zs.c revision 1.16 1 /*
2 * Copyright (c) 1992, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This software was developed by the Computer Systems Engineering group
6 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7 * contributed to Berkeley.
8 *
9 * All advertising materials mentioning features or use of this software
10 * must display the following acknowledgement:
11 * This product includes software developed by the University of
12 * California, Lawrence Berkeley Laboratory.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the University of
25 * California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 * may be used to endorse or promote products derived from this software
28 * without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 * @(#)zs.c 8.1 (Berkeley) 7/19/93
43 *
44 * from: Header: zs.c,v 1.30 93/07/19 23:44:42 torek Exp
45 * $Id: zs.c,v 1.16 1994/11/02 04:54:19 deraadt Exp $
46 */
47
48 /*
49 * Zilog Z8530 (ZSCC) driver.
50 *
51 * Runs two tty ports (ttya and ttyb) on zs0,
52 * and runs a keyboard and mouse on zs1.
53 *
54 * This driver knows far too much about chip to usage mappings.
55 */
56 #define NZS 2 /* XXX */
57
58 #include <sys/param.h>
59 #include <sys/proc.h>
60 #include <sys/device.h>
61 #include <sys/conf.h>
62 #include <sys/file.h>
63 #include <sys/ioctl.h>
64 #include <sys/tty.h>
65 #include <sys/time.h>
66 #include <sys/kernel.h>
67 #include <sys/syslog.h>
68
69 #include <machine/autoconf.h>
70 #include <machine/cpu.h>
71
72 #include <sparc/sparc/vaddrs.h>
73 #include <sparc/sparc/auxreg.h>
74
75 #include <machine/kbd.h>
76 #include <sparc/dev/zsreg.h>
77 #include <sparc/dev/zsvar.h>
78
79 #ifdef KGDB
80 #include <machine/remote-sl.h>
81 #endif
82
83 #define ZSMAJOR 12 /* XXX */
84
85 #define ZS_KBD 2 /* XXX */
86 #define ZS_MOUSE 3 /* XXX */
87
88 /* the magic number below was stolen from the Sprite source. */
89 #define PCLK (19660800/4) /* PCLK pin input clock rate */
90
91 /*
92 * Select software interrupt bit based on TTY ipl.
93 */
94 #if PIL_TTY == 1
95 # define IE_ZSSOFT IE_L1
96 #elif PIL_TTY == 4
97 # define IE_ZSSOFT IE_L4
98 #elif PIL_TTY == 6
99 # define IE_ZSSOFT IE_L6
100 #else
101 # error "no suitable software interrupt bit"
102 #endif
103
104 /*
105 * Software state per found chip. This would be called `zs_softc',
106 * but the previous driver had a rather different zs_softc....
107 */
108 struct zsinfo {
109 struct device zi_dev; /* base device */
110 volatile struct zsdevice *zi_zs;/* chip registers */
111 struct zs_chanstate zi_cs[2]; /* channel A and B software state */
112 };
113
114 struct tty *zs_tty[NZS * 2]; /* XXX should be dynamic */
115
116 /* Definition of the driver for autoconfig. */
117 static int zsmatch __P((struct device *, struct cfdata *, void *));
118 static void zsattach __P((struct device *, struct device *, void *));
119 struct cfdriver zscd =
120 { NULL, "zs", zsmatch, zsattach, DV_TTY, sizeof(struct zsinfo) };
121
122 /* Interrupt handlers. */
123 static int zshard __P((void *));
124 static struct intrhand levelhard = { zshard };
125 static int zssoft __P((void *));
126 static struct intrhand levelsoft = { zssoft };
127
128 struct zs_chanstate *zslist;
129
130 /* Routines called from other code. */
131 static void zsiopen __P((struct tty *));
132 static void zsiclose __P((struct tty *));
133 static void zsstart __P((struct tty *));
134 void zsstop __P((struct tty *, int));
135 static int zsparam __P((struct tty *, struct termios *));
136
137 /* Routines purely local to this driver. */
138 static int zs_getspeed __P((volatile struct zschan *));
139 static void zs_reset __P((volatile struct zschan *, int, int));
140 static void zs_modem __P((struct zs_chanstate *, int));
141 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
142
143 /* Console stuff. */
144 static struct tty *zs_ctty; /* console `struct tty *' */
145 static int zs_consin = -1, zs_consout = -1;
146 static int zscnputc __P((int)); /* console putc function */
147 static volatile struct zschan *zs_conschan;
148 static struct tty *zs_checkcons __P((struct zsinfo *, int, struct zs_chanstate *));
149
150 #ifdef KGDB
151 /* KGDB stuff. Must reboot to change zs_kgdbunit. */
152 extern int kgdb_dev, kgdb_rate;
153 static int zs_kgdb_savedspeed;
154 static void zs_checkkgdb __P((int, struct zs_chanstate *, struct tty *));
155 #endif
156
157 extern volatile struct zsdevice *findzs(int);
158 static volatile struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */
159
160 /*
161 * Console keyboard L1-A processing is done in the hardware interrupt code,
162 * so we need to duplicate some of the console keyboard decode state. (We
163 * must not use the regular state as the hardware code keeps ahead of the
164 * software state: the software state tracks the most recent ring input but
165 * the hardware state tracks the most recent ZSCC input.) See also kbd.h.
166 */
167 static struct conk_state { /* console keyboard state */
168 char conk_id; /* true => ID coming up (console only) */
169 char conk_l1; /* true => L1 pressed (console only) */
170 } zsconk_state;
171
172 int zshardscope;
173 int zsshortcuts; /* number of "shortcut" software interrupts */
174
175 #ifdef SUN4
176 static u_char
177 zs_read(zc, reg)
178 volatile struct zschan *zc;
179 u_char reg;
180 {
181 u_char val;
182
183 zc->zc_csr = reg;
184 ZS_DELAY();
185 val = zc->zc_csr;
186 ZS_DELAY();
187 return val;
188 }
189
190 static u_char
191 zs_write(zc, reg, val)
192 volatile struct zschan *zc;
193 u_char reg, val;
194 {
195 zc->zc_csr = reg;
196 ZS_DELAY();
197 zc->zc_csr = val;
198 ZS_DELAY();
199 return val;
200 }
201 #endif /* SUN4 */
202
203 /*
204 * Match slave number to zs unit number, so that misconfiguration will
205 * not set up the keyboard as ttya, etc.
206 */
207 static int
208 zsmatch(parent, cf, aux)
209 struct device *parent;
210 struct cfdata *cf;
211 void *aux;
212 {
213 struct confargs *ca = aux;
214 struct romaux *ra = &ca->ca_ra;
215
216 if (strcmp(cf->cf_driver->cd_name, ra->ra_name))
217 return (0);
218 if (ca->ca_bustype==BUS_MAIN && cputyp!=CPU_SUN4)
219 return (getpropint(ra->ra_node, "slave", -2) == cf->cf_unit);
220 ra->ra_len = NBPG;
221 return (probeget(ra->ra_vaddr, 1) != -1);
222 }
223
224 /*
225 * Attach a found zs.
226 *
227 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
228 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
229 */
230 static void
231 zsattach(parent, dev, aux)
232 struct device *parent;
233 struct device *dev;
234 void *aux;
235 {
236 register int zs = dev->dv_unit, unit;
237 register struct zsinfo *zi;
238 register struct zs_chanstate *cs;
239 register volatile struct zsdevice *addr;
240 register struct tty *tp, *ctp;
241 register struct confargs *ca = aux;
242 register struct romaux *ra = &ca->ca_ra;
243 int pri, softcar;
244 static int didintr, prevpri;
245
246 if ((addr = zsaddr[zs]) == NULL)
247 addr = zsaddr[zs] = findzs(zs);
248 if (ca->ca_bustype==BUS_MAIN)
249 if ((void *)addr != ra->ra_vaddr)
250 panic("zsattach");
251 if (ra->ra_nintr != 1) {
252 printf(": expected 1 interrupt, got %d\n", ra->ra_nintr);
253 return;
254 }
255 pri = ra->ra_intr[0].int_pri;
256 printf(" pri %d, softpri %d\n", pri, PIL_TTY);
257 if (!didintr) {
258 didintr = 1;
259 prevpri = pri;
260 intr_establish(pri, &levelhard);
261 intr_establish(PIL_TTY, &levelsoft);
262 } else if (pri != prevpri)
263 panic("broken zs interrupt scheme");
264 zi = (struct zsinfo *)dev;
265 zi->zi_zs = addr;
266 unit = zs * 2;
267 cs = zi->zi_cs;
268
269 if(!zs_tty[unit])
270 zs_tty[unit] = ttymalloc();
271 tp = zs_tty[unit];
272 if(!zs_tty[unit+1])
273 zs_tty[unit+1] = ttymalloc();
274
275 if (unit == 0) {
276 /* Get software carrier flags from options node in OPENPROM. */
277 extern int optionsnode;
278
279 softcar = 0;
280 #ifdef notdef
281 if (*getpropstring(optionsnode, "ttya-ignore-cd") == 't')
282 softcar |= 1;
283 if (*getpropstring(optionsnode, "ttyb-ignore-cd") == 't')
284 softcar |= 2;
285 #endif
286 } else
287 softcar = dev->dv_cfdata->cf_flags;
288
289 /* link into interrupt list with order (A,B) (B=A+1) */
290 cs[0].cs_next = &cs[1];
291 cs[1].cs_next = zslist;
292 zslist = cs;
293
294 cs->cs_unit = unit;
295 cs->cs_speed = zs_getspeed(&addr->zs_chan[CHAN_A]);
296 cs->cs_softcar = softcar & 1;
297 cs->cs_zc = &addr->zs_chan[CHAN_A];
298 tp->t_dev = makedev(ZSMAJOR, unit);
299 tp->t_oproc = zsstart;
300 tp->t_param = zsparam;
301 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
302 tp = ctp;
303 cs->cs_ttyp = tp;
304 #ifdef KGDB
305 if (ctp == NULL)
306 zs_checkkgdb(unit, cs, tp);
307 #endif
308 if (unit == ZS_KBD) {
309 /*
310 * Keyboard: tell /dev/kbd driver how to talk to us.
311 */
312 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
313 tp->t_cflag = CS8;
314 kbd_serial(tp, zsiopen, zsiclose);
315 cs->cs_conk = 1; /* do L1-A processing */
316 }
317 unit++;
318 cs++;
319 tp = zs_tty[unit];
320 cs->cs_unit = unit;
321 cs->cs_speed = zs_getspeed(&addr->zs_chan[CHAN_B]);
322 cs->cs_softcar = softcar & 2;
323 cs->cs_zc = &addr->zs_chan[CHAN_B];
324 tp->t_dev = makedev(ZSMAJOR, unit);
325 tp->t_oproc = zsstart;
326 tp->t_param = zsparam;
327 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
328 tp = ctp;
329 cs->cs_ttyp = tp;
330 #ifdef KGDB
331 if (ctp == NULL)
332 zs_checkkgdb(unit, cs, tp);
333 #endif
334 if (unit == ZS_MOUSE) {
335 /*
336 * Mouse: tell /dev/mouse driver how to talk to us.
337 */
338 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
339 tp->t_cflag = CS8;
340 ms_serial(tp, zsiopen, zsiclose);
341 }
342 }
343
344 /*
345 * Put a channel in a known state. Interrupts may be left disabled
346 * or enabled, as desired.
347 */
348 static void
349 zs_reset(zc, inten, speed)
350 volatile struct zschan *zc;
351 int inten, speed;
352 {
353 int tconst;
354 static u_char reg[16] = {
355 0,
356 0,
357 0,
358 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
359 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
360 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
361 0,
362 0,
363 0,
364 0,
365 ZSWR10_NRZ,
366 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
367 0,
368 0,
369 ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
370 ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
371 };
372
373 reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
374 tconst = BPS_TO_TCONST(PCLK / 16, speed);
375 reg[12] = tconst;
376 reg[13] = tconst >> 8;
377 zs_loadchannelregs(zc, reg);
378 }
379
380 /*
381 * Declare the given tty (which is in fact &cons) as a console input
382 * or output. This happens before the zs chip is attached; the hookup
383 * is finished later, in zs_setcons() below.
384 *
385 * This is used only for ports a and b. The console keyboard is decoded
386 * independently (we always send unit-2 input to /dev/kbd, which will
387 * direct it to /dev/console if appropriate).
388 */
389 void
390 zsconsole(tp, unit, out, fnstop)
391 register struct tty *tp;
392 register int unit;
393 int out;
394 void (**fnstop) __P((struct tty *, int));
395 {
396 extern int (*v_putc)();
397 int zs;
398 volatile struct zsdevice *addr;
399
400 if (unit >= ZS_KBD)
401 panic("zsconsole");
402 if (out) {
403 zs_consout = unit;
404 zs = unit >> 1;
405 if ((addr = zsaddr[zs]) == NULL)
406 addr = zsaddr[zs] = findzs(zs);
407 zs_conschan = (unit & 1) == 0 ? &addr->zs_chan[CHAN_A] :
408 &addr->zs_chan[CHAN_B];
409 v_putc = zscnputc;
410 } else
411 zs_consin = unit;
412 if(fnstop)
413 *fnstop = &zsstop;
414 zs_ctty = tp;
415 }
416
417 /*
418 * Polled console output putchar.
419 */
420 static int
421 zscnputc(c)
422 int c;
423 {
424 register volatile struct zschan *zc = zs_conschan;
425 register int s;
426
427 if (c == '\n')
428 zscnputc('\r');
429 /*
430 * Must block output interrupts (i.e., raise to >= splzs) without
431 * lowering current ipl. Need a better way.
432 */
433 s = splhigh();
434 #ifdef SUN4C /* XXX */
435 if (cputyp==CPU_SUN4C && s <= (12 << 8))
436 (void) splzs();
437 #endif
438 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
439 ZS_DELAY();
440 zc->zc_data = c;
441 ZS_DELAY();
442 splx(s);
443 }
444
445 /*
446 * Set up the given unit as console input, output, both, or neither, as
447 * needed. Return console tty if it is to receive console input.
448 */
449 static struct tty *
450 zs_checkcons(zi, unit, cs)
451 struct zsinfo *zi;
452 int unit;
453 struct zs_chanstate *cs;
454 {
455 register struct tty *tp;
456 char *i, *o;
457
458 if ((tp = zs_ctty) == NULL)
459 return (0);
460 i = zs_consin == unit ? "input" : NULL;
461 o = zs_consout == unit ? "output" : NULL;
462 if (i == NULL && o == NULL)
463 return (0);
464
465 /* rewire the minor device (gack) */
466 tp->t_dev = makedev(major(tp->t_dev), unit);
467
468 /*
469 * Rewire input and/or output. Note that baud rate reflects
470 * input settings, not output settings, but we can do no better
471 * if the console is split across two ports.
472 *
473 * XXX split consoles don't work anyway -- this needs to be
474 * thrown away and redone
475 */
476 if (i) {
477 tp->t_param = zsparam;
478 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
479 tp->t_cflag = CS8;
480 ttsetwater(tp);
481 }
482 if (o) {
483 tp->t_oproc = zsstart;
484 }
485 printf("%s%c: console %s\n",
486 zi->zi_dev.dv_xname, (unit & 1) + 'a', i ? (o ? "i/o" : i) : o);
487 cs->cs_consio = 1;
488 cs->cs_brkabort = 1;
489 return (tp);
490 }
491
492 #ifdef KGDB
493 /*
494 * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
495 * Pick up the current speed and character size and restore the original
496 * speed.
497 */
498 static void
499 zs_checkkgdb(unit, cs, tp)
500 int unit;
501 struct zs_chanstate *cs;
502 struct tty *tp;
503 {
504
505 if (kgdb_dev == makedev(ZSMAJOR, unit)) {
506 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
507 tp->t_cflag = CS8;
508 cs->cs_kgdb = 1;
509 cs->cs_speed = zs_kgdb_savedspeed;
510 (void) zsparam(tp, &tp->t_termios);
511 }
512 }
513 #endif
514
515 /*
516 * Compute the current baud rate given a ZSCC channel.
517 */
518 static int
519 zs_getspeed(zc)
520 register volatile struct zschan *zc;
521 {
522 register int tconst;
523
524 tconst = ZS_READ(zc, 12);
525 tconst |= ZS_READ(zc, 13) << 8;
526 return (TCONST_TO_BPS(PCLK / 16, tconst));
527 }
528
529
530 /*
531 * Do an internal open.
532 */
533 static void
534 zsiopen(tp)
535 struct tty *tp;
536 {
537
538 (void) zsparam(tp, &tp->t_termios);
539 ttsetwater(tp);
540 tp->t_state = TS_ISOPEN | TS_CARR_ON;
541 }
542
543 /*
544 * Do an internal close. Eventually we should shut off the chip when both
545 * ports on it are closed.
546 */
547 static void
548 zsiclose(tp)
549 struct tty *tp;
550 {
551
552 ttylclose(tp, 0); /* ??? */
553 ttyclose(tp); /* ??? */
554 tp->t_state = 0;
555 }
556
557
558 /*
559 * Open a zs serial port. This interface may not be used to open
560 * the keyboard and mouse ports. (XXX)
561 */
562 int
563 zsopen(dev, flags, mode, p)
564 dev_t dev;
565 int flags;
566 int mode;
567 struct proc *p;
568 {
569 register struct tty *tp;
570 register struct zs_chanstate *cs;
571 struct zsinfo *zi;
572 int unit = minor(dev), zs = unit >> 1, error, s;
573
574 if (zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL ||
575 unit == ZS_KBD || unit == ZS_MOUSE)
576 return (ENXIO);
577 cs = &zi->zi_cs[unit & 1];
578 if (cs->cs_consio)
579 return (ENXIO); /* ??? */
580 tp = cs->cs_ttyp;
581 s = spltty();
582 if ((tp->t_state & TS_ISOPEN) == 0) {
583 ttychars(tp);
584 if (tp->t_ispeed == 0) {
585 tp->t_iflag = TTYDEF_IFLAG;
586 tp->t_oflag = TTYDEF_OFLAG;
587 tp->t_cflag = TTYDEF_CFLAG;
588 tp->t_lflag = TTYDEF_LFLAG;
589 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
590 }
591 (void) zsparam(tp, &tp->t_termios);
592 ttsetwater(tp);
593 } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
594 splx(s);
595 return (EBUSY);
596 }
597 error = 0;
598 for (;;) {
599 /* loop, turning on the device, until carrier present */
600 zs_modem(cs, 1);
601 if (cs->cs_softcar)
602 tp->t_state |= TS_CARR_ON;
603 if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
604 tp->t_state & TS_CARR_ON)
605 break;
606 tp->t_state |= TS_WOPEN;
607 if (error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
608 ttopen, 0))
609 break;
610 }
611 splx(s);
612 if (error == 0)
613 error = linesw[tp->t_line].l_open(dev, tp);
614 if (error)
615 zs_modem(cs, 0);
616 return (error);
617 }
618
619 /*
620 * Close a zs serial port.
621 */
622 int
623 zsclose(dev, flags, mode, p)
624 dev_t dev;
625 int flags;
626 int mode;
627 struct proc *p;
628 {
629 register struct zs_chanstate *cs;
630 register struct tty *tp;
631 struct zsinfo *zi;
632 int unit = minor(dev), s;
633
634 zi = zscd.cd_devs[unit >> 1];
635 cs = &zi->zi_cs[unit & 1];
636 tp = cs->cs_ttyp;
637 linesw[tp->t_line].l_close(tp, flags);
638 if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
639 (tp->t_state & TS_ISOPEN) == 0) {
640 zs_modem(cs, 0);
641 /* hold low for 1 second */
642 (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
643 }
644 if (cs->cs_creg[5] & ZSWR5_BREAK)
645 {
646 s = splzs();
647 cs->cs_preg[5] &= ~ZSWR5_BREAK;
648 cs->cs_creg[5] &= ~ZSWR5_BREAK;
649 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
650 splx(s);
651 }
652 ttyclose(tp);
653 #ifdef KGDB
654 /* Reset the speed if we're doing kgdb on this port */
655 if (cs->cs_kgdb) {
656 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
657 (void) zsparam(tp, &tp->t_termios);
658 }
659 #endif
660 return (0);
661 }
662
663 /*
664 * Read/write zs serial port.
665 */
666 int
667 zsread(dev, uio, flags)
668 dev_t dev;
669 struct uio *uio;
670 int flags;
671 {
672 register struct tty *tp = zs_tty[minor(dev)];
673
674 return (linesw[tp->t_line].l_read(tp, uio, flags));
675 }
676
677 int
678 zswrite(dev, uio, flags)
679 dev_t dev;
680 struct uio *uio;
681 int flags;
682 {
683 register struct tty *tp = zs_tty[minor(dev)];
684
685 return (linesw[tp->t_line].l_write(tp, uio, flags));
686 }
687
688 /*
689 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
690 * channels are kept in (A,B) pairs.
691 *
692 * Do just a little, then get out; set a software interrupt if more
693 * work is needed.
694 *
695 * We deliberately ignore the vectoring Zilog gives us, and match up
696 * only the number of `reset interrupt under service' operations, not
697 * the order.
698 */
699 /* ARGSUSED */
700 int
701 zshard(intrarg)
702 void *intrarg;
703 {
704 register struct zs_chanstate *a;
705 #define b (a + 1)
706 register volatile struct zschan *zc;
707 register int rr3, intflags = 0, v, i;
708 static int zsrint(struct zs_chanstate *, volatile struct zschan *);
709 static int zsxint(struct zs_chanstate *, volatile struct zschan *);
710 static int zssint(struct zs_chanstate *, volatile struct zschan *);
711
712 for (a = zslist; a != NULL; a = b->cs_next) {
713 rr3 = ZS_READ(a->cs_zc, 3);
714 if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
715 intflags |= 2;
716 zc = a->cs_zc;
717 i = a->cs_rbput;
718 if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
719 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
720 intflags |= 1;
721 }
722 if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
723 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
724 intflags |= 1;
725 }
726 if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
727 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
728 intflags |= 1;
729 }
730 a->cs_rbput = i;
731 }
732 if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
733 intflags |= 2;
734 zc = b->cs_zc;
735 i = b->cs_rbput;
736 if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
737 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
738 intflags |= 1;
739 }
740 if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
741 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
742 intflags |= 1;
743 }
744 if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
745 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
746 intflags |= 1;
747 }
748 b->cs_rbput = i;
749 }
750 }
751 #undef b
752
753 if (intflags & 1) {
754 #if defined(SUN4C) || defined(SUN4M)
755 if (cputyp==CPU_SUN4M || cputyp==CPU_SUN4C) {
756 /* XXX -- but this will go away when zshard moves to locore.s */
757 struct clockframe *p = intrarg;
758
759 if ((p->psr & PSR_PIL) < (PIL_TTY << 8)) {
760 zsshortcuts++;
761 (void) spltty();
762 if (zshardscope) {
763 LED_ON;
764 LED_OFF;
765 }
766 return (zssoft(intrarg));
767 }
768 }
769 #endif
770 ienab_bis(IE_ZSSOFT);
771 }
772 return (intflags & 2);
773 }
774
775 static int
776 zsrint(cs, zc)
777 register struct zs_chanstate *cs;
778 register volatile struct zschan *zc;
779 {
780 register int c = zc->zc_data;
781
782 if (cs->cs_conk) {
783 register struct conk_state *conk = &zsconk_state;
784
785 /*
786 * Check here for console abort function, so that we
787 * can abort even when interrupts are locking up the
788 * machine.
789 */
790 if (c == KBD_RESET) {
791 conk->conk_id = 1; /* ignore next byte */
792 conk->conk_l1 = 0;
793 } else if (conk->conk_id)
794 conk->conk_id = 0; /* stop ignoring bytes */
795 else if (c == KBD_L1)
796 conk->conk_l1 = 1; /* L1 went down */
797 else if (c == (KBD_L1|KBD_UP))
798 conk->conk_l1 = 0; /* L1 went up */
799 else if (c == KBD_A && conk->conk_l1) {
800 zsabort();
801 conk->conk_l1 = 0; /* we never see the up */
802 goto clearit; /* eat the A after L1-A */
803 }
804 }
805 #ifdef KGDB
806 if (c == FRAME_START && cs->cs_kgdb &&
807 (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
808 zskgdb(cs->cs_unit);
809 goto clearit;
810 }
811 #endif
812 /* compose receive character and status */
813 c <<= 8;
814 c |= ZS_READ(zc, 1);
815
816 /* clear receive error & interrupt condition */
817 zc->zc_csr = ZSWR0_RESET_ERRORS;
818 ZS_DELAY();
819 zc->zc_csr = ZSWR0_CLR_INTR;
820 ZS_DELAY();
821
822 return (ZRING_MAKE(ZRING_RINT, c));
823
824 clearit:
825 zc->zc_csr = ZSWR0_RESET_ERRORS;
826 ZS_DELAY();
827 zc->zc_csr = ZSWR0_CLR_INTR;
828 ZS_DELAY();
829 return (0);
830 }
831
832 static int
833 zsxint(cs, zc)
834 register struct zs_chanstate *cs;
835 register volatile struct zschan *zc;
836 {
837 register int i = cs->cs_tbc;
838
839 if (i == 0) {
840 zc->zc_csr = ZSWR0_RESET_TXINT;
841 ZS_DELAY();
842 zc->zc_csr = ZSWR0_CLR_INTR;
843 ZS_DELAY();
844 return (ZRING_MAKE(ZRING_XINT, 0));
845 }
846 cs->cs_tbc = i - 1;
847 zc->zc_data = *cs->cs_tba++;
848 ZS_DELAY();
849 zc->zc_csr = ZSWR0_CLR_INTR;
850 ZS_DELAY();
851 return (0);
852 }
853
854 static int
855 zssint(cs, zc)
856 register struct zs_chanstate *cs;
857 register volatile struct zschan *zc;
858 {
859 register int rr0;
860
861 rr0 = zc->zc_csr;
862 zc->zc_csr = ZSWR0_RESET_STATUS;
863 ZS_DELAY();
864 zc->zc_csr = ZSWR0_CLR_INTR;
865 ZS_DELAY();
866 /*
867 * The chip's hardware flow control is, as noted in zsreg.h,
868 * busted---if the DCD line goes low the chip shuts off the
869 * receiver (!). If we want hardware CTS flow control but do
870 * not have it, and carrier is now on, turn HFC on; if we have
871 * HFC now but carrier has gone low, turn it off.
872 */
873 if (rr0 & ZSRR0_DCD) {
874 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
875 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
876 cs->cs_creg[3] |= ZSWR3_HFC;
877 ZS_WRITE(zc, 3, cs->cs_creg[3]);
878 }
879 } else {
880 if (cs->cs_creg[3] & ZSWR3_HFC) {
881 cs->cs_creg[3] &= ~ZSWR3_HFC;
882 ZS_WRITE(zc, 3, cs->cs_creg[3]);
883 }
884 }
885 if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
886 #ifdef SUN4
887 /*
888 * XXX This might not be necessary. Test and
889 * delete if it isn't.
890 */
891 if (cputyp==CPU_SUN4) {
892 while (zc->zc_csr & ZSRR0_BREAK)
893 ZS_DELAY();
894 }
895 #endif
896 zsabort();
897 return (0);
898 }
899 return (ZRING_MAKE(ZRING_SINT, rr0));
900 }
901
902 zsabort()
903 {
904
905 #ifdef DDB
906 Debugger();
907 #else
908 printf("stopping on keyboard abort\n");
909 callrom();
910 #endif
911 }
912
913 #ifdef KGDB
914 /*
915 * KGDB framing character received: enter kernel debugger. This probably
916 * should time out after a few seconds to avoid hanging on spurious input.
917 */
918 zskgdb(unit)
919 int unit;
920 {
921
922 printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
923 kgdb_connect(1);
924 }
925 #endif
926
927 /*
928 * Print out a ring or fifo overrun error message.
929 */
930 static void
931 zsoverrun(unit, ptime, what)
932 int unit;
933 long *ptime;
934 char *what;
935 {
936
937 if (*ptime != time.tv_sec) {
938 *ptime = time.tv_sec;
939 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
940 (unit & 1) + 'a', what);
941 }
942 }
943
944 /*
945 * ZS software interrupt. Scan all channels for deferred interrupts.
946 */
947 int
948 zssoft(arg)
949 void *arg;
950 {
951 register struct zs_chanstate *cs;
952 register volatile struct zschan *zc;
953 register struct linesw *line;
954 register struct tty *tp;
955 register int get, n, c, cc, unit, s;
956 int retval = 0;
957
958 for (cs = zslist; cs != NULL; cs = cs->cs_next) {
959 get = cs->cs_rbget;
960 again:
961 n = cs->cs_rbput; /* atomic */
962 if (get == n) /* nothing more on this line */
963 continue;
964 retval = 1;
965 unit = cs->cs_unit; /* set up to handle interrupts */
966 zc = cs->cs_zc;
967 tp = cs->cs_ttyp;
968 line = &linesw[tp->t_line];
969 /*
970 * Compute the number of interrupts in the receive ring.
971 * If the count is overlarge, we lost some events, and
972 * must advance to the first valid one. It may get
973 * overwritten if more data are arriving, but this is
974 * too expensive to check and gains nothing (we already
975 * lost out; all we can do at this point is trade one
976 * kind of loss for another).
977 */
978 n -= get;
979 if (n > ZLRB_RING_SIZE) {
980 zsoverrun(unit, &cs->cs_rotime, "ring");
981 get += n - ZLRB_RING_SIZE;
982 n = ZLRB_RING_SIZE;
983 }
984 while (--n >= 0) {
985 /* race to keep ahead of incoming interrupts */
986 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
987 switch (ZRING_TYPE(c)) {
988
989 case ZRING_RINT:
990 c = ZRING_VALUE(c);
991 if (c & ZSRR1_DO)
992 zsoverrun(unit, &cs->cs_fotime, "fifo");
993 cc = c >> 8;
994 if (c & ZSRR1_FE)
995 cc |= TTY_FE;
996 if (c & ZSRR1_PE)
997 cc |= TTY_PE;
998 /*
999 * this should be done through
1000 * bstreams XXX gag choke
1001 */
1002 if (unit == ZS_KBD)
1003 kbd_rint(cc);
1004 else if (unit == ZS_MOUSE)
1005 ms_rint(cc);
1006 else
1007 line->l_rint(cc, tp);
1008 break;
1009
1010 case ZRING_XINT:
1011 /*
1012 * Transmit done: change registers and resume,
1013 * or clear BUSY.
1014 */
1015 if (cs->cs_heldchange) {
1016 s = splzs();
1017 c = zc->zc_csr;
1018 ZS_DELAY();
1019 if ((c & ZSRR0_DCD) == 0)
1020 cs->cs_preg[3] &= ~ZSWR3_HFC;
1021 bcopy((caddr_t)cs->cs_preg,
1022 (caddr_t)cs->cs_creg, 16);
1023 zs_loadchannelregs(zc, cs->cs_creg);
1024 splx(s);
1025 cs->cs_heldchange = 0;
1026 if (cs->cs_heldtbc &&
1027 (tp->t_state & TS_TTSTOP) == 0) {
1028 cs->cs_tbc = cs->cs_heldtbc - 1;
1029 zc->zc_data = *cs->cs_tba++;
1030 ZS_DELAY();
1031 goto again;
1032 }
1033 }
1034 tp->t_state &= ~TS_BUSY;
1035 if (tp->t_state & TS_FLUSH)
1036 tp->t_state &= ~TS_FLUSH;
1037 else
1038 ndflush(&tp->t_outq,
1039 cs->cs_tba - (caddr_t)tp->t_outq.c_cf);
1040 line->l_start(tp);
1041 break;
1042
1043 case ZRING_SINT:
1044 /*
1045 * Status line change. HFC bit is run in
1046 * hardware interrupt, to avoid locking
1047 * at splzs here.
1048 */
1049 c = ZRING_VALUE(c);
1050 if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
1051 cc = (c & ZSRR0_DCD) != 0;
1052 if (line->l_modem(tp, cc) == 0)
1053 zs_modem(cs, cc);
1054 }
1055 cs->cs_rr0 = c;
1056 break;
1057
1058 default:
1059 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
1060 unit >> 1, (unit & 1) + 'a', c);
1061 break;
1062 }
1063 }
1064 cs->cs_rbget = get;
1065 goto again;
1066 }
1067 return (retval);
1068 }
1069
1070 int
1071 zsioctl(dev, cmd, data, flag, p)
1072 dev_t dev;
1073 u_long cmd;
1074 caddr_t data;
1075 int flag;
1076 struct proc *p;
1077 {
1078 int unit = minor(dev);
1079 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1080 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
1081 register int error, s;
1082 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1083
1084 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
1085 if (error >= 0)
1086 return (error);
1087 error = ttioctl(tp, cmd, data, flag, p);
1088 if (error >= 0)
1089 return (error);
1090
1091 switch (cmd) {
1092 case TIOCSBRK:
1093 s = splzs();
1094 cs->cs_preg[5] |= ZSWR5_BREAK;
1095 cs->cs_creg[5] |= ZSWR5_BREAK;
1096 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1097 splx(s);
1098 break;
1099 case TIOCCBRK:
1100 s = splzs();
1101 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1102 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1103 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1104 splx(s);
1105 break;
1106 case TIOCSDTR:
1107 case TIOCCDTR:
1108 case TIOCMSET:
1109 case TIOCMBIS:
1110 case TIOCMBIC:
1111 case TIOCMGET:
1112 default:
1113 return (ENOTTY);
1114 }
1115 return (0);
1116 }
1117
1118 /*
1119 * Start or restart transmission.
1120 */
1121 static void
1122 zsstart(tp)
1123 register struct tty *tp;
1124 {
1125 register struct zs_chanstate *cs;
1126 register int s, nch;
1127 int unit = minor(tp->t_dev);
1128 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1129
1130 cs = &zi->zi_cs[unit & 1];
1131 s = spltty();
1132
1133 /*
1134 * If currently active or delaying, no need to do anything.
1135 */
1136 if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1137 goto out;
1138
1139 /*
1140 * If there are sleepers, and output has drained below low
1141 * water mark, awaken.
1142 */
1143 if (tp->t_outq.c_cc <= tp->t_lowat) {
1144 if (tp->t_state & TS_ASLEEP) {
1145 tp->t_state &= ~TS_ASLEEP;
1146 wakeup((caddr_t)&tp->t_outq);
1147 }
1148 selwakeup(&tp->t_wsel);
1149 }
1150
1151 nch = ndqb(&tp->t_outq, 0); /* XXX */
1152 if (nch) {
1153 register char *p = tp->t_outq.c_cf;
1154
1155 /* mark busy, enable tx done interrupts, & send first byte */
1156 tp->t_state |= TS_BUSY;
1157 (void) splzs();
1158 cs->cs_preg[1] |= ZSWR1_TIE;
1159 cs->cs_creg[1] |= ZSWR1_TIE;
1160 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1161 cs->cs_zc->zc_data = *p;
1162 ZS_DELAY();
1163 cs->cs_tba = p + 1;
1164 cs->cs_tbc = nch - 1;
1165 } else {
1166 /*
1167 * Nothing to send, turn off transmit done interrupts.
1168 * This is useful if something is doing polled output.
1169 */
1170 (void) splzs();
1171 cs->cs_preg[1] &= ~ZSWR1_TIE;
1172 cs->cs_creg[1] &= ~ZSWR1_TIE;
1173 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1174 }
1175 out:
1176 splx(s);
1177 }
1178
1179 /*
1180 * Stop output, e.g., for ^S or output flush.
1181 */
1182 void
1183 zsstop(tp, flag)
1184 register struct tty *tp;
1185 int flag;
1186 {
1187 register struct zs_chanstate *cs;
1188 register int s, unit = minor(tp->t_dev);
1189 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1190
1191 cs = &zi->zi_cs[unit & 1];
1192 s = splzs();
1193 if (tp->t_state & TS_BUSY) {
1194 /*
1195 * Device is transmitting; must stop it.
1196 */
1197 cs->cs_tbc = 0;
1198 if ((tp->t_state & TS_TTSTOP) == 0)
1199 tp->t_state |= TS_FLUSH;
1200 }
1201 splx(s);
1202 }
1203
1204 /*
1205 * Set ZS tty parameters from termios.
1206 *
1207 * This routine makes use of the fact that only registers
1208 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1209 */
1210 static int
1211 zsparam(tp, t)
1212 register struct tty *tp;
1213 register struct termios *t;
1214 {
1215 int unit = minor(tp->t_dev);
1216 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1217 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1218 register int tmp, tmp5, cflag, s;
1219
1220 /*
1221 * Because PCLK is only run at 4.9 MHz, the fastest we
1222 * can go is 51200 baud (this corresponds to TC=1).
1223 * This is somewhat unfortunate as there is no real
1224 * reason we should not be able to handle higher rates.
1225 */
1226 tmp = t->c_ospeed;
1227 if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
1228 return (EINVAL);
1229 if (tmp == 0) {
1230 /* stty 0 => drop DTR and RTS */
1231 zs_modem(cs, 0);
1232 return (0);
1233 }
1234 tmp = BPS_TO_TCONST(PCLK / 16, tmp);
1235 if (tmp < 2)
1236 return (EINVAL);
1237
1238 cflag = t->c_cflag;
1239 tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
1240 tp->t_cflag = cflag;
1241
1242 /*
1243 * Block interrupts so that state will not
1244 * be altered until we are done setting it up.
1245 */
1246 s = splzs();
1247 cs->cs_preg[12] = tmp;
1248 cs->cs_preg[13] = tmp >> 8;
1249 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1250 switch (cflag & CSIZE) {
1251 case CS5:
1252 tmp = ZSWR3_RX_5;
1253 tmp5 = ZSWR5_TX_5;
1254 break;
1255 case CS6:
1256 tmp = ZSWR3_RX_6;
1257 tmp5 = ZSWR5_TX_6;
1258 break;
1259 case CS7:
1260 tmp = ZSWR3_RX_7;
1261 tmp5 = ZSWR5_TX_7;
1262 break;
1263 case CS8:
1264 default:
1265 tmp = ZSWR3_RX_8;
1266 tmp5 = ZSWR5_TX_8;
1267 break;
1268 }
1269
1270 /*
1271 * Output hardware flow control on the chip is horrendous: if
1272 * carrier detect drops, the receiver is disabled. Hence we
1273 * can only do this when the carrier is on.
1274 */
1275 if (cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1276 tmp |= ZSWR3_HFC | ZSWR3_RX_ENABLE;
1277 else
1278 tmp |= ZSWR3_RX_ENABLE;
1279 cs->cs_preg[3] = tmp;
1280 cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1281
1282 tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
1283 if ((cflag & PARODD) == 0)
1284 tmp |= ZSWR4_EVENP;
1285 if (cflag & PARENB)
1286 tmp |= ZSWR4_PARENB;
1287 cs->cs_preg[4] = tmp;
1288 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR;
1289 cs->cs_preg[10] = ZSWR10_NRZ;
1290 cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
1291 cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
1292 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1293
1294 /*
1295 * If nothing is being transmitted, set up new current values,
1296 * else mark them as pending.
1297 */
1298 if (cs->cs_heldchange == 0) {
1299 if (cs->cs_ttyp->t_state & TS_BUSY) {
1300 cs->cs_heldtbc = cs->cs_tbc;
1301 cs->cs_tbc = 0;
1302 cs->cs_heldchange = 1;
1303 } else {
1304 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1305 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1306 }
1307 }
1308 splx(s);
1309 return (0);
1310 }
1311
1312 /*
1313 * Raise or lower modem control (DTR/RTS) signals. If a character is
1314 * in transmission, the change is deferred.
1315 */
1316 static void
1317 zs_modem(cs, onoff)
1318 struct zs_chanstate *cs;
1319 int onoff;
1320 {
1321 int s, bis, and;
1322
1323 if (onoff) {
1324 bis = ZSWR5_DTR | ZSWR5_RTS;
1325 and = ~0;
1326 } else {
1327 bis = 0;
1328 and = ~(ZSWR5_DTR | ZSWR5_RTS);
1329 }
1330 s = splzs();
1331 cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
1332 if (cs->cs_heldchange == 0) {
1333 if (cs->cs_ttyp->t_state & TS_BUSY) {
1334 cs->cs_heldtbc = cs->cs_tbc;
1335 cs->cs_tbc = 0;
1336 cs->cs_heldchange = 1;
1337 } else {
1338 cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
1339 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1340 }
1341 }
1342 splx(s);
1343 }
1344
1345 /*
1346 * Write the given register set to the given zs channel in the proper order.
1347 * The channel must not be transmitting at the time. The receiver will
1348 * be disabled for the time it takes to write all the registers.
1349 */
1350 static void
1351 zs_loadchannelregs(zc, reg)
1352 volatile struct zschan *zc;
1353 u_char *reg;
1354 {
1355 int i;
1356
1357 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1358 ZS_DELAY();
1359 i = zc->zc_data; /* drain fifo */
1360 ZS_DELAY();
1361 i = zc->zc_data;
1362 ZS_DELAY();
1363 i = zc->zc_data;
1364 ZS_DELAY();
1365 ZS_WRITE(zc, 4, reg[4]);
1366 ZS_WRITE(zc, 10, reg[10]);
1367 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1368 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1369 ZS_WRITE(zc, 1, reg[1]);
1370 ZS_WRITE(zc, 9, reg[9]);
1371 ZS_WRITE(zc, 11, reg[11]);
1372 ZS_WRITE(zc, 12, reg[12]);
1373 ZS_WRITE(zc, 13, reg[13]);
1374 ZS_WRITE(zc, 14, reg[14]);
1375 ZS_WRITE(zc, 15, reg[15]);
1376 ZS_WRITE(zc, 3, reg[3]);
1377 ZS_WRITE(zc, 5, reg[5]);
1378 }
1379
1380 #ifdef KGDB
1381 /*
1382 * Get a character from the given kgdb channel. Called at splhigh().
1383 */
1384 static int
1385 zs_kgdb_getc(arg)
1386 void *arg;
1387 {
1388 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1389
1390 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
1391 ZS_DELAY();
1392 return (zc->zc_data);
1393 }
1394
1395 /*
1396 * Put a character to the given kgdb channel. Called at splhigh().
1397 */
1398 static void
1399 zs_kgdb_putc(arg, c)
1400 void *arg;
1401 int c;
1402 {
1403 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1404
1405 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
1406 ZS_DELAY();
1407 zc->zc_data = c;
1408 ZS_DELAY();
1409 }
1410
1411 /*
1412 * Set up for kgdb; called at boot time before configuration.
1413 * KGDB interrupts will be enabled later when zs0 is configured.
1414 */
1415 void
1416 zs_kgdb_init()
1417 {
1418 volatile struct zsdevice *addr;
1419 volatile struct zschan *zc;
1420 int unit, zs;
1421
1422 if (major(kgdb_dev) != ZSMAJOR)
1423 return;
1424 unit = minor(kgdb_dev);
1425 /*
1426 * Unit must be 0 or 1 (zs0).
1427 */
1428 if ((unsigned)unit >= ZS_KBD) {
1429 printf("zs_kgdb_init: bad minor dev %d\n", unit);
1430 return;
1431 }
1432 zs = unit >> 1;
1433 if ((addr = zsaddr[zs]) == NULL)
1434 addr = zsaddr[zs] = findzs(zs);
1435 unit &= 1;
1436 zc = unit == 0 ? &addr->zs_chan[CHAN_A] : &addr->zs_chan[CHAN_B];
1437 zs_kgdb_savedspeed = zs_getspeed(zc);
1438 printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
1439 zs, unit + 'a', kgdb_rate);
1440 zs_reset(zc, 1, kgdb_rate);
1441 kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
1442 }
1443 #endif /* KGDB */
1444