zs.c revision 1.15 1 /*
2 * Copyright (c) 1992, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This software was developed by the Computer Systems Engineering group
6 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7 * contributed to Berkeley.
8 *
9 * All advertising materials mentioning features or use of this software
10 * must display the following acknowledgement:
11 * This product includes software developed by the University of
12 * California, Lawrence Berkeley Laboratory.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the University of
25 * California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 * may be used to endorse or promote products derived from this software
28 * without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 * @(#)zs.c 8.1 (Berkeley) 7/19/93
43 *
44 * from: Header: zs.c,v 1.30 93/07/19 23:44:42 torek Exp
45 * $Id: zs.c,v 1.15 1994/10/15 05:49:08 deraadt Exp $
46 */
47
48 /*
49 * Zilog Z8530 (ZSCC) driver.
50 *
51 * Runs two tty ports (ttya and ttyb) on zs0,
52 * and runs a keyboard and mouse on zs1.
53 *
54 * This driver knows far too much about chip to usage mappings.
55 */
56 #define NZS 2 /* XXX */
57
58 #include <sys/param.h>
59 #include <sys/proc.h>
60 #include <sys/device.h>
61 #include <sys/conf.h>
62 #include <sys/file.h>
63 #include <sys/ioctl.h>
64 #include <sys/tty.h>
65 #include <sys/time.h>
66 #include <sys/kernel.h>
67 #include <sys/syslog.h>
68
69 #include <machine/autoconf.h>
70 #include <machine/cpu.h>
71
72 #include <sparc/sparc/vaddrs.h>
73 #include <sparc/sparc/auxreg.h>
74
75 #include <machine/kbd.h>
76 #include <sparc/dev/zsreg.h>
77 #include <sparc/dev/zsvar.h>
78
79 #ifdef KGDB
80 #include <machine/remote-sl.h>
81 #endif
82
83 #define ZSMAJOR 12 /* XXX */
84
85 #define ZS_KBD 2 /* XXX */
86 #define ZS_MOUSE 3 /* XXX */
87
88 /* the magic number below was stolen from the Sprite source. */
89 #define PCLK (19660800/4) /* PCLK pin input clock rate */
90
91 /*
92 * Select software interrupt bit based on TTY ipl.
93 */
94 #if PIL_TTY == 1
95 # define IE_ZSSOFT IE_L1
96 #elif PIL_TTY == 4
97 # define IE_ZSSOFT IE_L4
98 #elif PIL_TTY == 6
99 # define IE_ZSSOFT IE_L6
100 #else
101 # error "no suitable software interrupt bit"
102 #endif
103
104 /*
105 * Software state per found chip. This would be called `zs_softc',
106 * but the previous driver had a rather different zs_softc....
107 */
108 struct zsinfo {
109 struct device zi_dev; /* base device */
110 volatile struct zsdevice *zi_zs;/* chip registers */
111 struct zs_chanstate zi_cs[2]; /* channel A and B software state */
112 };
113
114 struct tty *zs_tty[NZS * 2]; /* XXX should be dynamic */
115
116 /* Definition of the driver for autoconfig. */
117 static int zsmatch(struct device *, struct cfdata *, void *);
118 static void zsattach(struct device *, struct device *, void *);
119 struct cfdriver zscd =
120 { NULL, "zs", zsmatch, zsattach, DV_TTY, sizeof(struct zsinfo) };
121
122 /* Interrupt handlers. */
123 static int zshard(void *);
124 static struct intrhand levelhard = { zshard };
125 static int zssoft(void *);
126 static struct intrhand levelsoft = { zssoft };
127
128 struct zs_chanstate *zslist;
129
130 /* Routines called from other code. */
131 static void zsiopen(struct tty *);
132 static void zsiclose(struct tty *);
133 static void zsstart(struct tty *);
134 void zsstop(struct tty *, int);
135 static int zsparam(struct tty *, struct termios *);
136
137 /* Routines purely local to this driver. */
138 static int zs_getspeed(volatile struct zschan *);
139 static void zs_reset(volatile struct zschan *, int, int);
140 static void zs_modem(struct zs_chanstate *, int);
141 static void zs_loadchannelregs(volatile struct zschan *, u_char *);
142
143 /* Console stuff. */
144 static struct tty *zs_ctty; /* console `struct tty *' */
145 static int zs_consin = -1, zs_consout = -1;
146 static int zscnputc(int); /* console putc function */
147 static volatile struct zschan *zs_conschan;
148 static struct tty *zs_checkcons(struct zsinfo *, int, struct zs_chanstate *);
149
150 #ifdef KGDB
151 /* KGDB stuff. Must reboot to change zs_kgdbunit. */
152 extern int kgdb_dev, kgdb_rate;
153 static int zs_kgdb_savedspeed;
154 static void zs_checkkgdb(int, struct zs_chanstate *, struct tty *);
155 #endif
156
157 extern volatile struct zsdevice *findzs(int);
158 static volatile struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */
159
160 /*
161 * Console keyboard L1-A processing is done in the hardware interrupt code,
162 * so we need to duplicate some of the console keyboard decode state. (We
163 * must not use the regular state as the hardware code keeps ahead of the
164 * software state: the software state tracks the most recent ring input but
165 * the hardware state tracks the most recent ZSCC input.) See also kbd.h.
166 */
167 static struct conk_state { /* console keyboard state */
168 char conk_id; /* true => ID coming up (console only) */
169 char conk_l1; /* true => L1 pressed (console only) */
170 } zsconk_state;
171
172 int zshardscope;
173 int zsshortcuts; /* number of "shortcut" software interrupts */
174
175 #ifdef SUN4
176 static u_char
177 zs_read(zc, reg)
178 volatile struct zschan *zc;
179 u_char reg;
180 {
181 u_char val;
182
183 zc->zc_csr = reg;
184 ZS_DELAY();
185 val = zc->zc_csr;
186 ZS_DELAY();
187 return val;
188 }
189
190 static u_char
191 zs_write(zc, reg, val)
192 volatile struct zschan *zc;
193 u_char reg, val;
194 {
195 zc->zc_csr = reg;
196 ZS_DELAY();
197 zc->zc_csr = val;
198 ZS_DELAY();
199 return val;
200 }
201 #endif /* SUN4 */
202
203 /*
204 * Match slave number to zs unit number, so that misconfiguration will
205 * not set up the keyboard as ttya, etc.
206 */
207 static int
208 zsmatch(struct device *parent, struct cfdata *cf, void *aux)
209 {
210 struct confargs *ca = aux;
211 struct romaux *ra = &ca->ca_ra;
212
213 if (strcmp(cf->cf_driver->cd_name, ra->ra_name))
214 return (0);
215 if (ca->ca_bustype==BUS_MAIN && cputyp!=CPU_SUN4)
216 return (getpropint(ra->ra_node, "slave", -2) == cf->cf_unit);
217 ra->ra_len = NBPG;
218 return (probeget(ra->ra_vaddr, 1) != -1);
219 }
220
221 /*
222 * Attach a found zs.
223 *
224 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
225 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
226 */
227 static void
228 zsattach(struct device *parent, struct device *dev, void *aux)
229 {
230 register int zs = dev->dv_unit, unit;
231 register struct zsinfo *zi;
232 register struct zs_chanstate *cs;
233 register volatile struct zsdevice *addr;
234 register struct tty *tp, *ctp;
235 register struct confargs *ca = aux;
236 register struct romaux *ra = &ca->ca_ra;
237 int pri, softcar;
238 static int didintr, prevpri;
239
240 if ((addr = zsaddr[zs]) == NULL)
241 addr = zsaddr[zs] = findzs(zs);
242 if (ca->ca_bustype==BUS_MAIN)
243 if ((void *)addr != ra->ra_vaddr)
244 panic("zsattach");
245 if (ra->ra_nintr != 1) {
246 printf(": expected 1 interrupt, got %d\n", ra->ra_nintr);
247 return;
248 }
249 pri = ra->ra_intr[0].int_pri;
250 printf(" pri %d, softpri %d\n", pri, PIL_TTY);
251 if (!didintr) {
252 didintr = 1;
253 prevpri = pri;
254 intr_establish(pri, &levelhard);
255 intr_establish(PIL_TTY, &levelsoft);
256 } else if (pri != prevpri)
257 panic("broken zs interrupt scheme");
258 zi = (struct zsinfo *)dev;
259 zi->zi_zs = addr;
260 unit = zs * 2;
261 cs = zi->zi_cs;
262
263 if(!zs_tty[unit])
264 zs_tty[unit] = ttymalloc();
265 tp = zs_tty[unit];
266 if(!zs_tty[unit+1])
267 zs_tty[unit+1] = ttymalloc();
268
269 if (unit == 0) {
270 /* Get software carrier flags from options node in OPENPROM. */
271 extern int optionsnode;
272
273 softcar = 0;
274 #ifdef notdef
275 if (*getpropstring(optionsnode, "ttya-ignore-cd") == 't')
276 softcar |= 1;
277 if (*getpropstring(optionsnode, "ttyb-ignore-cd") == 't')
278 softcar |= 2;
279 #endif
280 } else
281 softcar = dev->dv_cfdata->cf_flags;
282
283 /* link into interrupt list with order (A,B) (B=A+1) */
284 cs[0].cs_next = &cs[1];
285 cs[1].cs_next = zslist;
286 zslist = cs;
287
288 cs->cs_unit = unit;
289 cs->cs_speed = zs_getspeed(&addr->zs_chan[CHAN_A]);
290 cs->cs_softcar = softcar & 1;
291 cs->cs_zc = &addr->zs_chan[CHAN_A];
292 tp->t_dev = makedev(ZSMAJOR, unit);
293 tp->t_oproc = zsstart;
294 tp->t_param = zsparam;
295 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
296 tp = ctp;
297 cs->cs_ttyp = tp;
298 #ifdef KGDB
299 if (ctp == NULL)
300 zs_checkkgdb(unit, cs, tp);
301 #endif
302 if (unit == ZS_KBD) {
303 /*
304 * Keyboard: tell /dev/kbd driver how to talk to us.
305 */
306 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
307 tp->t_cflag = CS8;
308 kbd_serial(tp, zsiopen, zsiclose);
309 cs->cs_conk = 1; /* do L1-A processing */
310 }
311 unit++;
312 cs++;
313 tp = zs_tty[unit];
314 cs->cs_unit = unit;
315 cs->cs_speed = zs_getspeed(&addr->zs_chan[CHAN_B]);
316 cs->cs_softcar = softcar & 2;
317 cs->cs_zc = &addr->zs_chan[CHAN_B];
318 tp->t_dev = makedev(ZSMAJOR, unit);
319 tp->t_oproc = zsstart;
320 tp->t_param = zsparam;
321 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
322 tp = ctp;
323 cs->cs_ttyp = tp;
324 #ifdef KGDB
325 if (ctp == NULL)
326 zs_checkkgdb(unit, cs, tp);
327 #endif
328 if (unit == ZS_MOUSE) {
329 /*
330 * Mouse: tell /dev/mouse driver how to talk to us.
331 */
332 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
333 tp->t_cflag = CS8;
334 ms_serial(tp, zsiopen, zsiclose);
335 }
336 }
337
338 /*
339 * Put a channel in a known state. Interrupts may be left disabled
340 * or enabled, as desired.
341 */
342 static void
343 zs_reset(zc, inten, speed)
344 volatile struct zschan *zc;
345 int inten, speed;
346 {
347 int tconst;
348 static u_char reg[16] = {
349 0,
350 0,
351 0,
352 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
353 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
354 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
355 0,
356 0,
357 0,
358 0,
359 ZSWR10_NRZ,
360 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
361 0,
362 0,
363 ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
364 ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
365 };
366
367 reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
368 tconst = BPS_TO_TCONST(PCLK / 16, speed);
369 reg[12] = tconst;
370 reg[13] = tconst >> 8;
371 zs_loadchannelregs(zc, reg);
372 }
373
374 /*
375 * Declare the given tty (which is in fact &cons) as a console input
376 * or output. This happens before the zs chip is attached; the hookup
377 * is finished later, in zs_setcons() below.
378 *
379 * This is used only for ports a and b. The console keyboard is decoded
380 * independently (we always send unit-2 input to /dev/kbd, which will
381 * direct it to /dev/console if appropriate).
382 */
383 void
384 zsconsole(tp, unit, out, fnstop)
385 register struct tty *tp;
386 register int unit;
387 int out;
388 void (**fnstop) __P((struct tty *, int));
389 {
390 extern int (*v_putc)();
391 int zs;
392 volatile struct zsdevice *addr;
393
394 if (unit >= ZS_KBD)
395 panic("zsconsole");
396 if (out) {
397 zs_consout = unit;
398 zs = unit >> 1;
399 if ((addr = zsaddr[zs]) == NULL)
400 addr = zsaddr[zs] = findzs(zs);
401 zs_conschan = (unit & 1) == 0 ? &addr->zs_chan[CHAN_A] :
402 &addr->zs_chan[CHAN_B];
403 v_putc = zscnputc;
404 } else
405 zs_consin = unit;
406 if(fnstop)
407 *fnstop = &zsstop;
408 zs_ctty = tp;
409 }
410
411 /*
412 * Polled console output putchar.
413 */
414 static int
415 zscnputc(c)
416 int c;
417 {
418 register volatile struct zschan *zc = zs_conschan;
419 register int s;
420
421 if (c == '\n')
422 zscnputc('\r');
423 /*
424 * Must block output interrupts (i.e., raise to >= splzs) without
425 * lowering current ipl. Need a better way.
426 */
427 s = splhigh();
428 #ifdef SUN4C /* XXX */
429 if (cputyp==CPU_SUN4C && s <= (12 << 8))
430 (void) splzs();
431 #endif
432 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
433 ZS_DELAY();
434 zc->zc_data = c;
435 ZS_DELAY();
436 splx(s);
437 }
438
439 /*
440 * Set up the given unit as console input, output, both, or neither, as
441 * needed. Return console tty if it is to receive console input.
442 */
443 static struct tty *
444 zs_checkcons(struct zsinfo *zi, int unit, struct zs_chanstate *cs)
445 {
446 register struct tty *tp;
447 char *i, *o;
448
449 if ((tp = zs_ctty) == NULL)
450 return (0);
451 i = zs_consin == unit ? "input" : NULL;
452 o = zs_consout == unit ? "output" : NULL;
453 if (i == NULL && o == NULL)
454 return (0);
455
456 /* rewire the minor device (gack) */
457 tp->t_dev = makedev(major(tp->t_dev), unit);
458
459 /*
460 * Rewire input and/or output. Note that baud rate reflects
461 * input settings, not output settings, but we can do no better
462 * if the console is split across two ports.
463 *
464 * XXX split consoles don't work anyway -- this needs to be
465 * thrown away and redone
466 */
467 if (i) {
468 tp->t_param = zsparam;
469 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
470 tp->t_cflag = CS8;
471 ttsetwater(tp);
472 }
473 if (o) {
474 tp->t_oproc = zsstart;
475 }
476 printf("%s%c: console %s\n",
477 zi->zi_dev.dv_xname, (unit & 1) + 'a', i ? (o ? "i/o" : i) : o);
478 cs->cs_consio = 1;
479 cs->cs_brkabort = 1;
480 return (tp);
481 }
482
483 #ifdef KGDB
484 /*
485 * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
486 * Pick up the current speed and character size and restore the original
487 * speed.
488 */
489 static void
490 zs_checkkgdb(int unit, struct zs_chanstate *cs, struct tty *tp)
491 {
492
493 if (kgdb_dev == makedev(ZSMAJOR, unit)) {
494 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
495 tp->t_cflag = CS8;
496 cs->cs_kgdb = 1;
497 cs->cs_speed = zs_kgdb_savedspeed;
498 (void) zsparam(tp, &tp->t_termios);
499 }
500 }
501 #endif
502
503 /*
504 * Compute the current baud rate given a ZSCC channel.
505 */
506 static int
507 zs_getspeed(zc)
508 register volatile struct zschan *zc;
509 {
510 register int tconst;
511
512 tconst = ZS_READ(zc, 12);
513 tconst |= ZS_READ(zc, 13) << 8;
514 return (TCONST_TO_BPS(PCLK / 16, tconst));
515 }
516
517
518 /*
519 * Do an internal open.
520 */
521 static void
522 zsiopen(struct tty *tp)
523 {
524
525 (void) zsparam(tp, &tp->t_termios);
526 ttsetwater(tp);
527 tp->t_state = TS_ISOPEN | TS_CARR_ON;
528 }
529
530 /*
531 * Do an internal close. Eventually we should shut off the chip when both
532 * ports on it are closed.
533 */
534 static void
535 zsiclose(struct tty *tp)
536 {
537
538 ttylclose(tp, 0); /* ??? */
539 ttyclose(tp); /* ??? */
540 tp->t_state = 0;
541 }
542
543
544 /*
545 * Open a zs serial port. This interface may not be used to open
546 * the keyboard and mouse ports. (XXX)
547 */
548 int
549 zsopen(dev_t dev, int flags, int mode, struct proc *p)
550 {
551 register struct tty *tp;
552 register struct zs_chanstate *cs;
553 struct zsinfo *zi;
554 int unit = minor(dev), zs = unit >> 1, error, s;
555
556 if (zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL ||
557 unit == ZS_KBD || unit == ZS_MOUSE)
558 return (ENXIO);
559 cs = &zi->zi_cs[unit & 1];
560 if (cs->cs_consio)
561 return (ENXIO); /* ??? */
562 tp = cs->cs_ttyp;
563 s = spltty();
564 if ((tp->t_state & TS_ISOPEN) == 0) {
565 ttychars(tp);
566 if (tp->t_ispeed == 0) {
567 tp->t_iflag = TTYDEF_IFLAG;
568 tp->t_oflag = TTYDEF_OFLAG;
569 tp->t_cflag = TTYDEF_CFLAG;
570 tp->t_lflag = TTYDEF_LFLAG;
571 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
572 }
573 (void) zsparam(tp, &tp->t_termios);
574 ttsetwater(tp);
575 } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
576 splx(s);
577 return (EBUSY);
578 }
579 error = 0;
580 for (;;) {
581 /* loop, turning on the device, until carrier present */
582 zs_modem(cs, 1);
583 if (cs->cs_softcar)
584 tp->t_state |= TS_CARR_ON;
585 if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
586 tp->t_state & TS_CARR_ON)
587 break;
588 tp->t_state |= TS_WOPEN;
589 if (error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
590 ttopen, 0))
591 break;
592 }
593 splx(s);
594 if (error == 0)
595 error = linesw[tp->t_line].l_open(dev, tp);
596 if (error)
597 zs_modem(cs, 0);
598 return (error);
599 }
600
601 /*
602 * Close a zs serial port.
603 */
604 int
605 zsclose(dev_t dev, int flags, int mode, struct proc *p)
606 {
607 register struct zs_chanstate *cs;
608 register struct tty *tp;
609 struct zsinfo *zi;
610 int unit = minor(dev), s;
611
612 zi = zscd.cd_devs[unit >> 1];
613 cs = &zi->zi_cs[unit & 1];
614 tp = cs->cs_ttyp;
615 linesw[tp->t_line].l_close(tp, flags);
616 if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
617 (tp->t_state & TS_ISOPEN) == 0) {
618 zs_modem(cs, 0);
619 /* hold low for 1 second */
620 (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
621 }
622 if (cs->cs_creg[5] & ZSWR5_BREAK)
623 {
624 s = splzs();
625 cs->cs_preg[5] &= ~ZSWR5_BREAK;
626 cs->cs_creg[5] &= ~ZSWR5_BREAK;
627 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
628 splx(s);
629 }
630 ttyclose(tp);
631 #ifdef KGDB
632 /* Reset the speed if we're doing kgdb on this port */
633 if (cs->cs_kgdb) {
634 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
635 (void) zsparam(tp, &tp->t_termios);
636 }
637 #endif
638 return (0);
639 }
640
641 /*
642 * Read/write zs serial port.
643 */
644 int
645 zsread(dev_t dev, struct uio *uio, int flags)
646 {
647 register struct tty *tp = zs_tty[minor(dev)];
648
649 return (linesw[tp->t_line].l_read(tp, uio, flags));
650 }
651
652 int
653 zswrite(dev_t dev, struct uio *uio, int flags)
654 {
655 register struct tty *tp = zs_tty[minor(dev)];
656
657 return (linesw[tp->t_line].l_write(tp, uio, flags));
658 }
659
660 /*
661 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
662 * channels are kept in (A,B) pairs.
663 *
664 * Do just a little, then get out; set a software interrupt if more
665 * work is needed.
666 *
667 * We deliberately ignore the vectoring Zilog gives us, and match up
668 * only the number of `reset interrupt under service' operations, not
669 * the order.
670 */
671 /* ARGSUSED */
672 int
673 zshard(void *intrarg)
674 {
675 register struct zs_chanstate *a;
676 #define b (a + 1)
677 register volatile struct zschan *zc;
678 register int rr3, intflags = 0, v, i;
679 static int zsrint(struct zs_chanstate *, volatile struct zschan *);
680 static int zsxint(struct zs_chanstate *, volatile struct zschan *);
681 static int zssint(struct zs_chanstate *, volatile struct zschan *);
682
683 for (a = zslist; a != NULL; a = b->cs_next) {
684 rr3 = ZS_READ(a->cs_zc, 3);
685 if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
686 intflags |= 2;
687 zc = a->cs_zc;
688 i = a->cs_rbput;
689 if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
690 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
691 intflags |= 1;
692 }
693 if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
694 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
695 intflags |= 1;
696 }
697 if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
698 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
699 intflags |= 1;
700 }
701 a->cs_rbput = i;
702 }
703 if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
704 intflags |= 2;
705 zc = b->cs_zc;
706 i = b->cs_rbput;
707 if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
708 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
709 intflags |= 1;
710 }
711 if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
712 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
713 intflags |= 1;
714 }
715 if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
716 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
717 intflags |= 1;
718 }
719 b->cs_rbput = i;
720 }
721 }
722 #undef b
723
724 if (intflags & 1) {
725 #if defined(SUN4C) || defined(SUN4M)
726 if (cputyp==CPU_SUN4M || cputyp==CPU_SUN4C) {
727 /* XXX -- but this will go away when zshard moves to locore.s */
728 struct clockframe *p = intrarg;
729
730 if ((p->psr & PSR_PIL) < (PIL_TTY << 8)) {
731 zsshortcuts++;
732 (void) spltty();
733 if (zshardscope) {
734 LED_ON;
735 LED_OFF;
736 }
737 return (zssoft(intrarg));
738 }
739 }
740 #endif
741 ienab_bis(IE_ZSSOFT);
742 }
743 return (intflags & 2);
744 }
745
746 static int
747 zsrint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
748 {
749 register int c = zc->zc_data;
750
751 if (cs->cs_conk) {
752 register struct conk_state *conk = &zsconk_state;
753
754 /*
755 * Check here for console abort function, so that we
756 * can abort even when interrupts are locking up the
757 * machine.
758 */
759 if (c == KBD_RESET) {
760 conk->conk_id = 1; /* ignore next byte */
761 conk->conk_l1 = 0;
762 } else if (conk->conk_id)
763 conk->conk_id = 0; /* stop ignoring bytes */
764 else if (c == KBD_L1)
765 conk->conk_l1 = 1; /* L1 went down */
766 else if (c == (KBD_L1|KBD_UP))
767 conk->conk_l1 = 0; /* L1 went up */
768 else if (c == KBD_A && conk->conk_l1) {
769 zsabort();
770 conk->conk_l1 = 0; /* we never see the up */
771 goto clearit; /* eat the A after L1-A */
772 }
773 }
774 #ifdef KGDB
775 if (c == FRAME_START && cs->cs_kgdb &&
776 (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
777 zskgdb(cs->cs_unit);
778 goto clearit;
779 }
780 #endif
781 /* compose receive character and status */
782 c <<= 8;
783 c |= ZS_READ(zc, 1);
784
785 /* clear receive error & interrupt condition */
786 zc->zc_csr = ZSWR0_RESET_ERRORS;
787 ZS_DELAY();
788 zc->zc_csr = ZSWR0_CLR_INTR;
789 ZS_DELAY();
790
791 return (ZRING_MAKE(ZRING_RINT, c));
792
793 clearit:
794 zc->zc_csr = ZSWR0_RESET_ERRORS;
795 ZS_DELAY();
796 zc->zc_csr = ZSWR0_CLR_INTR;
797 ZS_DELAY();
798 return (0);
799 }
800
801 static int
802 zsxint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
803 {
804 register int i = cs->cs_tbc;
805
806 if (i == 0) {
807 zc->zc_csr = ZSWR0_RESET_TXINT;
808 ZS_DELAY();
809 zc->zc_csr = ZSWR0_CLR_INTR;
810 ZS_DELAY();
811 return (ZRING_MAKE(ZRING_XINT, 0));
812 }
813 cs->cs_tbc = i - 1;
814 zc->zc_data = *cs->cs_tba++;
815 ZS_DELAY();
816 zc->zc_csr = ZSWR0_CLR_INTR;
817 ZS_DELAY();
818 return (0);
819 }
820
821 static int
822 zssint(register struct zs_chanstate *cs, register volatile struct zschan *zc)
823 {
824 register int rr0;
825
826 rr0 = zc->zc_csr;
827 zc->zc_csr = ZSWR0_RESET_STATUS;
828 ZS_DELAY();
829 zc->zc_csr = ZSWR0_CLR_INTR;
830 ZS_DELAY();
831 /*
832 * The chip's hardware flow control is, as noted in zsreg.h,
833 * busted---if the DCD line goes low the chip shuts off the
834 * receiver (!). If we want hardware CTS flow control but do
835 * not have it, and carrier is now on, turn HFC on; if we have
836 * HFC now but carrier has gone low, turn it off.
837 */
838 if (rr0 & ZSRR0_DCD) {
839 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
840 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
841 cs->cs_creg[3] |= ZSWR3_HFC;
842 ZS_WRITE(zc, 3, cs->cs_creg[3]);
843 }
844 } else {
845 if (cs->cs_creg[3] & ZSWR3_HFC) {
846 cs->cs_creg[3] &= ~ZSWR3_HFC;
847 ZS_WRITE(zc, 3, cs->cs_creg[3]);
848 }
849 }
850 if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
851 #ifdef SUN4
852 /*
853 * XXX This might not be necessary. Test and
854 * delete if it isn't.
855 */
856 if (cputyp==CPU_SUN4) {
857 while (zc->zc_csr & ZSRR0_BREAK)
858 ZS_DELAY();
859 }
860 #endif
861 zsabort();
862 return (0);
863 }
864 return (ZRING_MAKE(ZRING_SINT, rr0));
865 }
866
867 zsabort()
868 {
869
870 #ifdef DDB
871 Debugger();
872 #else
873 printf("stopping on keyboard abort\n");
874 callrom();
875 #endif
876 }
877
878 #ifdef KGDB
879 /*
880 * KGDB framing character received: enter kernel debugger. This probably
881 * should time out after a few seconds to avoid hanging on spurious input.
882 */
883 zskgdb(int unit)
884 {
885
886 printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
887 kgdb_connect(1);
888 }
889 #endif
890
891 /*
892 * Print out a ring or fifo overrun error message.
893 */
894 static void
895 zsoverrun(int unit, long *ptime, char *what)
896 {
897
898 if (*ptime != time.tv_sec) {
899 *ptime = time.tv_sec;
900 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
901 (unit & 1) + 'a', what);
902 }
903 }
904
905 /*
906 * ZS software interrupt. Scan all channels for deferred interrupts.
907 */
908 int
909 zssoft(void *arg)
910 {
911 register struct zs_chanstate *cs;
912 register volatile struct zschan *zc;
913 register struct linesw *line;
914 register struct tty *tp;
915 register int get, n, c, cc, unit, s;
916 int retval = 0;
917
918 for (cs = zslist; cs != NULL; cs = cs->cs_next) {
919 get = cs->cs_rbget;
920 again:
921 n = cs->cs_rbput; /* atomic */
922 if (get == n) /* nothing more on this line */
923 continue;
924 retval = 1;
925 unit = cs->cs_unit; /* set up to handle interrupts */
926 zc = cs->cs_zc;
927 tp = cs->cs_ttyp;
928 line = &linesw[tp->t_line];
929 /*
930 * Compute the number of interrupts in the receive ring.
931 * If the count is overlarge, we lost some events, and
932 * must advance to the first valid one. It may get
933 * overwritten if more data are arriving, but this is
934 * too expensive to check and gains nothing (we already
935 * lost out; all we can do at this point is trade one
936 * kind of loss for another).
937 */
938 n -= get;
939 if (n > ZLRB_RING_SIZE) {
940 zsoverrun(unit, &cs->cs_rotime, "ring");
941 get += n - ZLRB_RING_SIZE;
942 n = ZLRB_RING_SIZE;
943 }
944 while (--n >= 0) {
945 /* race to keep ahead of incoming interrupts */
946 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
947 switch (ZRING_TYPE(c)) {
948
949 case ZRING_RINT:
950 c = ZRING_VALUE(c);
951 if (c & ZSRR1_DO)
952 zsoverrun(unit, &cs->cs_fotime, "fifo");
953 cc = c >> 8;
954 if (c & ZSRR1_FE)
955 cc |= TTY_FE;
956 if (c & ZSRR1_PE)
957 cc |= TTY_PE;
958 /*
959 * this should be done through
960 * bstreams XXX gag choke
961 */
962 if (unit == ZS_KBD)
963 kbd_rint(cc);
964 else if (unit == ZS_MOUSE)
965 ms_rint(cc);
966 else
967 line->l_rint(cc, tp);
968 break;
969
970 case ZRING_XINT:
971 /*
972 * Transmit done: change registers and resume,
973 * or clear BUSY.
974 */
975 if (cs->cs_heldchange) {
976 s = splzs();
977 c = zc->zc_csr;
978 ZS_DELAY();
979 if ((c & ZSRR0_DCD) == 0)
980 cs->cs_preg[3] &= ~ZSWR3_HFC;
981 bcopy((caddr_t)cs->cs_preg,
982 (caddr_t)cs->cs_creg, 16);
983 zs_loadchannelregs(zc, cs->cs_creg);
984 splx(s);
985 cs->cs_heldchange = 0;
986 if (cs->cs_heldtbc &&
987 (tp->t_state & TS_TTSTOP) == 0) {
988 cs->cs_tbc = cs->cs_heldtbc - 1;
989 zc->zc_data = *cs->cs_tba++;
990 ZS_DELAY();
991 goto again;
992 }
993 }
994 tp->t_state &= ~TS_BUSY;
995 if (tp->t_state & TS_FLUSH)
996 tp->t_state &= ~TS_FLUSH;
997 else
998 ndflush(&tp->t_outq,
999 cs->cs_tba - (caddr_t)tp->t_outq.c_cf);
1000 line->l_start(tp);
1001 break;
1002
1003 case ZRING_SINT:
1004 /*
1005 * Status line change. HFC bit is run in
1006 * hardware interrupt, to avoid locking
1007 * at splzs here.
1008 */
1009 c = ZRING_VALUE(c);
1010 if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
1011 cc = (c & ZSRR0_DCD) != 0;
1012 if (line->l_modem(tp, cc) == 0)
1013 zs_modem(cs, cc);
1014 }
1015 cs->cs_rr0 = c;
1016 break;
1017
1018 default:
1019 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
1020 unit >> 1, (unit & 1) + 'a', c);
1021 break;
1022 }
1023 }
1024 cs->cs_rbget = get;
1025 goto again;
1026 }
1027 return (retval);
1028 }
1029
1030 int
1031 zsioctl(dev_t dev, int cmd, caddr_t data, int flag, struct proc *p)
1032 {
1033 int unit = minor(dev);
1034 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1035 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
1036 register int error, s;
1037 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1038
1039 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
1040 if (error >= 0)
1041 return (error);
1042 error = ttioctl(tp, cmd, data, flag, p);
1043 if (error >= 0)
1044 return (error);
1045
1046 switch (cmd) {
1047
1048 case TIOCSBRK:
1049 {
1050 s = splzs();
1051 cs->cs_preg[5] |= ZSWR5_BREAK;
1052 cs->cs_creg[5] |= ZSWR5_BREAK;
1053 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1054 splx(s);
1055 break;
1056 }
1057
1058 case TIOCCBRK:
1059 {
1060 s = splzs();
1061 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1062 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1063 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1064 splx(s);
1065 break;
1066 }
1067
1068 case TIOCSDTR:
1069
1070 case TIOCCDTR:
1071
1072 case TIOCMSET:
1073
1074 case TIOCMBIS:
1075
1076 case TIOCMBIC:
1077
1078 case TIOCMGET:
1079
1080 default:
1081 return (ENOTTY);
1082 }
1083 return (0);
1084 }
1085
1086 /*
1087 * Start or restart transmission.
1088 */
1089 static void
1090 zsstart(register struct tty *tp)
1091 {
1092 register struct zs_chanstate *cs;
1093 register int s, nch;
1094 int unit = minor(tp->t_dev);
1095 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1096
1097 cs = &zi->zi_cs[unit & 1];
1098 s = spltty();
1099
1100 /*
1101 * If currently active or delaying, no need to do anything.
1102 */
1103 if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1104 goto out;
1105
1106 /*
1107 * If there are sleepers, and output has drained below low
1108 * water mark, awaken.
1109 */
1110 if (tp->t_outq.c_cc <= tp->t_lowat) {
1111 if (tp->t_state & TS_ASLEEP) {
1112 tp->t_state &= ~TS_ASLEEP;
1113 wakeup((caddr_t)&tp->t_outq);
1114 }
1115 selwakeup(&tp->t_wsel);
1116 }
1117
1118 nch = ndqb(&tp->t_outq, 0); /* XXX */
1119 if (nch) {
1120 register char *p = tp->t_outq.c_cf;
1121
1122 /* mark busy, enable tx done interrupts, & send first byte */
1123 tp->t_state |= TS_BUSY;
1124 (void) splzs();
1125 cs->cs_preg[1] |= ZSWR1_TIE;
1126 cs->cs_creg[1] |= ZSWR1_TIE;
1127 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1128 cs->cs_zc->zc_data = *p;
1129 ZS_DELAY();
1130 cs->cs_tba = p + 1;
1131 cs->cs_tbc = nch - 1;
1132 } else {
1133 /*
1134 * Nothing to send, turn off transmit done interrupts.
1135 * This is useful if something is doing polled output.
1136 */
1137 (void) splzs();
1138 cs->cs_preg[1] &= ~ZSWR1_TIE;
1139 cs->cs_creg[1] &= ~ZSWR1_TIE;
1140 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1141 }
1142 out:
1143 splx(s);
1144 }
1145
1146 /*
1147 * Stop output, e.g., for ^S or output flush.
1148 */
1149 void
1150 zsstop(register struct tty *tp, int flag)
1151 {
1152 register struct zs_chanstate *cs;
1153 register int s, unit = minor(tp->t_dev);
1154 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1155
1156 cs = &zi->zi_cs[unit & 1];
1157 s = splzs();
1158 if (tp->t_state & TS_BUSY) {
1159 /*
1160 * Device is transmitting; must stop it.
1161 */
1162 cs->cs_tbc = 0;
1163 if ((tp->t_state & TS_TTSTOP) == 0)
1164 tp->t_state |= TS_FLUSH;
1165 }
1166 splx(s);
1167 }
1168
1169 /*
1170 * Set ZS tty parameters from termios.
1171 *
1172 * This routine makes use of the fact that only registers
1173 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1174 */
1175 static int
1176 zsparam(register struct tty *tp, register struct termios *t)
1177 {
1178 int unit = minor(tp->t_dev);
1179 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1180 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1181 register int tmp, tmp5, cflag, s;
1182
1183 /*
1184 * Because PCLK is only run at 4.9 MHz, the fastest we
1185 * can go is 51200 baud (this corresponds to TC=1).
1186 * This is somewhat unfortunate as there is no real
1187 * reason we should not be able to handle higher rates.
1188 */
1189 tmp = t->c_ospeed;
1190 if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
1191 return (EINVAL);
1192 if (tmp == 0) {
1193 /* stty 0 => drop DTR and RTS */
1194 zs_modem(cs, 0);
1195 return (0);
1196 }
1197 tmp = BPS_TO_TCONST(PCLK / 16, tmp);
1198 if (tmp < 2)
1199 return (EINVAL);
1200
1201 cflag = t->c_cflag;
1202 tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
1203 tp->t_cflag = cflag;
1204
1205 /*
1206 * Block interrupts so that state will not
1207 * be altered until we are done setting it up.
1208 */
1209 s = splzs();
1210 cs->cs_preg[12] = tmp;
1211 cs->cs_preg[13] = tmp >> 8;
1212 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1213 switch (cflag & CSIZE) {
1214 case CS5:
1215 tmp = ZSWR3_RX_5;
1216 tmp5 = ZSWR5_TX_5;
1217 break;
1218 case CS6:
1219 tmp = ZSWR3_RX_6;
1220 tmp5 = ZSWR5_TX_6;
1221 break;
1222 case CS7:
1223 tmp = ZSWR3_RX_7;
1224 tmp5 = ZSWR5_TX_7;
1225 break;
1226 case CS8:
1227 default:
1228 tmp = ZSWR3_RX_8;
1229 tmp5 = ZSWR5_TX_8;
1230 break;
1231 }
1232
1233 /*
1234 * Output hardware flow control on the chip is horrendous: if
1235 * carrier detect drops, the receiver is disabled. Hence we
1236 * can only do this when the carrier is on.
1237 */
1238 if (cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1239 tmp |= ZSWR3_HFC | ZSWR3_RX_ENABLE;
1240 else
1241 tmp |= ZSWR3_RX_ENABLE;
1242 cs->cs_preg[3] = tmp;
1243 cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1244
1245 tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
1246 if ((cflag & PARODD) == 0)
1247 tmp |= ZSWR4_EVENP;
1248 if (cflag & PARENB)
1249 tmp |= ZSWR4_PARENB;
1250 cs->cs_preg[4] = tmp;
1251 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR;
1252 cs->cs_preg[10] = ZSWR10_NRZ;
1253 cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
1254 cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
1255 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1256
1257 /*
1258 * If nothing is being transmitted, set up new current values,
1259 * else mark them as pending.
1260 */
1261 if (cs->cs_heldchange == 0) {
1262 if (cs->cs_ttyp->t_state & TS_BUSY) {
1263 cs->cs_heldtbc = cs->cs_tbc;
1264 cs->cs_tbc = 0;
1265 cs->cs_heldchange = 1;
1266 } else {
1267 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1268 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1269 }
1270 }
1271 splx(s);
1272 return (0);
1273 }
1274
1275 /*
1276 * Raise or lower modem control (DTR/RTS) signals. If a character is
1277 * in transmission, the change is deferred.
1278 */
1279 static void
1280 zs_modem(struct zs_chanstate *cs, int onoff)
1281 {
1282 int s, bis, and;
1283
1284 if (onoff) {
1285 bis = ZSWR5_DTR | ZSWR5_RTS;
1286 and = ~0;
1287 } else {
1288 bis = 0;
1289 and = ~(ZSWR5_DTR | ZSWR5_RTS);
1290 }
1291 s = splzs();
1292 cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
1293 if (cs->cs_heldchange == 0) {
1294 if (cs->cs_ttyp->t_state & TS_BUSY) {
1295 cs->cs_heldtbc = cs->cs_tbc;
1296 cs->cs_tbc = 0;
1297 cs->cs_heldchange = 1;
1298 } else {
1299 cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
1300 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1301 }
1302 }
1303 splx(s);
1304 }
1305
1306 /*
1307 * Write the given register set to the given zs channel in the proper order.
1308 * The channel must not be transmitting at the time. The receiver will
1309 * be disabled for the time it takes to write all the registers.
1310 */
1311 static void
1312 zs_loadchannelregs(volatile struct zschan *zc, u_char *reg)
1313 {
1314 int i;
1315
1316 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1317 ZS_DELAY();
1318 i = zc->zc_data; /* drain fifo */
1319 ZS_DELAY();
1320 i = zc->zc_data;
1321 ZS_DELAY();
1322 i = zc->zc_data;
1323 ZS_DELAY();
1324 ZS_WRITE(zc, 4, reg[4]);
1325 ZS_WRITE(zc, 10, reg[10]);
1326 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1327 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1328 ZS_WRITE(zc, 1, reg[1]);
1329 ZS_WRITE(zc, 9, reg[9]);
1330 ZS_WRITE(zc, 11, reg[11]);
1331 ZS_WRITE(zc, 12, reg[12]);
1332 ZS_WRITE(zc, 13, reg[13]);
1333 ZS_WRITE(zc, 14, reg[14]);
1334 ZS_WRITE(zc, 15, reg[15]);
1335 ZS_WRITE(zc, 3, reg[3]);
1336 ZS_WRITE(zc, 5, reg[5]);
1337 }
1338
1339 #ifdef KGDB
1340 /*
1341 * Get a character from the given kgdb channel. Called at splhigh().
1342 */
1343 static int
1344 zs_kgdb_getc(void *arg)
1345 {
1346 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1347
1348 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
1349 ZS_DELAY();
1350 return (zc->zc_data);
1351 }
1352
1353 /*
1354 * Put a character to the given kgdb channel. Called at splhigh().
1355 */
1356 static void
1357 zs_kgdb_putc(void *arg, int c)
1358 {
1359 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1360
1361 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
1362 ZS_DELAY();
1363 zc->zc_data = c;
1364 ZS_DELAY();
1365 }
1366
1367 /*
1368 * Set up for kgdb; called at boot time before configuration.
1369 * KGDB interrupts will be enabled later when zs0 is configured.
1370 */
1371 void
1372 zs_kgdb_init()
1373 {
1374 volatile struct zsdevice *addr;
1375 volatile struct zschan *zc;
1376 int unit, zs;
1377
1378 if (major(kgdb_dev) != ZSMAJOR)
1379 return;
1380 unit = minor(kgdb_dev);
1381 /*
1382 * Unit must be 0 or 1 (zs0).
1383 */
1384 if ((unsigned)unit >= ZS_KBD) {
1385 printf("zs_kgdb_init: bad minor dev %d\n", unit);
1386 return;
1387 }
1388 zs = unit >> 1;
1389 if ((addr = zsaddr[zs]) == NULL)
1390 addr = zsaddr[zs] = findzs(zs);
1391 unit &= 1;
1392 zc = unit == 0 ? &addr->zs_chan[CHAN_A] : &addr->zs_chan[CHAN_B];
1393 zs_kgdb_savedspeed = zs_getspeed(zc);
1394 printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
1395 zs, unit + 'a', kgdb_rate);
1396 zs_reset(zc, 1, kgdb_rate);
1397 kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
1398 }
1399 #endif /* KGDB */
1400