (ZRING_MAKE(ZRING_XINT, 0));
815 }
816 cs->cs_tbc = i - 1;
817 zc->zc_data = *cs->cs_tba++;
818 ZS_DELAY();
819 zc->zc_csr = ZSWR0_CLR_INTR;
820 ZS_DELAY();
821 return (0);
822 }
823
824 static int
825 zssint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
826 {
827 register int rr0;
828
829 rr0 = zc->zc_csr;
830 zc->zc_csr = ZSWR0_RESET_STATUS;
831 ZS_DELAY();
832 zc->zc_csr = ZSWR0_CLR_INTR;
833 ZS_DELAY();
834 /*
835 * The chip's hardware flow control is, as noted in zsreg.h,
836 * busted---if the DCD line goes low the chip shuts off the
837 * receiver (!). If we want hardware CTS flow control but do
838 * not have it, and carrier is now on, turn HFC on; if we have
839 * HFC now but carrier has gone low, turn it off.
840 */
841 if (rr0 & ZSRR0_DCD) {
842 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
843 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
844 cs->cs_creg[3] |= ZSWR3_HFC;
845 ZS_WRITE(zc, 3, cs->cs_creg[3]);
846 }
847 } else {
848 if (cs->cs_creg[3] & ZSWR3_HFC) {
849 cs->cs_creg[3] &= ~ZSWR3_HFC;
850 ZS_WRITE(zc, 3, cs->cs_creg[3]);
851 }
852 }
853 if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
854 #ifdef SUN4
855 /*
856 * XXX This might not be necessary. Test and
857 * delete if it isn't.
858 */
859 if (cputyp==CPU_SUN4) {
860 while (zc->zc_csr & ZSRR0_BREAK)
861 ZS_DELAY();
862 }
863 #endif
864 zsabort();
865 return (0);
866 }
867 return (ZRING_MAKE(ZRING_SINT, rr0));
868 }
869
870 zsabort()
871 {
872
873 #ifdef DDB
874 Debugger();
875 #else
876 printf("stopping on keyboard abort\n");
877 callrom();
878 #endif
879 }
880
881 #ifdef KGDB
882 /*
883 * KGDB framing character received: enter kernel debugger. This probably
884 * should time out after a few seconds to avoid hanging on spurious input.
885 */
886 zskgdb(int unit)
887 {
888
889 printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
890 kgdb_connect(1);
891 }
892 #endif
893
894 /*
895 * Print out a ring or fifo overrun error message.
896 */
897 static void
898 zsoverrun(int unit, long *ptime, char *what)
899 {
900
901 if (*ptime != time.tv_sec) {
902 *ptime = time.tv_sec;
903 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
904 (unit & 1) + 'a', what);
905 }
906 }
907
908 /*
909 * ZS software interrupt. Scan all channels for deferred interrupts.
910 */
911 int
912 zssoft(void *arg)
913 {
914 register struct zs_chanstate *cs;
915 register volatile struct zschan *zc;
916 register struct linesw *line;
917 register struct tty *tp;
918 register int get, n, c, cc, unit, s;
919 int retval = 0;
920
921 for (cs = zslist; cs != NULL; cs = cs->cs_next) {
922 get = cs->cs_rbget;
923 again:
924 n = cs->cs_rbput; /* atomic */
925 if (get == n) /* nothing more on this line */
926 continue;
927 retval = 1;
928 unit = cs->cs_unit; /* set up to handle interrupts */
929 zc = cs->cs_zc;
930 tp = cs->cs_ttyp;
931 line = &linesw[tp->t_line];
932 /*
933 * Compute the number of interrupts in the receive ring.
934 * If the count is overlarge, we lost some events, and
935 * must advance to the first valid one. It may get
936 * overwritten if more data are arriving, but this is
937 * too expensive to check and gains nothing (we already
938 * lost out; all we can do at this point is trade one
939 * kind of loss for another).
940 */
941 n -= get;
942 if (n > ZLRB_RING_SIZE) {
943 zsoverrun(unit, &cs->cs_rotime, "ring");
944 get += n - ZLRB_RING_SIZE;
945 n = ZLRB_RING_SIZE;
946 }
947 while (--n >= 0) {
948 /* race to keep ahead of incoming interrupts */
949 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
950 switch (ZRING_TYPE(c)) {
951
952 case ZRING_RINT:
953 c = ZRING_VALUE(c);
954 if (c & ZSRR1_DO)
955 zsoverrun(unit, &cs->cs_fotime, "fifo");
956 cc = c >> 8;
957 if (c & ZSRR1_FE)
958 cc |= TTY_FE;
959 if (c & ZSRR1_PE)
960 cc |= TTY_PE;
961 /*
962 * this should be done through
963 * bstreams XXX gag choke
964 */
965 if (unit == ZS_KBD)
966 kbd_rint(cc);
967 else if (unit == ZS_MOUSE)
968 ms_rint(cc);
969 else
970 line->l_rint(cc, tp);
971 break;
972
973 case ZRING_XINT:
974 /*
975 * Transmit done: change registers and resume,
976 * or clear BUSY.
977 */
978 if (cs->cs_heldchange) {
979 s = splzs();
980 c = zc->zc_csr;
981 ZS_DELAY();
982 if ((c & ZSRR0_DCD) == 0)
983 cs->cs_preg[3] &= ~ZSWR3_HFC;
984 bcopy((caddr_t)cs->cs_preg,
985 (caddr_t)cs->cs_creg, 16);
986 zs_loadchannelregs(zc, cs->cs_creg);
987 splx(s);
988 cs->cs_heldchange = 0;
989 if (cs->cs_heldtbc &&
990 (tp->t_state & TS_TTSTOP) == 0) {
991 cs->cs_tbc = cs->cs_heldtbc - 1;
992 zc->zc_data = *cs->cs_tba++;
993 ZS_DELAY();
994 goto again;
995 }
996 }
997 tp->t_state &= ~TS_BUSY;
998 if (tp->t_state & TS_FLUSH)
999 tp->t_state &= ~TS_FLUSH;
1000 else
1001 ndflush(&tp->t_outq,
1002 cs->cs_tba - (caddr_t)tp->t_outq.c_cf);
1003 line->l_start(tp);
1004 break;
1005
1006 case ZRING_SINT:
1007 /*
1008 * Status line change. HFC bit is run in
1009 * hardware interrupt, to avoid locking
1010 * at splzs here.
1011 */
1012 c = ZRING_VALUE(c);
1013 if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
1014 cc = (c & ZSRR0_DCD) != 0;
1015 if (line->l_modem(tp, cc) == 0)
1016 zs_modem(cs, cc);
1017 }
1018 cs->cs_rr0 = c;
1019 break;
1020
1021 default:
1022 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
1023 unit >> 1, (unit & 1) + 'a', c);
1024 break;
1025 }
1026 }
1027 cs->cs_rbget = get;
1028 goto again;
1029 }
1030 return (retval);
1031 }
1032
1033 int
1034 zsioctl(dev_t dev, int cmd, caddr_t data, int flag, struct proc *p)
1035 {
1036 int unit = minor(dev);
1037 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1038 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
1039 register int error, s;
1040 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1041
1042 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
1043 if (error >= 0)
1044 return (error);
1045 error = ttioctl(tp, cmd, data, flag, p);
1046 if (error >= 0)
1047 return (error);
1048
1049 switch (cmd) {
1050
1051 case TIOCSBRK:
1052 {
1053 s = splzs();
1054 cs->cs_preg[5] |= ZSWR5_BREAK;
1055 cs->cs_creg[5] |= ZSWR5_BREAK;
1056 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1057 splx(s);
1058 break;
1059 }
1060
1061 case TIOCCBRK:
1062 {
1063 s = splzs();
1064 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1065 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1066 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1067 splx(s);
1068 break;
1069 }
1070
1071 case TIOCSDTR:
1072
1073 case TIOCCDTR:
1074
1075 case TIOCMSET:
1076
1077 case TIOCMBIS:
1078
1079 case TIOCMBIC:
1080
1081 case TIOCMGET:
1082
1083 default:
1084 return (ENOTTY);
1085 }
1086 return (0);
1087 }
1088
1089 /*
1090 * Start or restart transmission.
1091 */
1092 static void
1093 zsstart(register struct tty *tp)
1094 {
1095 register struct zs_chanstate *cs;
1096 register int s, nch;
1097 int unit = minor(tp->t_dev);
1098 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1099
1100 cs = &zi->zi_cs[unit & 1];
1101 s = spltty();
1102
1103 /*
1104 * If currently active or delaying, no need to do anything.
1105 */
1106 if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1107 goto out;
1108
1109 /*
1110 * If there are sleepers, and output has drained below low
1111 * water mark, awaken.
1112 */
1113 if (tp->t_outq.c_cc <= tp->t_lowat) {
1114 if (tp->t_state & TS_ASLEEP) {
1115 tp->t_state &= ~TS_ASLEEP;
1116 wakeup((caddr_t)&tp->t_outq);
1117 }
1118 selwakeup(&tp->t_wsel);
1119 }
1120
1121 nch = ndqb(&tp->t_outq, 0); /* XXX */
1122 if (nch) {
1123 register char *p = tp->t_outq.c_cf;
1124
1125 /* mark busy, enable tx done interrupts, & send first byte */
1126 tp->t_state |= TS_BUSY;
1127 (void) splzs();
1128 cs->cs_preg[1] |= ZSWR1_TIE;
1129 cs->cs_creg[1] |= ZSWR1_TIE;
1130 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1131 cs->cs_zc->zc_data = *p;
1132 ZS_DELAY();
1133 cs->cs_tba = p + 1;
1134 cs->cs_tbc = nch - 1;
1135 } else {
1136 /*
1137 * Nothing to send, turn off transmit done interrupts.
1138 * This is useful if something is doing polled output.
1139 */
1140 (void) splzs();
1141 cs->cs_preg[1] &= ~ZSWR1_TIE;
1142 cs->cs_creg[1] &= ~ZSWR1_TIE;
1143 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1144 }
1145 out:
1146 splx(s);
1147 }
1148
1149 /*
1150 * Stop output, e.g., for ^S or output flush.
1151 */
1152 void
1153 zsstop(register struct tty *tp, int flag)
1154 {
1155 register struct zs_chanstate *cs;
1156 register int s, unit = minor(tp->t_dev);
1157 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1158
1159 cs = &zi->zi_cs[unit & 1];
1160 s = splzs();
1161 if (tp->t_state & TS_BUSY) {
1162 /*
1163 * Device is transmitting; must stop it.
1164 */
1165 cs->cs_tbc = 0;
1166 if ((tp->t_state & TS_TTSTOP) == 0)
1167 tp->t_state |= TS_FLUSH;
1168 }
1169 splx(s);
1170 }
1171
1172 /*
1173 * Set ZS tty parameters from termios.
1174 *
1175 * This routine makes use of the fact that only registers
1176 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1177 */
1178 static int
1179 zsparam(register struct tty *tp, register struct termios *t)
1180 {
1181 int unit = minor(tp->t_dev);
1182 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1183 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1184 register int tmp, tmp5, cflag, s;
1185
1186 /*
1187 * Because PCLK is only run at 4.9 MHz, the fastest we
1188 * can go is 51200 baud (this corresponds to TC=1).
1189 * This is somewhat unfortunate as there is no real
1190 * reason we should not be able to handle higher rates.
1191 */
1192 tmp = t->c_ospeed;
1193 if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
1194 return (EINVAL);
1195 if (tmp == 0) {
1196 /* stty 0 => drop DTR and RTS */
1197 zs_modem(cs, 0);
1198 return (0);
1199 }
1200 tmp = BPS_TO_TCONST(PCLK / 16, tmp);
1201 if (tmp < 2)
1202 return (EINVAL);
1203
1204 cflag = t->c_cflag;
1205 tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
1206 tp->t_cflag = cflag;
1207
1208 /*
1209 * Block interrupts so that state will not
1210 * be altered until we are done setting it up.
1211 */
1212 s = splzs();
1213 cs->cs_preg[12] = tmp;
1214 cs->cs_preg[13] = tmp >> 8;
1215 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1216 switch (cflag & CSIZE) {
1217 case CS5:
1218 tmp = ZSWR3_RX_5;
1219 tmp5 = ZSWR5_TX_5;
1220 break;
1221 case CS6:
1222 tmp = ZSWR3_RX_6;
1223 tmp5 = ZSWR5_TX_6;
1224 break;
1225 case CS7:
1226 tmp = ZSWR3_RX_7;
1227 tmp5 = ZSWR5_TX_7;
1228 break;
1229 case CS8:
1230 default:
1231 tmp = ZSWR3_RX_8;
1232 tmp5 = ZSWR5_TX_8;
1233 break;
1234 }
1235
1236 /*
1237 * Output hardware flow control on the chip is horrendous: if
1238 * carrier detect drops, the receiver is disabled. Hence we
1239 * can only do this when the carrier is on.
1240 */
1241 if (cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1242 tmp |= ZSWR3_HFC | ZSWR3_RX_ENABLE;
1243 else
1244 tmp |= ZSWR3_RX_ENABLE;
1245 cs->cs_preg[3] = tmp;
1246 cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1247
1248 tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
1249 if ((cflag & PARODD) == 0)
1250 tmp |= ZSWR4_EVENP;
1251 if (cflag & PARENB)
1252 tmp |= ZSWR4_PARENB;
1253 cs->cs_preg[4] = tmp;
1254 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR;
1255 cs->cs_preg[10] = ZSWR10_NRZ;
1256 cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
1257 cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
1258 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1259
1260 /*
1261 * If nothing is being transmitted, set up new current values,
1262 * else mark them as pending.
1263 */
1264 if (cs->cs_heldchange == 0) {
1265 if (cs->cs_ttyp->t_state & TS_BUSY) {
1266 cs->cs_heldtbc = cs->cs_tbc;
1267 cs->cs_tbc = 0;
1268 cs->cs_heldchange = 1;
1269 } else {
1270 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1271 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1272 }
1273 }
1274 splx(s);
1275 return (0);
1276 }
1277
1278 /*
1279 * Raise or lower modem control (DTR/RTS) signals. If a character is
1280 * in transmission, the change is deferred.
1281 */
1282 static void
1283 zs_modem(struct zs_chanstate *cs, int onoff)
1284 {
1285 int s, bis, and;
1286
1287 if (onoff) {
1288 bis = ZSWR5_DTR | ZSWR5_RTS;
1289 and = ~0;
1290 } else {
1291 bis = 0;
1292 and = ~(ZSWR5_DTR | ZSWR5_RTS);
1293 }
1294 s = splzs();
1295 cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
1296 if (cs->cs_heldchange == 0) {
1297 if (cs->cs_ttyp->t_state & TS_BUSY) {
1298 cs->cs_heldtbc = cs->cs_tbc;
1299 cs->cs_tbc = 0;
1300 cs->cs_heldchange = 1;
1301 } else {
1302 cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
1303 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1304 }
1305 }
1306 splx(s);
1307 }
1308
1309 /*
1310 * Write the given register set to the given zs channel in the proper order.
1311 * The channel must not be transmitting at the time. The receiver will
1312 * be disabled for the time it takes to write all the registers.
1313 */
1314 static void
1315 zs_loadchannelregs(volatile struct zschan *zc, u_char *reg)
1316 {
1317 int i;
1318
1319 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1320 ZS_DELAY();
1321 i = zc->zc_data; /* drain fifo */
1322 ZS_DELAY();
1323 i = zc->zc_data;
1324 ZS_DELAY();
1325 i = zc->zc_data;
1326 ZS_DELAY();
1327 ZS_WRITE(zc, 4, reg[4]);
1328 ZS_WRITE(zc, 10, reg[10]);
1329 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1330 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1331 ZS_WRITE(zc, 1, reg[1]);
1332 ZS_WRITE(zc, 9, reg[9]);
1333 ZS_WRITE(zc, 11, reg[11]);
1334 ZS_WRITE(zc, 12, reg[12]);
1335 ZS_WRITE(zc, 13, reg[13]);
1336 ZS_WRITE(zc, 14, reg[14]);
1337 ZS_WRITE(zc, 15, reg[15]);
1338 ZS_WRITE(zc, 3, reg[3]);
1339 ZS_WRITE(zc, 5, reg[5]);
1340 }
1341
1342 #ifdef KGDB
1343 /*
1344 * Get a character from the given kgdb channel. Called at splhigh().
1345 */
1346 static int
1347 zs_kgdb_getc(void *arg)
1348 {
1349 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1350
1351 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
1352 ZS_DELAY();
1353 return (zc->zc_data);
1354 }
1355
1356 /*
1357 * Put a character to the given kgdb channel. Called at splhigh().
1358 */
1359 static void
1360 zs_kgdb_putc(void *arg, int c)
1361 {
1362 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1363
1364 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
1365 ZS_DELAY();
1366 zc->zc_data = c;
1367 ZS_DELAY();
1368 }
1369
1370 /*
1371 * Set up for kgdb; called at boot time before configuration.
1372 * KGDB interrupts will be enabled later when zs0 is configured.
1373 */
1374 void
1375 zs_kgdb_init()
1376 {
1377 volatile struct zsdevice *addr;
1378 volatile struct zschan *zc;
1379 int unit, zs;
1380
1381 if (major(kgdb_dev) != ZSMAJOR)
1382 return;
1383 unit = minor(kgdb_dev);
1384 /*
1385 * Unit must be 0 or 1 (zs0).
1386 */
1387 if ((unsigned)unit >= ZS_KBD) {
1388 printf("zs_kgdb_init: bad minor dev %d\n", unit);
1389 return;
1390 }
1391 zs = unit >> 1;
1392 if ((addr = zsaddr[zs]) == NULL)
1393 addr = zsaddr[zs] = findzs(zs);
1394 unit &= 1;
1395 zc = unit == 0 ? &addr->zs_chan[CHAN_A] : &addr->zs_chan[CHAN_B];
1396 zs_kgdb_savedspeed = zs_getspeed(zc);
1397 printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
1398 zs, unit + 'a', kgdb_rate);
1399 zs_reset(zc, 1, kgdb_rate);
1400 kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
1401 }
1402 #endif /* KGDB */
1403