zs.c revision 1.19 1 /* $NetBSD: zs.c,v 1.19 1994/11/23 07:02:21 deraadt Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 *
44 * @(#)zs.c 8.1 (Berkeley) 7/19/93
45 */
46
47 /*
48 * Zilog Z8530 (ZSCC) driver.
49 *
50 * Runs two tty ports (ttya and ttyb) on zs0,
51 * and runs a keyboard and mouse on zs1.
52 *
53 * This driver knows far too much about chip to usage mappings.
54 */
55 #define NZS 2 /* XXX */
56
57 #include <sys/param.h>
58 #include <sys/proc.h>
59 #include <sys/device.h>
60 #include <sys/conf.h>
61 #include <sys/file.h>
62 #include <sys/ioctl.h>
63 #include <sys/tty.h>
64 #include <sys/time.h>
65 #include <sys/kernel.h>
66 #include <sys/syslog.h>
67
68 #include <machine/autoconf.h>
69 #include <machine/cpu.h>
70
71 #include <sparc/sparc/vaddrs.h>
72 #include <sparc/sparc/auxreg.h>
73
74 #include <machine/kbd.h>
75 #include <sparc/dev/zsreg.h>
76 #include <sparc/dev/zsvar.h>
77
78 #ifdef KGDB
79 #include <machine/remote-sl.h>
80 #endif
81
82 #define ZSMAJOR 12 /* XXX */
83
84 #define ZS_KBD 2 /* XXX */
85 #define ZS_MOUSE 3 /* XXX */
86
87 /* the magic number below was stolen from the Sprite source. */
88 #define PCLK (19660800/4) /* PCLK pin input clock rate */
89
90 /*
91 * Select software interrupt bit based on TTY ipl.
92 */
93 #if PIL_TTY == 1
94 # define IE_ZSSOFT IE_L1
95 #elif PIL_TTY == 4
96 # define IE_ZSSOFT IE_L4
97 #elif PIL_TTY == 6
98 # define IE_ZSSOFT IE_L6
99 #else
100 # error "no suitable software interrupt bit"
101 #endif
102
103 /*
104 * Software state per found chip. This would be called `zs_softc',
105 * but the previous driver had a rather different zs_softc....
106 */
107 struct zsinfo {
108 struct device zi_dev; /* base device */
109 volatile struct zsdevice *zi_zs;/* chip registers */
110 struct zs_chanstate zi_cs[2]; /* channel A and B software state */
111 };
112
113 struct tty *zs_tty[NZS * 2]; /* XXX should be dynamic */
114
115 /* Definition of the driver for autoconfig. */
116 static int zsmatch __P((struct device *, void *, void *));
117 static void zsattach __P((struct device *, struct device *, void *));
118 struct cfdriver zscd =
119 { NULL, "zs", zsmatch, zsattach, DV_TTY, sizeof(struct zsinfo) };
120
121 /* Interrupt handlers. */
122 static int zshard __P((void *));
123 static struct intrhand levelhard = { zshard };
124 static int zssoft __P((void *));
125 static struct intrhand levelsoft = { zssoft };
126
127 struct zs_chanstate *zslist;
128
129 /* Routines called from other code. */
130 static void zsiopen __P((struct tty *));
131 static void zsiclose __P((struct tty *));
132 static void zsstart __P((struct tty *));
133 void zsstop __P((struct tty *, int));
134 static int zsparam __P((struct tty *, struct termios *));
135
136 /* Routines purely local to this driver. */
137 static int zs_getspeed __P((volatile struct zschan *));
138 static void zs_reset __P((volatile struct zschan *, int, int));
139 static void zs_modem __P((struct zs_chanstate *, int));
140 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
141
142 /* Console stuff. */
143 static struct tty *zs_ctty; /* console `struct tty *' */
144 static int zs_consin = -1, zs_consout = -1;
145 static int zscnputc __P((int)); /* console putc function */
146 static volatile struct zschan *zs_conschan;
147 static struct tty *zs_checkcons __P((struct zsinfo *, int, struct zs_chanstate *));
148
149 #ifdef KGDB
150 /* KGDB stuff. Must reboot to change zs_kgdbunit. */
151 extern int kgdb_dev, kgdb_rate;
152 static int zs_kgdb_savedspeed;
153 static void zs_checkkgdb __P((int, struct zs_chanstate *, struct tty *));
154 #endif
155
156 extern volatile struct zsdevice *findzs(int);
157 static volatile struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */
158
159 /*
160 * Console keyboard L1-A processing is done in the hardware interrupt code,
161 * so we need to duplicate some of the console keyboard decode state. (We
162 * must not use the regular state as the hardware code keeps ahead of the
163 * software state: the software state tracks the most recent ring input but
164 * the hardware state tracks the most recent ZSCC input.) See also kbd.h.
165 */
166 static struct conk_state { /* console keyboard state */
167 char conk_id; /* true => ID coming up (console only) */
168 char conk_l1; /* true => L1 pressed (console only) */
169 } zsconk_state;
170
171 int zshardscope;
172 int zsshortcuts; /* number of "shortcut" software interrupts */
173
174 #ifdef SUN4
175 static u_char
176 zs_read(zc, reg)
177 volatile struct zschan *zc;
178 u_char reg;
179 {
180 u_char val;
181
182 zc->zc_csr = reg;
183 ZS_DELAY();
184 val = zc->zc_csr;
185 ZS_DELAY();
186 return val;
187 }
188
189 static u_char
190 zs_write(zc, reg, val)
191 volatile struct zschan *zc;
192 u_char reg, val;
193 {
194 zc->zc_csr = reg;
195 ZS_DELAY();
196 zc->zc_csr = val;
197 ZS_DELAY();
198 return val;
199 }
200 #endif /* SUN4 */
201
202 /*
203 * Match slave number to zs unit number, so that misconfiguration will
204 * not set up the keyboard as ttya, etc.
205 */
206 static int
207 zsmatch(parent, vcf, aux)
208 struct device *parent;
209 void *vcf, *aux;
210 {
211 struct cfdata *cf = vcf;
212 struct confargs *ca = aux;
213 struct romaux *ra = &ca->ca_ra;
214
215 if (strcmp(cf->cf_driver->cd_name, ra->ra_name))
216 return (0);
217 if (ca->ca_bustype==BUS_MAIN && cputyp!=CPU_SUN4)
218 return (getpropint(ra->ra_node, "slave", -2) == cf->cf_unit);
219 ra->ra_len = NBPG;
220 return (probeget(ra->ra_vaddr, 1) != -1);
221 }
222
223 /*
224 * Attach a found zs.
225 *
226 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
227 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
228 */
229 static void
230 zsattach(parent, dev, aux)
231 struct device *parent;
232 struct device *dev;
233 void *aux;
234 {
235 register int zs = dev->dv_unit, unit;
236 register struct zsinfo *zi;
237 register struct zs_chanstate *cs;
238 register volatile struct zsdevice *addr;
239 register struct tty *tp, *ctp;
240 register struct confargs *ca = aux;
241 register struct romaux *ra = &ca->ca_ra;
242 int pri, softcar;
243 static int didintr, prevpri;
244
245 if ((addr = zsaddr[zs]) == NULL)
246 addr = zsaddr[zs] = findzs(zs);
247 if (ca->ca_bustype==BUS_MAIN)
248 if ((void *)addr != ra->ra_vaddr)
249 panic("zsattach");
250 if (ra->ra_nintr != 1) {
251 printf(": expected 1 interrupt, got %d\n", ra->ra_nintr);
252 return;
253 }
254 pri = ra->ra_intr[0].int_pri;
255 printf(" pri %d, softpri %d\n", pri, PIL_TTY);
256 if (!didintr) {
257 didintr = 1;
258 prevpri = pri;
259 intr_establish(pri, &levelhard);
260 intr_establish(PIL_TTY, &levelsoft);
261 } else if (pri != prevpri)
262 panic("broken zs interrupt scheme");
263 zi = (struct zsinfo *)dev;
264 zi->zi_zs = addr;
265 unit = zs * 2;
266 cs = zi->zi_cs;
267
268 if(!zs_tty[unit])
269 zs_tty[unit] = ttymalloc();
270 tp = zs_tty[unit];
271 if(!zs_tty[unit+1])
272 zs_tty[unit+1] = ttymalloc();
273
274 if (unit == 0) {
275 /* Get software carrier flags from options node in OPENPROM. */
276 extern int optionsnode;
277
278 softcar = 0;
279 #ifdef notdef
280 if (*getpropstring(optionsnode, "ttya-ignore-cd") == 't')
281 softcar |= 1;
282 if (*getpropstring(optionsnode, "ttyb-ignore-cd") == 't')
283 softcar |= 2;
284 #endif
285 } else
286 softcar = dev->dv_cfdata->cf_flags;
287
288 /* link into interrupt list with order (A,B) (B=A+1) */
289 cs[0].cs_next = &cs[1];
290 cs[1].cs_next = zslist;
291 zslist = cs;
292
293 cs->cs_unit = unit;
294 cs->cs_speed = zs_getspeed(&addr->zs_chan[CHAN_A]);
295 cs->cs_softcar = softcar & 1;
296 cs->cs_zc = &addr->zs_chan[CHAN_A];
297 tp->t_dev = makedev(ZSMAJOR, unit);
298 tp->t_oproc = zsstart;
299 tp->t_param = zsparam;
300 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
301 tp = ctp;
302 cs->cs_ttyp = tp;
303 #ifdef KGDB
304 if (ctp == NULL)
305 zs_checkkgdb(unit, cs, tp);
306 #endif
307 if (unit == ZS_KBD) {
308 /*
309 * Keyboard: tell /dev/kbd driver how to talk to us.
310 */
311 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
312 tp->t_cflag = CS8;
313 kbd_serial(tp, zsiopen, zsiclose);
314 cs->cs_conk = 1; /* do L1-A processing */
315 }
316 unit++;
317 cs++;
318 tp = zs_tty[unit];
319 cs->cs_unit = unit;
320 cs->cs_speed = zs_getspeed(&addr->zs_chan[CHAN_B]);
321 cs->cs_softcar = softcar & 2;
322 cs->cs_zc = &addr->zs_chan[CHAN_B];
323 tp->t_dev = makedev(ZSMAJOR, unit);
324 tp->t_oproc = zsstart;
325 tp->t_param = zsparam;
326 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
327 tp = ctp;
328 cs->cs_ttyp = tp;
329 #ifdef KGDB
330 if (ctp == NULL)
331 zs_checkkgdb(unit, cs, tp);
332 #endif
333 if (unit == ZS_MOUSE) {
334 /*
335 * Mouse: tell /dev/mouse driver how to talk to us.
336 */
337 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
338 tp->t_cflag = CS8;
339 ms_serial(tp, zsiopen, zsiclose);
340 }
341 }
342
343 /*
344 * Put a channel in a known state. Interrupts may be left disabled
345 * or enabled, as desired.
346 */
347 static void
348 zs_reset(zc, inten, speed)
349 volatile struct zschan *zc;
350 int inten, speed;
351 {
352 int tconst;
353 static u_char reg[16] = {
354 0,
355 0,
356 0,
357 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
358 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
359 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
360 0,
361 0,
362 0,
363 0,
364 ZSWR10_NRZ,
365 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
366 0,
367 0,
368 ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
369 ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
370 };
371
372 reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
373 tconst = BPS_TO_TCONST(PCLK / 16, speed);
374 reg[12] = tconst;
375 reg[13] = tconst >> 8;
376 zs_loadchannelregs(zc, reg);
377 }
378
379 /*
380 * Declare the given tty (which is in fact &cons) as a console input
381 * or output. This happens before the zs chip is attached; the hookup
382 * is finished later, in zs_setcons() below.
383 *
384 * This is used only for ports a and b. The console keyboard is decoded
385 * independently (we always send unit-2 input to /dev/kbd, which will
386 * direct it to /dev/console if appropriate).
387 */
388 void
389 zsconsole(tp, unit, out, fnstop)
390 register struct tty *tp;
391 register int unit;
392 int out;
393 void (**fnstop) __P((struct tty *, int));
394 {
395 extern int (*v_putc)();
396 int zs;
397 volatile struct zsdevice *addr;
398
399 if (unit >= ZS_KBD)
400 panic("zsconsole");
401 if (out) {
402 zs_consout = unit;
403 zs = unit >> 1;
404 if ((addr = zsaddr[zs]) == NULL)
405 addr = zsaddr[zs] = findzs(zs);
406 zs_conschan = (unit & 1) == 0 ? &addr->zs_chan[CHAN_A] :
407 &addr->zs_chan[CHAN_B];
408 v_putc = zscnputc;
409 } else
410 zs_consin = unit;
411 if(fnstop)
412 *fnstop = &zsstop;
413 zs_ctty = tp;
414 }
415
416 /*
417 * Polled console output putchar.
418 */
419 static int
420 zscnputc(c)
421 int c;
422 {
423 register volatile struct zschan *zc = zs_conschan;
424 register int s;
425
426 if (c == '\n')
427 zscnputc('\r');
428 /*
429 * Must block output interrupts (i.e., raise to >= splzs) without
430 * lowering current ipl. Need a better way.
431 */
432 s = splhigh();
433 #ifdef SUN4C /* XXX */
434 if (cputyp==CPU_SUN4C && s <= (12 << 8))
435 (void) splzs();
436 #endif
437 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
438 ZS_DELAY();
439 zc->zc_data = c;
440 ZS_DELAY();
441 splx(s);
442 }
443
444 /*
445 * Set up the given unit as console input, output, both, or neither, as
446 * needed. Return console tty if it is to receive console input.
447 */
448 static struct tty *
449 zs_checkcons(zi, unit, cs)
450 struct zsinfo *zi;
451 int unit;
452 struct zs_chanstate *cs;
453 {
454 register struct tty *tp;
455 char *i, *o;
456
457 if ((tp = zs_ctty) == NULL)
458 return (0);
459 i = zs_consin == unit ? "input" : NULL;
460 o = zs_consout == unit ? "output" : NULL;
461 if (i == NULL && o == NULL)
462 return (0);
463
464 /* rewire the minor device (gack) */
465 tp->t_dev = makedev(major(tp->t_dev), unit);
466
467 /*
468 * Rewire input and/or output. Note that baud rate reflects
469 * input settings, not output settings, but we can do no better
470 * if the console is split across two ports.
471 *
472 * XXX split consoles don't work anyway -- this needs to be
473 * thrown away and redone
474 */
475 if (i) {
476 tp->t_param = zsparam;
477 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
478 tp->t_cflag = CS8;
479 ttsetwater(tp);
480 }
481 if (o) {
482 tp->t_oproc = zsstart;
483 }
484 printf("%s%c: console %s\n",
485 zi->zi_dev.dv_xname, (unit & 1) + 'a', i ? (o ? "i/o" : i) : o);
486 cs->cs_consio = 1;
487 cs->cs_brkabort = 1;
488 return (tp);
489 }
490
491 #ifdef KGDB
492 /*
493 * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
494 * Pick up the current speed and character size and restore the original
495 * speed.
496 */
497 static void
498 zs_checkkgdb(unit, cs, tp)
499 int unit;
500 struct zs_chanstate *cs;
501 struct tty *tp;
502 {
503
504 if (kgdb_dev == makedev(ZSMAJOR, unit)) {
505 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
506 tp->t_cflag = CS8;
507 cs->cs_kgdb = 1;
508 cs->cs_speed = zs_kgdb_savedspeed;
509 (void) zsparam(tp, &tp->t_termios);
510 }
511 }
512 #endif
513
514 /*
515 * Compute the current baud rate given a ZSCC channel.
516 */
517 static int
518 zs_getspeed(zc)
519 register volatile struct zschan *zc;
520 {
521 register int tconst;
522
523 tconst = ZS_READ(zc, 12);
524 tconst |= ZS_READ(zc, 13) << 8;
525 return (TCONST_TO_BPS(PCLK / 16, tconst));
526 }
527
528
529 /*
530 * Do an internal open.
531 */
532 static void
533 zsiopen(tp)
534 struct tty *tp;
535 {
536
537 (void) zsparam(tp, &tp->t_termios);
538 ttsetwater(tp);
539 tp->t_state = TS_ISOPEN | TS_CARR_ON;
540 }
541
542 /*
543 * Do an internal close. Eventually we should shut off the chip when both
544 * ports on it are closed.
545 */
546 static void
547 zsiclose(tp)
548 struct tty *tp;
549 {
550
551 ttylclose(tp, 0); /* ??? */
552 ttyclose(tp); /* ??? */
553 tp->t_state = 0;
554 }
555
556
557 /*
558 * Open a zs serial port. This interface may not be used to open
559 * the keyboard and mouse ports. (XXX)
560 */
561 int
562 zsopen(dev, flags, mode, p)
563 dev_t dev;
564 int flags;
565 int mode;
566 struct proc *p;
567 {
568 register struct tty *tp;
569 register struct zs_chanstate *cs;
570 struct zsinfo *zi;
571 int unit = minor(dev), zs = unit >> 1, error, s;
572
573 if (zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL ||
574 unit == ZS_KBD || unit == ZS_MOUSE)
575 return (ENXIO);
576 cs = &zi->zi_cs[unit & 1];
577 if (cs->cs_consio)
578 return (ENXIO); /* ??? */
579 tp = cs->cs_ttyp;
580 s = spltty();
581 if ((tp->t_state & TS_ISOPEN) == 0) {
582 ttychars(tp);
583 if (tp->t_ispeed == 0) {
584 tp->t_iflag = TTYDEF_IFLAG;
585 tp->t_oflag = TTYDEF_OFLAG;
586 tp->t_cflag = TTYDEF_CFLAG;
587 tp->t_lflag = TTYDEF_LFLAG;
588 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
589 }
590 (void) zsparam(tp, &tp->t_termios);
591 ttsetwater(tp);
592 } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
593 splx(s);
594 return (EBUSY);
595 }
596 error = 0;
597 for (;;) {
598 /* loop, turning on the device, until carrier present */
599 zs_modem(cs, 1);
600 if (cs->cs_softcar)
601 tp->t_state |= TS_CARR_ON;
602 if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
603 tp->t_state & TS_CARR_ON)
604 break;
605 tp->t_state |= TS_WOPEN;
606 if (error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
607 ttopen, 0)) {
608 if (!(tp->t_state & TS_ISOPEN)) {
609 zs_modem(cs, 0);
610 tp->t_state &= ~TS_WOPEN;
611 ttwakeup(tp);
612 }
613 splx(s);
614 return error;
615 }
616 }
617 splx(s);
618 if (error == 0)
619 error = linesw[tp->t_line].l_open(dev, tp);
620 if (error)
621 zs_modem(cs, 0);
622 return (error);
623 }
624
625 /*
626 * Close a zs serial port.
627 */
628 int
629 zsclose(dev, flags, mode, p)
630 dev_t dev;
631 int flags;
632 int mode;
633 struct proc *p;
634 {
635 register struct zs_chanstate *cs;
636 register struct tty *tp;
637 struct zsinfo *zi;
638 int unit = minor(dev), s;
639
640 zi = zscd.cd_devs[unit >> 1];
641 cs = &zi->zi_cs[unit & 1];
642 tp = cs->cs_ttyp;
643 linesw[tp->t_line].l_close(tp, flags);
644 if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
645 (tp->t_state & TS_ISOPEN) == 0) {
646 zs_modem(cs, 0);
647 /* hold low for 1 second */
648 (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
649 }
650 if (cs->cs_creg[5] & ZSWR5_BREAK)
651 {
652 s = splzs();
653 cs->cs_preg[5] &= ~ZSWR5_BREAK;
654 cs->cs_creg[5] &= ~ZSWR5_BREAK;
655 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
656 splx(s);
657 }
658 ttyclose(tp);
659 #ifdef KGDB
660 /* Reset the speed if we're doing kgdb on this port */
661 if (cs->cs_kgdb) {
662 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
663 (void) zsparam(tp, &tp->t_termios);
664 }
665 #endif
666 return (0);
667 }
668
669 /*
670 * Read/write zs serial port.
671 */
672 int
673 zsread(dev, uio, flags)
674 dev_t dev;
675 struct uio *uio;
676 int flags;
677 {
678 register struct tty *tp = zs_tty[minor(dev)];
679
680 return (linesw[tp->t_line].l_read(tp, uio, flags));
681 }
682
683 int
684 zswrite(dev, uio, flags)
685 dev_t dev;
686 struct uio *uio;
687 int flags;
688 {
689 register struct tty *tp = zs_tty[minor(dev)];
690
691 return (linesw[tp->t_line].l_write(tp, uio, flags));
692 }
693
694 /*
695 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
696 * channels are kept in (A,B) pairs.
697 *
698 * Do just a little, then get out; set a software interrupt if more
699 * work is needed.
700 *
701 * We deliberately ignore the vectoring Zilog gives us, and match up
702 * only the number of `reset interrupt under service' operations, not
703 * the order.
704 */
705 /* ARGSUSED */
706 int
707 zshard(intrarg)
708 void *intrarg;
709 {
710 register struct zs_chanstate *a;
711 #define b (a + 1)
712 register volatile struct zschan *zc;
713 register int rr3, intflags = 0, v, i;
714 static int zsrint(struct zs_chanstate *, volatile struct zschan *);
715 static int zsxint(struct zs_chanstate *, volatile struct zschan *);
716 static int zssint(struct zs_chanstate *, volatile struct zschan *);
717
718 for (a = zslist; a != NULL; a = b->cs_next) {
719 rr3 = ZS_READ(a->cs_zc, 3);
720 if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
721 intflags |= 2;
722 zc = a->cs_zc;
723 i = a->cs_rbput;
724 if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
725 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
726 intflags |= 1;
727 }
728 if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
729 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
730 intflags |= 1;
731 }
732 if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
733 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
734 intflags |= 1;
735 }
736 a->cs_rbput = i;
737 }
738 if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
739 intflags |= 2;
740 zc = b->cs_zc;
741 i = b->cs_rbput;
742 if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
743 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
744 intflags |= 1;
745 }
746 if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
747 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
748 intflags |= 1;
749 }
750 if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
751 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
752 intflags |= 1;
753 }
754 b->cs_rbput = i;
755 }
756 }
757 #undef b
758
759 if (intflags & 1) {
760 #if defined(SUN4C) || defined(SUN4M)
761 if (cputyp==CPU_SUN4M || cputyp==CPU_SUN4C) {
762 /* XXX -- but this will go away when zshard moves to locore.s */
763 struct clockframe *p = intrarg;
764
765 if ((p->psr & PSR_PIL) < (PIL_TTY << 8)) {
766 zsshortcuts++;
767 (void) spltty();
768 if (zshardscope) {
769 LED_ON;
770 LED_OFF;
771 }
772 return (zssoft(intrarg));
773 }
774 }
775 #endif
776 ienab_bis(IE_ZSSOFT);
777 }
778 return (intflags & 2);
779 }
780
781 static int
782 zsrint(cs, zc)
783 register struct zs_chanstate *cs;
784 register volatile struct zschan *zc;
785 {
786 register int c = zc->zc_data;
787
788 if (cs->cs_conk) {
789 register struct conk_state *conk = &zsconk_state;
790
791 /*
792 * Check here for console abort function, so that we
793 * can abort even when interrupts are locking up the
794 * machine.
795 */
796 if (c == KBD_RESET) {
797 conk->conk_id = 1; /* ignore next byte */
798 conk->conk_l1 = 0;
799 } else if (conk->conk_id)
800 conk->conk_id = 0; /* stop ignoring bytes */
801 else if (c == KBD_L1)
802 conk->conk_l1 = 1; /* L1 went down */
803 else if (c == (KBD_L1|KBD_UP))
804 conk->conk_l1 = 0; /* L1 went up */
805 else if (c == KBD_A && conk->conk_l1) {
806 zsabort();
807 conk->conk_l1 = 0; /* we never see the up */
808 goto clearit; /* eat the A after L1-A */
809 }
810 }
811 #ifdef KGDB
812 if (c == FRAME_START && cs->cs_kgdb &&
813 (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
814 zskgdb(cs->cs_unit);
815 goto clearit;
816 }
817 #endif
818 /* compose receive character and status */
819 c <<= 8;
820 c |= ZS_READ(zc, 1);
821
822 /* clear receive error & interrupt condition */
823 zc->zc_csr = ZSWR0_RESET_ERRORS;
824 ZS_DELAY();
825 zc->zc_csr = ZSWR0_CLR_INTR;
826 ZS_DELAY();
827
828 return (ZRING_MAKE(ZRING_RINT, c));
829
830 clearit:
831 zc->zc_csr = ZSWR0_RESET_ERRORS;
832 ZS_DELAY();
833 zc->zc_csr = ZSWR0_CLR_INTR;
834 ZS_DELAY();
835 return (0);
836 }
837
838 static int
839 zsxint(cs, zc)
840 register struct zs_chanstate *cs;
841 register volatile struct zschan *zc;
842 {
843 register int i = cs->cs_tbc;
844
845 if (i == 0) {
846 zc->zc_csr = ZSWR0_RESET_TXINT;
847 ZS_DELAY();
848 zc->zc_csr = ZSWR0_CLR_INTR;
849 ZS_DELAY();
850 return (ZRING_MAKE(ZRING_XINT, 0));
851 }
852 cs->cs_tbc = i - 1;
853 zc->zc_data = *cs->cs_tba++;
854 ZS_DELAY();
855 zc->zc_csr = ZSWR0_CLR_INTR;
856 ZS_DELAY();
857 return (0);
858 }
859
860 static int
861 zssint(cs, zc)
862 register struct zs_chanstate *cs;
863 register volatile struct zschan *zc;
864 {
865 register int rr0;
866
867 rr0 = zc->zc_csr;
868 zc->zc_csr = ZSWR0_RESET_STATUS;
869 ZS_DELAY();
870 zc->zc_csr = ZSWR0_CLR_INTR;
871 ZS_DELAY();
872 /*
873 * The chip's hardware flow control is, as noted in zsreg.h,
874 * busted---if the DCD line goes low the chip shuts off the
875 * receiver (!). If we want hardware CTS flow control but do
876 * not have it, and carrier is now on, turn HFC on; if we have
877 * HFC now but carrier has gone low, turn it off.
878 */
879 if (rr0 & ZSRR0_DCD) {
880 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
881 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
882 cs->cs_creg[3] |= ZSWR3_HFC;
883 ZS_WRITE(zc, 3, cs->cs_creg[3]);
884 }
885 } else {
886 if (cs->cs_creg[3] & ZSWR3_HFC) {
887 cs->cs_creg[3] &= ~ZSWR3_HFC;
888 ZS_WRITE(zc, 3, cs->cs_creg[3]);
889 }
890 }
891 if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
892 #ifdef SUN4
893 /*
894 * XXX This might not be necessary. Test and
895 * delete if it isn't.
896 */
897 if (cputyp==CPU_SUN4) {
898 while (zc->zc_csr & ZSRR0_BREAK)
899 ZS_DELAY();
900 }
901 #endif
902 zsabort();
903 return (0);
904 }
905 return (ZRING_MAKE(ZRING_SINT, rr0));
906 }
907
908 zsabort()
909 {
910
911 #ifdef DDB
912 Debugger();
913 #else
914 printf("stopping on keyboard abort\n");
915 callrom();
916 #endif
917 }
918
919 #ifdef KGDB
920 /*
921 * KGDB framing character received: enter kernel debugger. This probably
922 * should time out after a few seconds to avoid hanging on spurious input.
923 */
924 zskgdb(unit)
925 int unit;
926 {
927
928 printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
929 kgdb_connect(1);
930 }
931 #endif
932
933 /*
934 * Print out a ring or fifo overrun error message.
935 */
936 static void
937 zsoverrun(unit, ptime, what)
938 int unit;
939 long *ptime;
940 char *what;
941 {
942
943 if (*ptime != time.tv_sec) {
944 *ptime = time.tv_sec;
945 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
946 (unit & 1) + 'a', what);
947 }
948 }
949
950 /*
951 * ZS software interrupt. Scan all channels for deferred interrupts.
952 */
953 int
954 zssoft(arg)
955 void *arg;
956 {
957 register struct zs_chanstate *cs;
958 register volatile struct zschan *zc;
959 register struct linesw *line;
960 register struct tty *tp;
961 register int get, n, c, cc, unit, s;
962 int retval = 0;
963
964 for (cs = zslist; cs != NULL; cs = cs->cs_next) {
965 get = cs->cs_rbget;
966 again:
967 n = cs->cs_rbput; /* atomic */
968 if (get == n) /* nothing more on this line */
969 continue;
970 retval = 1;
971 unit = cs->cs_unit; /* set up to handle interrupts */
972 zc = cs->cs_zc;
973 tp = cs->cs_ttyp;
974 line = &linesw[tp->t_line];
975 /*
976 * Compute the number of interrupts in the receive ring.
977 * If the count is overlarge, we lost some events, and
978 * must advance to the first valid one. It may get
979 * overwritten if more data are arriving, but this is
980 * too expensive to check and gains nothing (we already
981 * lost out; all we can do at this point is trade one
982 * kind of loss for another).
983 */
984 n -= get;
985 if (n > ZLRB_RING_SIZE) {
986 zsoverrun(unit, &cs->cs_rotime, "ring");
987 get += n - ZLRB_RING_SIZE;
988 n = ZLRB_RING_SIZE;
989 }
990 while (--n >= 0) {
991 /* race to keep ahead of incoming interrupts */
992 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
993 switch (ZRING_TYPE(c)) {
994
995 case ZRING_RINT:
996 c = ZRING_VALUE(c);
997 if (c & ZSRR1_DO)
998 zsoverrun(unit, &cs->cs_fotime, "fifo");
999 cc = c >> 8;
1000 if (c & ZSRR1_FE)
1001 cc |= TTY_FE;
1002 if (c & ZSRR1_PE)
1003 cc |= TTY_PE;
1004 /*
1005 * this should be done through
1006 * bstreams XXX gag choke
1007 */
1008 if (unit == ZS_KBD)
1009 kbd_rint(cc);
1010 else if (unit == ZS_MOUSE)
1011 ms_rint(cc);
1012 else
1013 line->l_rint(cc, tp);
1014 break;
1015
1016 case ZRING_XINT:
1017 /*
1018 * Transmit done: change registers and resume,
1019 * or clear BUSY.
1020 */
1021 if (cs->cs_heldchange) {
1022 s = splzs();
1023 c = zc->zc_csr;
1024 ZS_DELAY();
1025 if ((c & ZSRR0_DCD) == 0)
1026 cs->cs_preg[3] &= ~ZSWR3_HFC;
1027 bcopy((caddr_t)cs->cs_preg,
1028 (caddr_t)cs->cs_creg, 16);
1029 zs_loadchannelregs(zc, cs->cs_creg);
1030 splx(s);
1031 cs->cs_heldchange = 0;
1032 if (cs->cs_heldtbc &&
1033 (tp->t_state & TS_TTSTOP) == 0) {
1034 cs->cs_tbc = cs->cs_heldtbc - 1;
1035 zc->zc_data = *cs->cs_tba++;
1036 ZS_DELAY();
1037 goto again;
1038 }
1039 }
1040 tp->t_state &= ~TS_BUSY;
1041 if (tp->t_state & TS_FLUSH)
1042 tp->t_state &= ~TS_FLUSH;
1043 else
1044 ndflush(&tp->t_outq,
1045 cs->cs_tba - (caddr_t)tp->t_outq.c_cf);
1046 line->l_start(tp);
1047 break;
1048
1049 case ZRING_SINT:
1050 /*
1051 * Status line change. HFC bit is run in
1052 * hardware interrupt, to avoid locking
1053 * at splzs here.
1054 */
1055 c = ZRING_VALUE(c);
1056 if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
1057 cc = (c & ZSRR0_DCD) != 0;
1058 if (line->l_modem(tp, cc) == 0)
1059 zs_modem(cs, cc);
1060 }
1061 cs->cs_rr0 = c;
1062 break;
1063
1064 default:
1065 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
1066 unit >> 1, (unit & 1) + 'a', c);
1067 break;
1068 }
1069 }
1070 cs->cs_rbget = get;
1071 goto again;
1072 }
1073 return (retval);
1074 }
1075
1076 int
1077 zsioctl(dev, cmd, data, flag, p)
1078 dev_t dev;
1079 u_long cmd;
1080 caddr_t data;
1081 int flag;
1082 struct proc *p;
1083 {
1084 int unit = minor(dev);
1085 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1086 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
1087 register int error, s;
1088 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1089
1090 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
1091 if (error >= 0)
1092 return (error);
1093 error = ttioctl(tp, cmd, data, flag, p);
1094 if (error >= 0)
1095 return (error);
1096
1097 switch (cmd) {
1098 case TIOCSBRK:
1099 s = splzs();
1100 cs->cs_preg[5] |= ZSWR5_BREAK;
1101 cs->cs_creg[5] |= ZSWR5_BREAK;
1102 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1103 splx(s);
1104 break;
1105 case TIOCCBRK:
1106 s = splzs();
1107 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1108 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1109 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1110 splx(s);
1111 break;
1112 case TIOCSDTR:
1113 case TIOCCDTR:
1114 case TIOCMSET:
1115 case TIOCMBIS:
1116 case TIOCMBIC:
1117 case TIOCMGET:
1118 default:
1119 return (ENOTTY);
1120 }
1121 return (0);
1122 }
1123
1124 /*
1125 * Start or restart transmission.
1126 */
1127 static void
1128 zsstart(tp)
1129 register struct tty *tp;
1130 {
1131 register struct zs_chanstate *cs;
1132 register int s, nch;
1133 int unit = minor(tp->t_dev);
1134 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1135
1136 cs = &zi->zi_cs[unit & 1];
1137 s = spltty();
1138
1139 /*
1140 * If currently active or delaying, no need to do anything.
1141 */
1142 if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1143 goto out;
1144
1145 /*
1146 * If there are sleepers, and output has drained below low
1147 * water mark, awaken.
1148 */
1149 if (tp->t_outq.c_cc <= tp->t_lowat) {
1150 if (tp->t_state & TS_ASLEEP) {
1151 tp->t_state &= ~TS_ASLEEP;
1152 wakeup((caddr_t)&tp->t_outq);
1153 }
1154 selwakeup(&tp->t_wsel);
1155 }
1156
1157 nch = ndqb(&tp->t_outq, 0); /* XXX */
1158 if (nch) {
1159 register char *p = tp->t_outq.c_cf;
1160
1161 /* mark busy, enable tx done interrupts, & send first byte */
1162 tp->t_state |= TS_BUSY;
1163 (void) splzs();
1164 cs->cs_preg[1] |= ZSWR1_TIE;
1165 cs->cs_creg[1] |= ZSWR1_TIE;
1166 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1167 cs->cs_zc->zc_data = *p;
1168 ZS_DELAY();
1169 cs->cs_tba = p + 1;
1170 cs->cs_tbc = nch - 1;
1171 } else {
1172 /*
1173 * Nothing to send, turn off transmit done interrupts.
1174 * This is useful if something is doing polled output.
1175 */
1176 (void) splzs();
1177 cs->cs_preg[1] &= ~ZSWR1_TIE;
1178 cs->cs_creg[1] &= ~ZSWR1_TIE;
1179 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1180 }
1181 out:
1182 splx(s);
1183 }
1184
1185 /*
1186 * Stop output, e.g., for ^S or output flush.
1187 */
1188 void
1189 zsstop(tp, flag)
1190 register struct tty *tp;
1191 int flag;
1192 {
1193 register struct zs_chanstate *cs;
1194 register int s, unit = minor(tp->t_dev);
1195 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1196
1197 cs = &zi->zi_cs[unit & 1];
1198 s = splzs();
1199 if (tp->t_state & TS_BUSY) {
1200 /*
1201 * Device is transmitting; must stop it.
1202 */
1203 cs->cs_tbc = 0;
1204 if ((tp->t_state & TS_TTSTOP) == 0)
1205 tp->t_state |= TS_FLUSH;
1206 }
1207 splx(s);
1208 }
1209
1210 /*
1211 * Set ZS tty parameters from termios.
1212 *
1213 * This routine makes use of the fact that only registers
1214 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1215 */
1216 static int
1217 zsparam(tp, t)
1218 register struct tty *tp;
1219 register struct termios *t;
1220 {
1221 int unit = minor(tp->t_dev);
1222 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1223 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1224 register int tmp, tmp5, cflag, s;
1225
1226 /*
1227 * Because PCLK is only run at 4.9 MHz, the fastest we
1228 * can go is 51200 baud (this corresponds to TC=1).
1229 * This is somewhat unfortunate as there is no real
1230 * reason we should not be able to handle higher rates.
1231 */
1232 tmp = t->c_ospeed;
1233 if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
1234 return (EINVAL);
1235 if (tmp == 0) {
1236 /* stty 0 => drop DTR and RTS */
1237 zs_modem(cs, 0);
1238 return (0);
1239 }
1240 tmp = BPS_TO_TCONST(PCLK / 16, tmp);
1241 if (tmp < 2)
1242 return (EINVAL);
1243
1244 cflag = t->c_cflag;
1245 tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
1246 tp->t_cflag = cflag;
1247
1248 /*
1249 * Block interrupts so that state will not
1250 * be altered until we are done setting it up.
1251 */
1252 s = splzs();
1253 cs->cs_preg[12] = tmp;
1254 cs->cs_preg[13] = tmp >> 8;
1255 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1256 switch (cflag & CSIZE) {
1257 case CS5:
1258 tmp = ZSWR3_RX_5;
1259 tmp5 = ZSWR5_TX_5;
1260 break;
1261 case CS6:
1262 tmp = ZSWR3_RX_6;
1263 tmp5 = ZSWR5_TX_6;
1264 break;
1265 case CS7:
1266 tmp = ZSWR3_RX_7;
1267 tmp5 = ZSWR5_TX_7;
1268 break;
1269 case CS8:
1270 default:
1271 tmp = ZSWR3_RX_8;
1272 tmp5 = ZSWR5_TX_8;
1273 break;
1274 }
1275
1276 /*
1277 * Output hardware flow control on the chip is horrendous: if
1278 * carrier detect drops, the receiver is disabled. Hence we
1279 * can only do this when the carrier is on.
1280 */
1281 if (cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1282 tmp |= ZSWR3_HFC | ZSWR3_RX_ENABLE;
1283 else
1284 tmp |= ZSWR3_RX_ENABLE;
1285 cs->cs_preg[3] = tmp;
1286 cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1287
1288 tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
1289 if ((cflag & PARODD) == 0)
1290 tmp |= ZSWR4_EVENP;
1291 if (cflag & PARENB)
1292 tmp |= ZSWR4_PARENB;
1293 cs->cs_preg[4] = tmp;
1294 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR;
1295 cs->cs_preg[10] = ZSWR10_NRZ;
1296 cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
1297 cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
1298 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1299
1300 /*
1301 * If nothing is being transmitted, set up new current values,
1302 * else mark them as pending.
1303 */
1304 if (cs->cs_heldchange == 0) {
1305 if (cs->cs_ttyp->t_state & TS_BUSY) {
1306 cs->cs_heldtbc = cs->cs_tbc;
1307 cs->cs_tbc = 0;
1308 cs->cs_heldchange = 1;
1309 } else {
1310 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1311 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1312 }
1313 }
1314 splx(s);
1315 return (0);
1316 }
1317
1318 /*
1319 * Raise or lower modem control (DTR/RTS) signals. If a character is
1320 * in transmission, the change is deferred.
1321 */
1322 static void
1323 zs_modem(cs, onoff)
1324 struct zs_chanstate *cs;
1325 int onoff;
1326 {
1327 int s, bis, and;
1328
1329 if (onoff) {
1330 bis = ZSWR5_DTR | ZSWR5_RTS;
1331 and = ~0;
1332 } else {
1333 bis = 0;
1334 and = ~(ZSWR5_DTR | ZSWR5_RTS);
1335 }
1336 s = splzs();
1337 cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
1338 if (cs->cs_heldchange == 0) {
1339 if (cs->cs_ttyp->t_state & TS_BUSY) {
1340 cs->cs_heldtbc = cs->cs_tbc;
1341 cs->cs_tbc = 0;
1342 cs->cs_heldchange = 1;
1343 } else {
1344 cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
1345 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1346 }
1347 }
1348 splx(s);
1349 }
1350
1351 /*
1352 * Write the given register set to the given zs channel in the proper order.
1353 * The channel must not be transmitting at the time. The receiver will
1354 * be disabled for the time it takes to write all the registers.
1355 */
1356 static void
1357 zs_loadchannelregs(zc, reg)
1358 volatile struct zschan *zc;
1359 u_char *reg;
1360 {
1361 int i;
1362
1363 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1364 ZS_DELAY();
1365 i = zc->zc_data; /* drain fifo */
1366 ZS_DELAY();
1367 i = zc->zc_data;
1368 ZS_DELAY();
1369 i = zc->zc_data;
1370 ZS_DELAY();
1371 ZS_WRITE(zc, 4, reg[4]);
1372 ZS_WRITE(zc, 10, reg[10]);
1373 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1374 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1375 ZS_WRITE(zc, 1, reg[1]);
1376 ZS_WRITE(zc, 9, reg[9]);
1377 ZS_WRITE(zc, 11, reg[11]);
1378 ZS_WRITE(zc, 12, reg[12]);
1379 ZS_WRITE(zc, 13, reg[13]);
1380 ZS_WRITE(zc, 14, reg[14]);
1381 ZS_WRITE(zc, 15, reg[15]);
1382 ZS_WRITE(zc, 3, reg[3]);
1383 ZS_WRITE(zc, 5, reg[5]);
1384 }
1385
1386 #ifdef KGDB
1387 /*
1388 * Get a character from the given kgdb channel. Called at splhigh().
1389 */
1390 static int
1391 zs_kgdb_getc(arg)
1392 void *arg;
1393 {
1394 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1395
1396 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
1397 ZS_DELAY();
1398 return (zc->zc_data);
1399 }
1400
1401 /*
1402 * Put a character to the given kgdb channel. Called at splhigh().
1403 */
1404 static void
1405 zs_kgdb_putc(arg, c)
1406 void *arg;
1407 int c;
1408 {
1409 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1410
1411 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
1412 ZS_DELAY();
1413 zc->zc_data = c;
1414 ZS_DELAY();
1415 }
1416
1417 /*
1418 * Set up for kgdb; called at boot time before configuration.
1419 * KGDB interrupts will be enabled later when zs0 is configured.
1420 */
1421 void
1422 zs_kgdb_init()
1423 {
1424 volatile struct zsdevice *addr;
1425 volatile struct zschan *zc;
1426 int unit, zs;
1427
1428 if (major(kgdb_dev) != ZSMAJOR)
1429 return;
1430 unit = minor(kgdb_dev);
1431 /*
1432 * Unit must be 0 or 1 (zs0).
1433 */
1434 if ((unsigned)unit >= ZS_KBD) {
1435 printf("zs_kgdb_init: bad minor dev %d\n", unit);
1436 return;
1437 }
1438 zs = unit >> 1;
1439 if ((addr = zsaddr[zs]) == NULL)
1440 addr = zsaddr[zs] = findzs(zs);
1441 unit &= 1;
1442 zc = unit == 0 ? &addr->zs_chan[CHAN_A] : &addr->zs_chan[CHAN_B];
1443 zs_kgdb_savedspeed = zs_getspeed(zc);
1444 printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
1445 zs, unit + 'a', kgdb_rate);
1446 zs_reset(zc, 1, kgdb_rate);
1447 kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
1448 }
1449 #endif /* KGDB */
1450