zs.c revision 1.20 1 /* $NetBSD: zs.c,v 1.20 1994/11/26 07:36:52 deraadt Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 *
44 * @(#)zs.c 8.1 (Berkeley) 7/19/93
45 */
46
47 /*
48 * Zilog Z8530 (ZSCC) driver.
49 *
50 * Runs two tty ports (ttya and ttyb) on zs0,
51 * and runs a keyboard and mouse on zs1.
52 *
53 * This driver knows far too much about chip to usage mappings.
54 */
55 #define NZS 2 /* XXX */
56
57 #include <sys/param.h>
58 #include <sys/proc.h>
59 #include <sys/device.h>
60 #include <sys/conf.h>
61 #include <sys/file.h>
62 #include <sys/ioctl.h>
63 #include <sys/tty.h>
64 #include <sys/time.h>
65 #include <sys/kernel.h>
66 #include <sys/syslog.h>
67
68 #include <machine/autoconf.h>
69 #include <machine/cpu.h>
70
71 #include <sparc/sparc/vaddrs.h>
72 #include <sparc/sparc/auxreg.h>
73
74 #include <machine/kbd.h>
75 #include <sparc/dev/zsreg.h>
76 #include <sparc/dev/zsvar.h>
77
78 #ifdef KGDB
79 #include <machine/remote-sl.h>
80 #endif
81
82 #define ZSMAJOR 12 /* XXX */
83
84 #define ZS_KBD 2 /* XXX */
85 #define ZS_MOUSE 3 /* XXX */
86
87 /* the magic number below was stolen from the Sprite source. */
88 #define PCLK (19660800/4) /* PCLK pin input clock rate */
89
90 /*
91 * Select software interrupt bit based on TTY ipl.
92 */
93 #if PIL_TTY == 1
94 # define IE_ZSSOFT IE_L1
95 #elif PIL_TTY == 4
96 # define IE_ZSSOFT IE_L4
97 #elif PIL_TTY == 6
98 # define IE_ZSSOFT IE_L6
99 #else
100 # error "no suitable software interrupt bit"
101 #endif
102
103 /*
104 * Software state per found chip. This would be called `zs_softc',
105 * but the previous driver had a rather different zs_softc....
106 */
107 struct zsinfo {
108 struct device zi_dev; /* base device */
109 volatile struct zsdevice *zi_zs;/* chip registers */
110 struct zs_chanstate zi_cs[2]; /* channel A and B software state */
111 };
112
113 struct tty *zs_tty[NZS * 2]; /* XXX should be dynamic */
114
115 /* Definition of the driver for autoconfig. */
116 static int zsmatch __P((struct device *, void *, void *));
117 static void zsattach __P((struct device *, struct device *, void *));
118 struct cfdriver zscd =
119 { NULL, "zs", zsmatch, zsattach, DV_TTY, sizeof(struct zsinfo) };
120
121 /* Interrupt handlers. */
122 static int zshard __P((void *));
123 static struct intrhand levelhard = { zshard };
124 static int zssoft __P((void *));
125 static struct intrhand levelsoft = { zssoft };
126
127 struct zs_chanstate *zslist;
128
129 /* Routines called from other code. */
130 static void zsiopen __P((struct tty *));
131 static void zsiclose __P((struct tty *));
132 static void zsstart __P((struct tty *));
133 void zsstop __P((struct tty *, int));
134 static int zsparam __P((struct tty *, struct termios *));
135
136 /* Routines purely local to this driver. */
137 static int zs_getspeed __P((volatile struct zschan *));
138 static void zs_reset __P((volatile struct zschan *, int, int));
139 static void zs_modem __P((struct zs_chanstate *, int));
140 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
141
142 /* Console stuff. */
143 static struct tty *zs_ctty; /* console `struct tty *' */
144 static int zs_consin = -1, zs_consout = -1;
145 static int zscnputc __P((int)); /* console putc function */
146 static volatile struct zschan *zs_conschan;
147 static struct tty *zs_checkcons __P((struct zsinfo *, int, struct zs_chanstate *));
148
149 #ifdef KGDB
150 /* KGDB stuff. Must reboot to change zs_kgdbunit. */
151 extern int kgdb_dev, kgdb_rate;
152 static int zs_kgdb_savedspeed;
153 static void zs_checkkgdb __P((int, struct zs_chanstate *, struct tty *));
154 #endif
155
156 extern volatile struct zsdevice *findzs(int);
157 static volatile struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */
158
159 /*
160 * Console keyboard L1-A processing is done in the hardware interrupt code,
161 * so we need to duplicate some of the console keyboard decode state. (We
162 * must not use the regular state as the hardware code keeps ahead of the
163 * software state: the software state tracks the most recent ring input but
164 * the hardware state tracks the most recent ZSCC input.) See also kbd.h.
165 */
166 static struct conk_state { /* console keyboard state */
167 char conk_id; /* true => ID coming up (console only) */
168 char conk_l1; /* true => L1 pressed (console only) */
169 } zsconk_state;
170
171 int zshardscope;
172 int zsshortcuts; /* number of "shortcut" software interrupts */
173
174 #ifdef SUN4
175 static u_char
176 zs_read(zc, reg)
177 volatile struct zschan *zc;
178 u_char reg;
179 {
180 u_char val;
181
182 zc->zc_csr = reg;
183 ZS_DELAY();
184 val = zc->zc_csr;
185 ZS_DELAY();
186 return val;
187 }
188
189 static u_char
190 zs_write(zc, reg, val)
191 volatile struct zschan *zc;
192 u_char reg, val;
193 {
194 zc->zc_csr = reg;
195 ZS_DELAY();
196 zc->zc_csr = val;
197 ZS_DELAY();
198 return val;
199 }
200 #endif /* SUN4 */
201
202 /*
203 * Match slave number to zs unit number, so that misconfiguration will
204 * not set up the keyboard as ttya, etc.
205 */
206 static int
207 zsmatch(parent, vcf, aux)
208 struct device *parent;
209 void *vcf, *aux;
210 {
211 struct cfdata *cf = vcf;
212 struct confargs *ca = aux;
213 struct romaux *ra = &ca->ca_ra;
214
215 if (strcmp(cf->cf_driver->cd_name, ra->ra_name))
216 return (0);
217 if (ca->ca_bustype==BUS_MAIN && cputyp!=CPU_SUN4)
218 return (getpropint(ra->ra_node, "slave", -2) == cf->cf_unit);
219 ra->ra_len = NBPG;
220 return (probeget(ra->ra_vaddr, 1) != -1);
221 }
222
223 /*
224 * Attach a found zs.
225 *
226 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
227 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
228 */
229 static void
230 zsattach(parent, dev, aux)
231 struct device *parent;
232 struct device *dev;
233 void *aux;
234 {
235 register int zs = dev->dv_unit, unit;
236 register struct zsinfo *zi;
237 register struct zs_chanstate *cs;
238 register volatile struct zsdevice *addr;
239 register struct tty *tp, *ctp;
240 register struct confargs *ca = aux;
241 register struct romaux *ra = &ca->ca_ra;
242 int pri, softcar;
243 static int didintr, prevpri;
244
245 if ((addr = zsaddr[zs]) == NULL)
246 addr = zsaddr[zs] = findzs(zs);
247 if (ca->ca_bustype==BUS_MAIN)
248 if ((void *)addr != ra->ra_vaddr)
249 panic("zsattach");
250 if (ra->ra_nintr != 1) {
251 printf(": expected 1 interrupt, got %d\n", ra->ra_nintr);
252 return;
253 }
254 pri = ra->ra_intr[0].int_pri;
255 printf(" pri %d, softpri %d\n", pri, PIL_TTY);
256 if (!didintr) {
257 didintr = 1;
258 prevpri = pri;
259 intr_establish(pri, &levelhard);
260 intr_establish(PIL_TTY, &levelsoft);
261 } else if (pri != prevpri)
262 panic("broken zs interrupt scheme");
263 zi = (struct zsinfo *)dev;
264 zi->zi_zs = addr;
265 unit = zs * 2;
266 cs = zi->zi_cs;
267
268 if(!zs_tty[unit])
269 zs_tty[unit] = ttymalloc();
270 tp = zs_tty[unit];
271 if(!zs_tty[unit+1])
272 zs_tty[unit+1] = ttymalloc();
273
274 softcar = dev->dv_cfdata->cf_flags;
275 #if defined(SUN4C) || defined(SUN4M)
276 if (cputyp == CPU_SUN4C || cputyp == CPU_SUN4M) {
277 if (unit == 0) {
278 /* Get software carrier flags from options node in OPENPROM. */
279 extern int optionsnode;
280
281 softcar = 0;
282 if (*getpropstring(optionsnode, "ttya-ignore-cd") == 't')
283 softcar |= 1;
284 if (*getpropstring(optionsnode, "ttyb-ignore-cd") == 't')
285 softcar |= 2;
286 }
287 }
288 #endif
289
290 /* link into interrupt list with order (A,B) (B=A+1) */
291 cs[0].cs_next = &cs[1];
292 cs[1].cs_next = zslist;
293 zslist = cs;
294
295 cs->cs_unit = unit;
296 cs->cs_speed = zs_getspeed(&addr->zs_chan[CHAN_A]);
297 cs->cs_softcar = softcar & 1;
298 cs->cs_zc = &addr->zs_chan[CHAN_A];
299 tp->t_dev = makedev(ZSMAJOR, unit);
300 tp->t_oproc = zsstart;
301 tp->t_param = zsparam;
302 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
303 tp = ctp;
304 cs->cs_ttyp = tp;
305 #ifdef KGDB
306 if (ctp == NULL)
307 zs_checkkgdb(unit, cs, tp);
308 #endif
309 if (unit == ZS_KBD) {
310 /*
311 * Keyboard: tell /dev/kbd driver how to talk to us.
312 */
313 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
314 tp->t_cflag = CS8;
315 kbd_serial(tp, zsiopen, zsiclose);
316 cs->cs_conk = 1; /* do L1-A processing */
317 }
318 unit++;
319 cs++;
320 tp = zs_tty[unit];
321 cs->cs_unit = unit;
322 cs->cs_speed = zs_getspeed(&addr->zs_chan[CHAN_B]);
323 cs->cs_softcar = softcar & 2;
324 cs->cs_zc = &addr->zs_chan[CHAN_B];
325 tp->t_dev = makedev(ZSMAJOR, unit);
326 tp->t_oproc = zsstart;
327 tp->t_param = zsparam;
328 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
329 tp = ctp;
330 cs->cs_ttyp = tp;
331 #ifdef KGDB
332 if (ctp == NULL)
333 zs_checkkgdb(unit, cs, tp);
334 #endif
335 if (unit == ZS_MOUSE) {
336 /*
337 * Mouse: tell /dev/mouse driver how to talk to us.
338 */
339 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
340 tp->t_cflag = CS8;
341 ms_serial(tp, zsiopen, zsiclose);
342 }
343 }
344
345 /*
346 * Put a channel in a known state. Interrupts may be left disabled
347 * or enabled, as desired.
348 */
349 static void
350 zs_reset(zc, inten, speed)
351 volatile struct zschan *zc;
352 int inten, speed;
353 {
354 int tconst;
355 static u_char reg[16] = {
356 0,
357 0,
358 0,
359 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
360 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
361 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
362 0,
363 0,
364 0,
365 0,
366 ZSWR10_NRZ,
367 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
368 0,
369 0,
370 ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
371 ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
372 };
373
374 reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
375 tconst = BPS_TO_TCONST(PCLK / 16, speed);
376 reg[12] = tconst;
377 reg[13] = tconst >> 8;
378 zs_loadchannelregs(zc, reg);
379 }
380
381 /*
382 * Declare the given tty (which is in fact &cons) as a console input
383 * or output. This happens before the zs chip is attached; the hookup
384 * is finished later, in zs_setcons() below.
385 *
386 * This is used only for ports a and b. The console keyboard is decoded
387 * independently (we always send unit-2 input to /dev/kbd, which will
388 * direct it to /dev/console if appropriate).
389 */
390 void
391 zsconsole(tp, unit, out, fnstop)
392 register struct tty *tp;
393 register int unit;
394 int out;
395 void (**fnstop) __P((struct tty *, int));
396 {
397 extern int (*v_putc)();
398 int zs;
399 volatile struct zsdevice *addr;
400
401 if (unit >= ZS_KBD)
402 panic("zsconsole");
403 if (out) {
404 zs_consout = unit;
405 zs = unit >> 1;
406 if ((addr = zsaddr[zs]) == NULL)
407 addr = zsaddr[zs] = findzs(zs);
408 zs_conschan = (unit & 1) == 0 ? &addr->zs_chan[CHAN_A] :
409 &addr->zs_chan[CHAN_B];
410 v_putc = zscnputc;
411 } else
412 zs_consin = unit;
413 if(fnstop)
414 *fnstop = &zsstop;
415 zs_ctty = tp;
416 }
417
418 /*
419 * Polled console output putchar.
420 */
421 static int
422 zscnputc(c)
423 int c;
424 {
425 register volatile struct zschan *zc = zs_conschan;
426 register int s;
427
428 if (c == '\n')
429 zscnputc('\r');
430 /*
431 * Must block output interrupts (i.e., raise to >= splzs) without
432 * lowering current ipl. Need a better way.
433 */
434 s = splhigh();
435 #ifdef SUN4C /* XXX */
436 if (cputyp==CPU_SUN4C && s <= (12 << 8))
437 (void) splzs();
438 #endif
439 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
440 ZS_DELAY();
441 zc->zc_data = c;
442 ZS_DELAY();
443 splx(s);
444 }
445
446 /*
447 * Set up the given unit as console input, output, both, or neither, as
448 * needed. Return console tty if it is to receive console input.
449 */
450 static struct tty *
451 zs_checkcons(zi, unit, cs)
452 struct zsinfo *zi;
453 int unit;
454 struct zs_chanstate *cs;
455 {
456 register struct tty *tp;
457 char *i, *o;
458
459 if ((tp = zs_ctty) == NULL)
460 return (0);
461 i = zs_consin == unit ? "input" : NULL;
462 o = zs_consout == unit ? "output" : NULL;
463 if (i == NULL && o == NULL)
464 return (0);
465
466 /* rewire the minor device (gack) */
467 tp->t_dev = makedev(major(tp->t_dev), unit);
468
469 /*
470 * Rewire input and/or output. Note that baud rate reflects
471 * input settings, not output settings, but we can do no better
472 * if the console is split across two ports.
473 *
474 * XXX split consoles don't work anyway -- this needs to be
475 * thrown away and redone
476 */
477 if (i) {
478 tp->t_param = zsparam;
479 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
480 tp->t_cflag = CS8;
481 ttsetwater(tp);
482 }
483 if (o) {
484 tp->t_oproc = zsstart;
485 }
486 printf("%s%c: console %s\n",
487 zi->zi_dev.dv_xname, (unit & 1) + 'a', i ? (o ? "i/o" : i) : o);
488 cs->cs_consio = 1;
489 cs->cs_brkabort = 1;
490 return (tp);
491 }
492
493 #ifdef KGDB
494 /*
495 * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
496 * Pick up the current speed and character size and restore the original
497 * speed.
498 */
499 static void
500 zs_checkkgdb(unit, cs, tp)
501 int unit;
502 struct zs_chanstate *cs;
503 struct tty *tp;
504 {
505
506 if (kgdb_dev == makedev(ZSMAJOR, unit)) {
507 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
508 tp->t_cflag = CS8;
509 cs->cs_kgdb = 1;
510 cs->cs_speed = zs_kgdb_savedspeed;
511 (void) zsparam(tp, &tp->t_termios);
512 }
513 }
514 #endif
515
516 /*
517 * Compute the current baud rate given a ZSCC channel.
518 */
519 static int
520 zs_getspeed(zc)
521 register volatile struct zschan *zc;
522 {
523 register int tconst;
524
525 tconst = ZS_READ(zc, 12);
526 tconst |= ZS_READ(zc, 13) << 8;
527 return (TCONST_TO_BPS(PCLK / 16, tconst));
528 }
529
530
531 /*
532 * Do an internal open.
533 */
534 static void
535 zsiopen(tp)
536 struct tty *tp;
537 {
538
539 (void) zsparam(tp, &tp->t_termios);
540 ttsetwater(tp);
541 tp->t_state = TS_ISOPEN | TS_CARR_ON;
542 }
543
544 /*
545 * Do an internal close. Eventually we should shut off the chip when both
546 * ports on it are closed.
547 */
548 static void
549 zsiclose(tp)
550 struct tty *tp;
551 {
552
553 ttylclose(tp, 0); /* ??? */
554 ttyclose(tp); /* ??? */
555 tp->t_state = 0;
556 }
557
558
559 /*
560 * Open a zs serial port. This interface may not be used to open
561 * the keyboard and mouse ports. (XXX)
562 */
563 int
564 zsopen(dev, flags, mode, p)
565 dev_t dev;
566 int flags;
567 int mode;
568 struct proc *p;
569 {
570 register struct tty *tp;
571 register struct zs_chanstate *cs;
572 struct zsinfo *zi;
573 int unit = minor(dev), zs = unit >> 1, error, s;
574
575 if (zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL ||
576 unit == ZS_KBD || unit == ZS_MOUSE)
577 return (ENXIO);
578 cs = &zi->zi_cs[unit & 1];
579 if (cs->cs_consio)
580 return (ENXIO); /* ??? */
581 tp = cs->cs_ttyp;
582 s = spltty();
583 if ((tp->t_state & TS_ISOPEN) == 0) {
584 ttychars(tp);
585 if (tp->t_ispeed == 0) {
586 tp->t_iflag = TTYDEF_IFLAG;
587 tp->t_oflag = TTYDEF_OFLAG;
588 tp->t_cflag = TTYDEF_CFLAG;
589 tp->t_lflag = TTYDEF_LFLAG;
590 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
591 }
592 (void) zsparam(tp, &tp->t_termios);
593 ttsetwater(tp);
594 } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
595 splx(s);
596 return (EBUSY);
597 }
598 error = 0;
599 for (;;) {
600 /* loop, turning on the device, until carrier present */
601 zs_modem(cs, 1);
602 if (cs->cs_softcar)
603 tp->t_state |= TS_CARR_ON;
604 if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
605 tp->t_state & TS_CARR_ON)
606 break;
607 tp->t_state |= TS_WOPEN;
608 if (error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
609 ttopen, 0)) {
610 if (!(tp->t_state & TS_ISOPEN)) {
611 zs_modem(cs, 0);
612 tp->t_state &= ~TS_WOPEN;
613 ttwakeup(tp);
614 }
615 splx(s);
616 return error;
617 }
618 }
619 splx(s);
620 if (error == 0)
621 error = linesw[tp->t_line].l_open(dev, tp);
622 if (error)
623 zs_modem(cs, 0);
624 return (error);
625 }
626
627 /*
628 * Close a zs serial port.
629 */
630 int
631 zsclose(dev, flags, mode, p)
632 dev_t dev;
633 int flags;
634 int mode;
635 struct proc *p;
636 {
637 register struct zs_chanstate *cs;
638 register struct tty *tp;
639 struct zsinfo *zi;
640 int unit = minor(dev), s;
641
642 zi = zscd.cd_devs[unit >> 1];
643 cs = &zi->zi_cs[unit & 1];
644 tp = cs->cs_ttyp;
645 linesw[tp->t_line].l_close(tp, flags);
646 if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
647 (tp->t_state & TS_ISOPEN) == 0) {
648 zs_modem(cs, 0);
649 /* hold low for 1 second */
650 (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
651 }
652 if (cs->cs_creg[5] & ZSWR5_BREAK)
653 {
654 s = splzs();
655 cs->cs_preg[5] &= ~ZSWR5_BREAK;
656 cs->cs_creg[5] &= ~ZSWR5_BREAK;
657 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
658 splx(s);
659 }
660 ttyclose(tp);
661 #ifdef KGDB
662 /* Reset the speed if we're doing kgdb on this port */
663 if (cs->cs_kgdb) {
664 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
665 (void) zsparam(tp, &tp->t_termios);
666 }
667 #endif
668 return (0);
669 }
670
671 /*
672 * Read/write zs serial port.
673 */
674 int
675 zsread(dev, uio, flags)
676 dev_t dev;
677 struct uio *uio;
678 int flags;
679 {
680 register struct tty *tp = zs_tty[minor(dev)];
681
682 return (linesw[tp->t_line].l_read(tp, uio, flags));
683 }
684
685 int
686 zswrite(dev, uio, flags)
687 dev_t dev;
688 struct uio *uio;
689 int flags;
690 {
691 register struct tty *tp = zs_tty[minor(dev)];
692
693 return (linesw[tp->t_line].l_write(tp, uio, flags));
694 }
695
696 /*
697 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
698 * channels are kept in (A,B) pairs.
699 *
700 * Do just a little, then get out; set a software interrupt if more
701 * work is needed.
702 *
703 * We deliberately ignore the vectoring Zilog gives us, and match up
704 * only the number of `reset interrupt under service' operations, not
705 * the order.
706 */
707 /* ARGSUSED */
708 int
709 zshard(intrarg)
710 void *intrarg;
711 {
712 register struct zs_chanstate *a;
713 #define b (a + 1)
714 register volatile struct zschan *zc;
715 register int rr3, intflags = 0, v, i;
716 static int zsrint(struct zs_chanstate *, volatile struct zschan *);
717 static int zsxint(struct zs_chanstate *, volatile struct zschan *);
718 static int zssint(struct zs_chanstate *, volatile struct zschan *);
719
720 for (a = zslist; a != NULL; a = b->cs_next) {
721 rr3 = ZS_READ(a->cs_zc, 3);
722 if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
723 intflags |= 2;
724 zc = a->cs_zc;
725 i = a->cs_rbput;
726 if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
727 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
728 intflags |= 1;
729 }
730 if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
731 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
732 intflags |= 1;
733 }
734 if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
735 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
736 intflags |= 1;
737 }
738 a->cs_rbput = i;
739 }
740 if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
741 intflags |= 2;
742 zc = b->cs_zc;
743 i = b->cs_rbput;
744 if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
745 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
746 intflags |= 1;
747 }
748 if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
749 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
750 intflags |= 1;
751 }
752 if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
753 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
754 intflags |= 1;
755 }
756 b->cs_rbput = i;
757 }
758 }
759 #undef b
760
761 if (intflags & 1) {
762 #if defined(SUN4C) || defined(SUN4M)
763 if (cputyp==CPU_SUN4M || cputyp==CPU_SUN4C) {
764 /* XXX -- but this will go away when zshard moves to locore.s */
765 struct clockframe *p = intrarg;
766
767 if ((p->psr & PSR_PIL) < (PIL_TTY << 8)) {
768 zsshortcuts++;
769 (void) spltty();
770 if (zshardscope) {
771 LED_ON;
772 LED_OFF;
773 }
774 return (zssoft(intrarg));
775 }
776 }
777 #endif
778 ienab_bis(IE_ZSSOFT);
779 }
780 return (intflags & 2);
781 }
782
783 static int
784 zsrint(cs, zc)
785 register struct zs_chanstate *cs;
786 register volatile struct zschan *zc;
787 {
788 register int c = zc->zc_data;
789
790 if (cs->cs_conk) {
791 register struct conk_state *conk = &zsconk_state;
792
793 /*
794 * Check here for console abort function, so that we
795 * can abort even when interrupts are locking up the
796 * machine.
797 */
798 if (c == KBD_RESET) {
799 conk->conk_id = 1; /* ignore next byte */
800 conk->conk_l1 = 0;
801 } else if (conk->conk_id)
802 conk->conk_id = 0; /* stop ignoring bytes */
803 else if (c == KBD_L1)
804 conk->conk_l1 = 1; /* L1 went down */
805 else if (c == (KBD_L1|KBD_UP))
806 conk->conk_l1 = 0; /* L1 went up */
807 else if (c == KBD_A && conk->conk_l1) {
808 zsabort();
809 conk->conk_l1 = 0; /* we never see the up */
810 goto clearit; /* eat the A after L1-A */
811 }
812 }
813 #ifdef KGDB
814 if (c == FRAME_START && cs->cs_kgdb &&
815 (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
816 zskgdb(cs->cs_unit);
817 goto clearit;
818 }
819 #endif
820 /* compose receive character and status */
821 c <<= 8;
822 c |= ZS_READ(zc, 1);
823
824 /* clear receive error & interrupt condition */
825 zc->zc_csr = ZSWR0_RESET_ERRORS;
826 ZS_DELAY();
827 zc->zc_csr = ZSWR0_CLR_INTR;
828 ZS_DELAY();
829
830 return (ZRING_MAKE(ZRING_RINT, c));
831
832 clearit:
833 zc->zc_csr = ZSWR0_RESET_ERRORS;
834 ZS_DELAY();
835 zc->zc_csr = ZSWR0_CLR_INTR;
836 ZS_DELAY();
837 return (0);
838 }
839
840 static int
841 zsxint(cs, zc)
842 register struct zs_chanstate *cs;
843 register volatile struct zschan *zc;
844 {
845 register int i = cs->cs_tbc;
846
847 if (i == 0) {
848 zc->zc_csr = ZSWR0_RESET_TXINT;
849 ZS_DELAY();
850 zc->zc_csr = ZSWR0_CLR_INTR;
851 ZS_DELAY();
852 return (ZRING_MAKE(ZRING_XINT, 0));
853 }
854 cs->cs_tbc = i - 1;
855 zc->zc_data = *cs->cs_tba++;
856 ZS_DELAY();
857 zc->zc_csr = ZSWR0_CLR_INTR;
858 ZS_DELAY();
859 return (0);
860 }
861
862 static int
863 zssint(cs, zc)
864 register struct zs_chanstate *cs;
865 register volatile struct zschan *zc;
866 {
867 register int rr0;
868
869 rr0 = zc->zc_csr;
870 zc->zc_csr = ZSWR0_RESET_STATUS;
871 ZS_DELAY();
872 zc->zc_csr = ZSWR0_CLR_INTR;
873 ZS_DELAY();
874 /*
875 * The chip's hardware flow control is, as noted in zsreg.h,
876 * busted---if the DCD line goes low the chip shuts off the
877 * receiver (!). If we want hardware CTS flow control but do
878 * not have it, and carrier is now on, turn HFC on; if we have
879 * HFC now but carrier has gone low, turn it off.
880 */
881 if (rr0 & ZSRR0_DCD) {
882 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
883 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
884 cs->cs_creg[3] |= ZSWR3_HFC;
885 ZS_WRITE(zc, 3, cs->cs_creg[3]);
886 }
887 } else {
888 if (cs->cs_creg[3] & ZSWR3_HFC) {
889 cs->cs_creg[3] &= ~ZSWR3_HFC;
890 ZS_WRITE(zc, 3, cs->cs_creg[3]);
891 }
892 }
893 if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
894 #ifdef SUN4
895 /*
896 * XXX This might not be necessary. Test and
897 * delete if it isn't.
898 */
899 if (cputyp==CPU_SUN4) {
900 while (zc->zc_csr & ZSRR0_BREAK)
901 ZS_DELAY();
902 }
903 #endif
904 zsabort();
905 return (0);
906 }
907 return (ZRING_MAKE(ZRING_SINT, rr0));
908 }
909
910 zsabort()
911 {
912
913 #ifdef DDB
914 Debugger();
915 #else
916 printf("stopping on keyboard abort\n");
917 callrom();
918 #endif
919 }
920
921 #ifdef KGDB
922 /*
923 * KGDB framing character received: enter kernel debugger. This probably
924 * should time out after a few seconds to avoid hanging on spurious input.
925 */
926 zskgdb(unit)
927 int unit;
928 {
929
930 printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
931 kgdb_connect(1);
932 }
933 #endif
934
935 /*
936 * Print out a ring or fifo overrun error message.
937 */
938 static void
939 zsoverrun(unit, ptime, what)
940 int unit;
941 long *ptime;
942 char *what;
943 {
944
945 if (*ptime != time.tv_sec) {
946 *ptime = time.tv_sec;
947 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
948 (unit & 1) + 'a', what);
949 }
950 }
951
952 /*
953 * ZS software interrupt. Scan all channels for deferred interrupts.
954 */
955 int
956 zssoft(arg)
957 void *arg;
958 {
959 register struct zs_chanstate *cs;
960 register volatile struct zschan *zc;
961 register struct linesw *line;
962 register struct tty *tp;
963 register int get, n, c, cc, unit, s;
964 int retval = 0;
965
966 for (cs = zslist; cs != NULL; cs = cs->cs_next) {
967 get = cs->cs_rbget;
968 again:
969 n = cs->cs_rbput; /* atomic */
970 if (get == n) /* nothing more on this line */
971 continue;
972 retval = 1;
973 unit = cs->cs_unit; /* set up to handle interrupts */
974 zc = cs->cs_zc;
975 tp = cs->cs_ttyp;
976 line = &linesw[tp->t_line];
977 /*
978 * Compute the number of interrupts in the receive ring.
979 * If the count is overlarge, we lost some events, and
980 * must advance to the first valid one. It may get
981 * overwritten if more data are arriving, but this is
982 * too expensive to check and gains nothing (we already
983 * lost out; all we can do at this point is trade one
984 * kind of loss for another).
985 */
986 n -= get;
987 if (n > ZLRB_RING_SIZE) {
988 zsoverrun(unit, &cs->cs_rotime, "ring");
989 get += n - ZLRB_RING_SIZE;
990 n = ZLRB_RING_SIZE;
991 }
992 while (--n >= 0) {
993 /* race to keep ahead of incoming interrupts */
994 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
995 switch (ZRING_TYPE(c)) {
996
997 case ZRING_RINT:
998 c = ZRING_VALUE(c);
999 if (c & ZSRR1_DO)
1000 zsoverrun(unit, &cs->cs_fotime, "fifo");
1001 cc = c >> 8;
1002 if (c & ZSRR1_FE)
1003 cc |= TTY_FE;
1004 if (c & ZSRR1_PE)
1005 cc |= TTY_PE;
1006 /*
1007 * this should be done through
1008 * bstreams XXX gag choke
1009 */
1010 if (unit == ZS_KBD)
1011 kbd_rint(cc);
1012 else if (unit == ZS_MOUSE)
1013 ms_rint(cc);
1014 else
1015 line->l_rint(cc, tp);
1016 break;
1017
1018 case ZRING_XINT:
1019 /*
1020 * Transmit done: change registers and resume,
1021 * or clear BUSY.
1022 */
1023 if (cs->cs_heldchange) {
1024 s = splzs();
1025 c = zc->zc_csr;
1026 ZS_DELAY();
1027 if ((c & ZSRR0_DCD) == 0)
1028 cs->cs_preg[3] &= ~ZSWR3_HFC;
1029 bcopy((caddr_t)cs->cs_preg,
1030 (caddr_t)cs->cs_creg, 16);
1031 zs_loadchannelregs(zc, cs->cs_creg);
1032 splx(s);
1033 cs->cs_heldchange = 0;
1034 if (cs->cs_heldtbc &&
1035 (tp->t_state & TS_TTSTOP) == 0) {
1036 cs->cs_tbc = cs->cs_heldtbc - 1;
1037 zc->zc_data = *cs->cs_tba++;
1038 ZS_DELAY();
1039 goto again;
1040 }
1041 }
1042 tp->t_state &= ~TS_BUSY;
1043 if (tp->t_state & TS_FLUSH)
1044 tp->t_state &= ~TS_FLUSH;
1045 else
1046 ndflush(&tp->t_outq,
1047 cs->cs_tba - (caddr_t)tp->t_outq.c_cf);
1048 line->l_start(tp);
1049 break;
1050
1051 case ZRING_SINT:
1052 /*
1053 * Status line change. HFC bit is run in
1054 * hardware interrupt, to avoid locking
1055 * at splzs here.
1056 */
1057 c = ZRING_VALUE(c);
1058 if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
1059 cc = (c & ZSRR0_DCD) != 0;
1060 if (line->l_modem(tp, cc) == 0)
1061 zs_modem(cs, cc);
1062 }
1063 cs->cs_rr0 = c;
1064 break;
1065
1066 default:
1067 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
1068 unit >> 1, (unit & 1) + 'a', c);
1069 break;
1070 }
1071 }
1072 cs->cs_rbget = get;
1073 goto again;
1074 }
1075 return (retval);
1076 }
1077
1078 int
1079 zsioctl(dev, cmd, data, flag, p)
1080 dev_t dev;
1081 u_long cmd;
1082 caddr_t data;
1083 int flag;
1084 struct proc *p;
1085 {
1086 int unit = minor(dev);
1087 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1088 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
1089 register int error, s;
1090 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1091
1092 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
1093 if (error >= 0)
1094 return (error);
1095 error = ttioctl(tp, cmd, data, flag, p);
1096 if (error >= 0)
1097 return (error);
1098
1099 switch (cmd) {
1100 case TIOCSBRK:
1101 s = splzs();
1102 cs->cs_preg[5] |= ZSWR5_BREAK;
1103 cs->cs_creg[5] |= ZSWR5_BREAK;
1104 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1105 splx(s);
1106 break;
1107 case TIOCCBRK:
1108 s = splzs();
1109 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1110 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1111 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1112 splx(s);
1113 break;
1114 case TIOCSDTR:
1115 case TIOCCDTR:
1116 case TIOCMSET:
1117 case TIOCMBIS:
1118 case TIOCMBIC:
1119 case TIOCMGET:
1120 default:
1121 return (ENOTTY);
1122 }
1123 return (0);
1124 }
1125
1126 /*
1127 * Start or restart transmission.
1128 */
1129 static void
1130 zsstart(tp)
1131 register struct tty *tp;
1132 {
1133 register struct zs_chanstate *cs;
1134 register int s, nch;
1135 int unit = minor(tp->t_dev);
1136 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1137
1138 cs = &zi->zi_cs[unit & 1];
1139 s = spltty();
1140
1141 /*
1142 * If currently active or delaying, no need to do anything.
1143 */
1144 if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1145 goto out;
1146
1147 /*
1148 * If there are sleepers, and output has drained below low
1149 * water mark, awaken.
1150 */
1151 if (tp->t_outq.c_cc <= tp->t_lowat) {
1152 if (tp->t_state & TS_ASLEEP) {
1153 tp->t_state &= ~TS_ASLEEP;
1154 wakeup((caddr_t)&tp->t_outq);
1155 }
1156 selwakeup(&tp->t_wsel);
1157 }
1158
1159 nch = ndqb(&tp->t_outq, 0); /* XXX */
1160 if (nch) {
1161 register char *p = tp->t_outq.c_cf;
1162
1163 /* mark busy, enable tx done interrupts, & send first byte */
1164 tp->t_state |= TS_BUSY;
1165 (void) splzs();
1166 cs->cs_preg[1] |= ZSWR1_TIE;
1167 cs->cs_creg[1] |= ZSWR1_TIE;
1168 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1169 cs->cs_zc->zc_data = *p;
1170 ZS_DELAY();
1171 cs->cs_tba = p + 1;
1172 cs->cs_tbc = nch - 1;
1173 } else {
1174 /*
1175 * Nothing to send, turn off transmit done interrupts.
1176 * This is useful if something is doing polled output.
1177 */
1178 (void) splzs();
1179 cs->cs_preg[1] &= ~ZSWR1_TIE;
1180 cs->cs_creg[1] &= ~ZSWR1_TIE;
1181 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1182 }
1183 out:
1184 splx(s);
1185 }
1186
1187 /*
1188 * Stop output, e.g., for ^S or output flush.
1189 */
1190 void
1191 zsstop(tp, flag)
1192 register struct tty *tp;
1193 int flag;
1194 {
1195 register struct zs_chanstate *cs;
1196 register int s, unit = minor(tp->t_dev);
1197 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1198
1199 cs = &zi->zi_cs[unit & 1];
1200 s = splzs();
1201 if (tp->t_state & TS_BUSY) {
1202 /*
1203 * Device is transmitting; must stop it.
1204 */
1205 cs->cs_tbc = 0;
1206 if ((tp->t_state & TS_TTSTOP) == 0)
1207 tp->t_state |= TS_FLUSH;
1208 }
1209 splx(s);
1210 }
1211
1212 /*
1213 * Set ZS tty parameters from termios.
1214 *
1215 * This routine makes use of the fact that only registers
1216 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1217 */
1218 static int
1219 zsparam(tp, t)
1220 register struct tty *tp;
1221 register struct termios *t;
1222 {
1223 int unit = minor(tp->t_dev);
1224 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1225 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1226 register int tmp, tmp5, cflag, s;
1227
1228 /*
1229 * Because PCLK is only run at 4.9 MHz, the fastest we
1230 * can go is 51200 baud (this corresponds to TC=1).
1231 * This is somewhat unfortunate as there is no real
1232 * reason we should not be able to handle higher rates.
1233 */
1234 tmp = t->c_ospeed;
1235 if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
1236 return (EINVAL);
1237 if (tmp == 0) {
1238 /* stty 0 => drop DTR and RTS */
1239 zs_modem(cs, 0);
1240 return (0);
1241 }
1242 tmp = BPS_TO_TCONST(PCLK / 16, tmp);
1243 if (tmp < 2)
1244 return (EINVAL);
1245
1246 cflag = t->c_cflag;
1247 tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
1248 tp->t_cflag = cflag;
1249
1250 /*
1251 * Block interrupts so that state will not
1252 * be altered until we are done setting it up.
1253 */
1254 s = splzs();
1255 cs->cs_preg[12] = tmp;
1256 cs->cs_preg[13] = tmp >> 8;
1257 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1258 switch (cflag & CSIZE) {
1259 case CS5:
1260 tmp = ZSWR3_RX_5;
1261 tmp5 = ZSWR5_TX_5;
1262 break;
1263 case CS6:
1264 tmp = ZSWR3_RX_6;
1265 tmp5 = ZSWR5_TX_6;
1266 break;
1267 case CS7:
1268 tmp = ZSWR3_RX_7;
1269 tmp5 = ZSWR5_TX_7;
1270 break;
1271 case CS8:
1272 default:
1273 tmp = ZSWR3_RX_8;
1274 tmp5 = ZSWR5_TX_8;
1275 break;
1276 }
1277
1278 /*
1279 * Output hardware flow control on the chip is horrendous: if
1280 * carrier detect drops, the receiver is disabled. Hence we
1281 * can only do this when the carrier is on.
1282 */
1283 if (cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1284 tmp |= ZSWR3_HFC | ZSWR3_RX_ENABLE;
1285 else
1286 tmp |= ZSWR3_RX_ENABLE;
1287 cs->cs_preg[3] = tmp;
1288 cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1289
1290 tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
1291 if ((cflag & PARODD) == 0)
1292 tmp |= ZSWR4_EVENP;
1293 if (cflag & PARENB)
1294 tmp |= ZSWR4_PARENB;
1295 cs->cs_preg[4] = tmp;
1296 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR;
1297 cs->cs_preg[10] = ZSWR10_NRZ;
1298 cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
1299 cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
1300 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1301
1302 /*
1303 * If nothing is being transmitted, set up new current values,
1304 * else mark them as pending.
1305 */
1306 if (cs->cs_heldchange == 0) {
1307 if (cs->cs_ttyp->t_state & TS_BUSY) {
1308 cs->cs_heldtbc = cs->cs_tbc;
1309 cs->cs_tbc = 0;
1310 cs->cs_heldchange = 1;
1311 } else {
1312 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1313 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1314 }
1315 }
1316 splx(s);
1317 return (0);
1318 }
1319
1320 /*
1321 * Raise or lower modem control (DTR/RTS) signals. If a character is
1322 * in transmission, the change is deferred.
1323 */
1324 static void
1325 zs_modem(cs, onoff)
1326 struct zs_chanstate *cs;
1327 int onoff;
1328 {
1329 int s, bis, and;
1330
1331 if (onoff) {
1332 bis = ZSWR5_DTR | ZSWR5_RTS;
1333 and = ~0;
1334 } else {
1335 bis = 0;
1336 and = ~(ZSWR5_DTR | ZSWR5_RTS);
1337 }
1338 s = splzs();
1339 cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
1340 if (cs->cs_heldchange == 0) {
1341 if (cs->cs_ttyp->t_state & TS_BUSY) {
1342 cs->cs_heldtbc = cs->cs_tbc;
1343 cs->cs_tbc = 0;
1344 cs->cs_heldchange = 1;
1345 } else {
1346 cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
1347 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1348 }
1349 }
1350 splx(s);
1351 }
1352
1353 /*
1354 * Write the given register set to the given zs channel in the proper order.
1355 * The channel must not be transmitting at the time. The receiver will
1356 * be disabled for the time it takes to write all the registers.
1357 */
1358 static void
1359 zs_loadchannelregs(zc, reg)
1360 volatile struct zschan *zc;
1361 u_char *reg;
1362 {
1363 int i;
1364
1365 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1366 ZS_DELAY();
1367 i = zc->zc_data; /* drain fifo */
1368 ZS_DELAY();
1369 i = zc->zc_data;
1370 ZS_DELAY();
1371 i = zc->zc_data;
1372 ZS_DELAY();
1373 ZS_WRITE(zc, 4, reg[4]);
1374 ZS_WRITE(zc, 10, reg[10]);
1375 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1376 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1377 ZS_WRITE(zc, 1, reg[1]);
1378 ZS_WRITE(zc, 9, reg[9]);
1379 ZS_WRITE(zc, 11, reg[11]);
1380 ZS_WRITE(zc, 12, reg[12]);
1381 ZS_WRITE(zc, 13, reg[13]);
1382 ZS_WRITE(zc, 14, reg[14]);
1383 ZS_WRITE(zc, 15, reg[15]);
1384 ZS_WRITE(zc, 3, reg[3]);
1385 ZS_WRITE(zc, 5, reg[5]);
1386 }
1387
1388 #ifdef KGDB
1389 /*
1390 * Get a character from the given kgdb channel. Called at splhigh().
1391 */
1392 static int
1393 zs_kgdb_getc(arg)
1394 void *arg;
1395 {
1396 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1397
1398 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
1399 ZS_DELAY();
1400 return (zc->zc_data);
1401 }
1402
1403 /*
1404 * Put a character to the given kgdb channel. Called at splhigh().
1405 */
1406 static void
1407 zs_kgdb_putc(arg, c)
1408 void *arg;
1409 int c;
1410 {
1411 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1412
1413 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
1414 ZS_DELAY();
1415 zc->zc_data = c;
1416 ZS_DELAY();
1417 }
1418
1419 /*
1420 * Set up for kgdb; called at boot time before configuration.
1421 * KGDB interrupts will be enabled later when zs0 is configured.
1422 */
1423 void
1424 zs_kgdb_init()
1425 {
1426 volatile struct zsdevice *addr;
1427 volatile struct zschan *zc;
1428 int unit, zs;
1429
1430 if (major(kgdb_dev) != ZSMAJOR)
1431 return;
1432 unit = minor(kgdb_dev);
1433 /*
1434 * Unit must be 0 or 1 (zs0).
1435 */
1436 if ((unsigned)unit >= ZS_KBD) {
1437 printf("zs_kgdb_init: bad minor dev %d\n", unit);
1438 return;
1439 }
1440 zs = unit >> 1;
1441 if ((addr = zsaddr[zs]) == NULL)
1442 addr = zsaddr[zs] = findzs(zs);
1443 unit &= 1;
1444 zc = unit == 0 ? &addr->zs_chan[CHAN_A] : &addr->zs_chan[CHAN_B];
1445 zs_kgdb_savedspeed = zs_getspeed(zc);
1446 printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
1447 zs, unit + 'a', kgdb_rate);
1448 zs_reset(zc, 1, kgdb_rate);
1449 kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
1450 }
1451 #endif /* KGDB */
1452