zs.c revision 1.23 1 /* $NetBSD: zs.c,v 1.23 1995/02/01 12:37:29 pk Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 *
44 * @(#)zs.c 8.1 (Berkeley) 7/19/93
45 */
46
47 /*
48 * Zilog Z8530 (ZSCC) driver.
49 *
50 * Runs two tty ports (ttya and ttyb) on zs0,
51 * and runs a keyboard and mouse on zs1.
52 *
53 * This driver knows far too much about chip to usage mappings.
54 */
55 #define NZS 2 /* XXX */
56
57 #include <sys/param.h>
58 #include <sys/proc.h>
59 #include <sys/device.h>
60 #include <sys/conf.h>
61 #include <sys/file.h>
62 #include <sys/ioctl.h>
63 #include <sys/tty.h>
64 #include <sys/time.h>
65 #include <sys/kernel.h>
66 #include <sys/syslog.h>
67
68 #include <machine/autoconf.h>
69 #include <machine/cpu.h>
70
71 #include <sparc/sparc/vaddrs.h>
72 #include <sparc/sparc/auxreg.h>
73
74 #include <machine/kbd.h>
75 #include <sparc/dev/zsreg.h>
76 #include <sparc/dev/zsvar.h>
77
78 #ifdef KGDB
79 #include <machine/remote-sl.h>
80 #endif
81
82 #define ZSMAJOR 12 /* XXX */
83
84 #define ZS_KBD 2 /* XXX */
85 #define ZS_MOUSE 3 /* XXX */
86
87 /* the magic number below was stolen from the Sprite source. */
88 #define PCLK (19660800/4) /* PCLK pin input clock rate */
89
90 /*
91 * Select software interrupt bit based on TTY ipl.
92 */
93 #if PIL_TTY == 1
94 # define IE_ZSSOFT IE_L1
95 #elif PIL_TTY == 4
96 # define IE_ZSSOFT IE_L4
97 #elif PIL_TTY == 6
98 # define IE_ZSSOFT IE_L6
99 #else
100 # error "no suitable software interrupt bit"
101 #endif
102
103 /*
104 * Software state per found chip. This would be called `zs_softc',
105 * but the previous driver had a rather different zs_softc....
106 */
107 struct zsinfo {
108 struct device zi_dev; /* base device */
109 volatile struct zsdevice *zi_zs;/* chip registers */
110 struct zs_chanstate zi_cs[2]; /* channel A and B software state */
111 };
112
113 struct tty *zs_tty[NZS * 2]; /* XXX should be dynamic */
114
115 /* Definition of the driver for autoconfig. */
116 static int zsmatch __P((struct device *, void *, void *));
117 static void zsattach __P((struct device *, struct device *, void *));
118 struct cfdriver zscd =
119 { NULL, "zs", zsmatch, zsattach, DV_TTY, sizeof(struct zsinfo) };
120
121 /* Interrupt handlers. */
122 static int zshard __P((void *));
123 static struct intrhand levelhard = { zshard };
124 static int zssoft __P((void *));
125 static struct intrhand levelsoft = { zssoft };
126
127 struct zs_chanstate *zslist;
128
129 /* Routines called from other code. */
130 static void zsiopen __P((struct tty *));
131 static void zsiclose __P((struct tty *));
132 static void zsstart __P((struct tty *));
133 void zsstop __P((struct tty *, int));
134 static int zsparam __P((struct tty *, struct termios *));
135
136 /* Routines purely local to this driver. */
137 static int zs_getspeed __P((volatile struct zschan *));
138 static void zs_reset __P((volatile struct zschan *, int, int));
139 static void zs_modem __P((struct zs_chanstate *, int));
140 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
141
142 /* Console stuff. */
143 static struct tty *zs_ctty; /* console `struct tty *' */
144 static int zs_consin = -1, zs_consout = -1;
145 static int zscnputc __P((int)); /* console putc function */
146 static volatile struct zschan *zs_conschan;
147 static struct tty *zs_checkcons __P((struct zsinfo *, int, struct zs_chanstate *));
148
149 #ifdef KGDB
150 /* KGDB stuff. Must reboot to change zs_kgdbunit. */
151 extern int kgdb_dev, kgdb_rate;
152 static int zs_kgdb_savedspeed;
153 static void zs_checkkgdb __P((int, struct zs_chanstate *, struct tty *));
154 #endif
155
156 extern volatile struct zsdevice *findzs(int);
157 static volatile struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */
158
159 /*
160 * Console keyboard L1-A processing is done in the hardware interrupt code,
161 * so we need to duplicate some of the console keyboard decode state. (We
162 * must not use the regular state as the hardware code keeps ahead of the
163 * software state: the software state tracks the most recent ring input but
164 * the hardware state tracks the most recent ZSCC input.) See also kbd.h.
165 */
166 static struct conk_state { /* console keyboard state */
167 char conk_id; /* true => ID coming up (console only) */
168 char conk_l1; /* true => L1 pressed (console only) */
169 } zsconk_state;
170
171 int zshardscope;
172 int zsshortcuts; /* number of "shortcut" software interrupts */
173
174 #ifdef SUN4
175 static u_char
176 zs_read(zc, reg)
177 volatile struct zschan *zc;
178 u_char reg;
179 {
180 u_char val;
181
182 zc->zc_csr = reg;
183 ZS_DELAY();
184 val = zc->zc_csr;
185 ZS_DELAY();
186 return val;
187 }
188
189 static u_char
190 zs_write(zc, reg, val)
191 volatile struct zschan *zc;
192 u_char reg, val;
193 {
194 zc->zc_csr = reg;
195 ZS_DELAY();
196 zc->zc_csr = val;
197 ZS_DELAY();
198 return val;
199 }
200 #endif /* SUN4 */
201
202 /*
203 * Match slave number to zs unit number, so that misconfiguration will
204 * not set up the keyboard as ttya, etc.
205 */
206 static int
207 zsmatch(parent, vcf, aux)
208 struct device *parent;
209 void *vcf, *aux;
210 {
211 struct cfdata *cf = vcf;
212 struct confargs *ca = aux;
213 struct romaux *ra = &ca->ca_ra;
214
215 if (strcmp(cf->cf_driver->cd_name, ra->ra_name))
216 return (0);
217 if (ca->ca_bustype==BUS_MAIN && cputyp!=CPU_SUN4)
218 return (getpropint(ra->ra_node, "slave", -2) == cf->cf_unit);
219 if (cf->cf_unit == 2 && cputyp == CPU_SUN4 &&
220 ca->ca_bustype == BUS_OBIO && cpumod == SUN4_100)
221 return 0; /* see 4/110 comment in cpu.c */
222 ra->ra_len = NBPG;
223 return (probeget(ra->ra_vaddr, 1) != -1);
224 }
225
226 /*
227 * Attach a found zs.
228 *
229 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
230 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
231 */
232 static void
233 zsattach(parent, dev, aux)
234 struct device *parent;
235 struct device *dev;
236 void *aux;
237 {
238 register int zs = dev->dv_unit, unit;
239 register struct zsinfo *zi;
240 register struct zs_chanstate *cs;
241 register volatile struct zsdevice *addr;
242 register struct tty *tp, *ctp;
243 register struct confargs *ca = aux;
244 register struct romaux *ra = &ca->ca_ra;
245 int pri;
246 static int didintr, prevpri;
247
248 if ((addr = zsaddr[zs]) == NULL)
249 addr = zsaddr[zs] = findzs(zs);
250 if (ca->ca_bustype==BUS_MAIN)
251 if ((void *)addr != ra->ra_vaddr)
252 panic("zsattach");
253 if (ra->ra_nintr != 1) {
254 printf(": expected 1 interrupt, got %d\n", ra->ra_nintr);
255 return;
256 }
257 pri = ra->ra_intr[0].int_pri;
258 printf(" pri %d, softpri %d\n", pri, PIL_TTY);
259 if (!didintr) {
260 didintr = 1;
261 prevpri = pri;
262 intr_establish(pri, &levelhard);
263 intr_establish(PIL_TTY, &levelsoft);
264 } else if (pri != prevpri)
265 panic("broken zs interrupt scheme");
266 zi = (struct zsinfo *)dev;
267 zi->zi_zs = addr;
268 unit = zs * 2;
269 cs = zi->zi_cs;
270
271 if(!zs_tty[unit])
272 zs_tty[unit] = ttymalloc();
273 tp = zs_tty[unit];
274 if(!zs_tty[unit+1])
275 zs_tty[unit+1] = ttymalloc();
276
277 /* link into interrupt list with order (A,B) (B=A+1) */
278 cs[0].cs_next = &cs[1];
279 cs[1].cs_next = zslist;
280 zslist = cs;
281
282 cs->cs_unit = unit;
283 cs->cs_speed = zs_getspeed(&addr->zs_chan[CHAN_A]);
284 cs->cs_zc = &addr->zs_chan[CHAN_A];
285 tp->t_dev = makedev(ZSMAJOR, unit);
286 tp->t_oproc = zsstart;
287 tp->t_param = zsparam;
288 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
289 tp = ctp;
290 cs->cs_ttyp = tp;
291 #ifdef KGDB
292 if (ctp == NULL)
293 zs_checkkgdb(unit, cs, tp);
294 #endif
295 if (unit == ZS_KBD) {
296 /*
297 * Keyboard: tell /dev/kbd driver how to talk to us.
298 */
299 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
300 tp->t_cflag = CS8;
301 kbd_serial(tp, zsiopen, zsiclose);
302 cs->cs_conk = 1; /* do L1-A processing */
303 }
304 unit++;
305 cs++;
306 tp = zs_tty[unit];
307 cs->cs_unit = unit;
308 cs->cs_speed = zs_getspeed(&addr->zs_chan[CHAN_B]);
309 cs->cs_zc = &addr->zs_chan[CHAN_B];
310 tp->t_dev = makedev(ZSMAJOR, unit);
311 tp->t_oproc = zsstart;
312 tp->t_param = zsparam;
313 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
314 tp = ctp;
315 cs->cs_ttyp = tp;
316 #ifdef KGDB
317 if (ctp == NULL)
318 zs_checkkgdb(unit, cs, tp);
319 #endif
320 if (unit == ZS_MOUSE) {
321 /*
322 * Mouse: tell /dev/mouse driver how to talk to us.
323 */
324 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
325 tp->t_cflag = CS8;
326 ms_serial(tp, zsiopen, zsiclose);
327 }
328 }
329
330 /*
331 * Put a channel in a known state. Interrupts may be left disabled
332 * or enabled, as desired.
333 */
334 static void
335 zs_reset(zc, inten, speed)
336 volatile struct zschan *zc;
337 int inten, speed;
338 {
339 int tconst;
340 static u_char reg[16] = {
341 0,
342 0,
343 0,
344 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
345 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
346 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
347 0,
348 0,
349 0,
350 0,
351 ZSWR10_NRZ,
352 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
353 0,
354 0,
355 ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
356 ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
357 };
358
359 reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
360 tconst = BPS_TO_TCONST(PCLK / 16, speed);
361 reg[12] = tconst;
362 reg[13] = tconst >> 8;
363 zs_loadchannelregs(zc, reg);
364 }
365
366 /*
367 * Declare the given tty (which is in fact &cons) as a console input
368 * or output. This happens before the zs chip is attached; the hookup
369 * is finished later, in zs_setcons() below.
370 *
371 * This is used only for ports a and b. The console keyboard is decoded
372 * independently (we always send unit-2 input to /dev/kbd, which will
373 * direct it to /dev/console if appropriate).
374 */
375 void
376 zsconsole(tp, unit, out, fnstop)
377 register struct tty *tp;
378 register int unit;
379 int out;
380 void (**fnstop) __P((struct tty *, int));
381 {
382 extern int (*v_putc)();
383 int zs;
384 volatile struct zsdevice *addr;
385
386 if (unit >= ZS_KBD)
387 panic("zsconsole");
388 if (out) {
389 zs_consout = unit;
390 zs = unit >> 1;
391 if ((addr = zsaddr[zs]) == NULL)
392 addr = zsaddr[zs] = findzs(zs);
393 zs_conschan = (unit & 1) == 0 ? &addr->zs_chan[CHAN_A] :
394 &addr->zs_chan[CHAN_B];
395 v_putc = zscnputc;
396 } else
397 zs_consin = unit;
398 if(fnstop)
399 *fnstop = &zsstop;
400 zs_ctty = tp;
401 }
402
403 /*
404 * Polled console output putchar.
405 */
406 static int
407 zscnputc(c)
408 int c;
409 {
410 register volatile struct zschan *zc = zs_conschan;
411 register int s;
412
413 if (c == '\n')
414 zscnputc('\r');
415 /*
416 * Must block output interrupts (i.e., raise to >= splzs) without
417 * lowering current ipl. Need a better way.
418 */
419 s = splhigh();
420 #ifdef SUN4C /* XXX */
421 if (cputyp==CPU_SUN4C && s <= (12 << 8))
422 (void) splzs();
423 #endif
424 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
425 ZS_DELAY();
426 zc->zc_data = c;
427 ZS_DELAY();
428 splx(s);
429 }
430
431 /*
432 * Set up the given unit as console input, output, both, or neither, as
433 * needed. Return console tty if it is to receive console input.
434 */
435 static struct tty *
436 zs_checkcons(zi, unit, cs)
437 struct zsinfo *zi;
438 int unit;
439 struct zs_chanstate *cs;
440 {
441 register struct tty *tp;
442 char *i, *o;
443
444 if ((tp = zs_ctty) == NULL)
445 return (0);
446 i = zs_consin == unit ? "input" : NULL;
447 o = zs_consout == unit ? "output" : NULL;
448 if (i == NULL && o == NULL)
449 return (0);
450
451 /* rewire the minor device (gack) */
452 tp->t_dev = makedev(major(tp->t_dev), unit);
453
454 /*
455 * Rewire input and/or output. Note that baud rate reflects
456 * input settings, not output settings, but we can do no better
457 * if the console is split across two ports.
458 *
459 * XXX split consoles don't work anyway -- this needs to be
460 * thrown away and redone
461 */
462 if (i) {
463 tp->t_param = zsparam;
464 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
465 tp->t_cflag = CS8;
466 ttsetwater(tp);
467 }
468 if (o) {
469 tp->t_oproc = zsstart;
470 }
471 printf("%s%c: console %s\n",
472 zi->zi_dev.dv_xname, (unit & 1) + 'a', i ? (o ? "i/o" : i) : o);
473 cs->cs_consio = 1;
474 cs->cs_brkabort = 1;
475 return (tp);
476 }
477
478 #ifdef KGDB
479 /*
480 * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
481 * Pick up the current speed and character size and restore the original
482 * speed.
483 */
484 static void
485 zs_checkkgdb(unit, cs, tp)
486 int unit;
487 struct zs_chanstate *cs;
488 struct tty *tp;
489 {
490
491 if (kgdb_dev == makedev(ZSMAJOR, unit)) {
492 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
493 tp->t_cflag = CS8;
494 cs->cs_kgdb = 1;
495 cs->cs_speed = zs_kgdb_savedspeed;
496 (void) zsparam(tp, &tp->t_termios);
497 }
498 }
499 #endif
500
501 /*
502 * Compute the current baud rate given a ZSCC channel.
503 */
504 static int
505 zs_getspeed(zc)
506 register volatile struct zschan *zc;
507 {
508 register int tconst;
509
510 tconst = ZS_READ(zc, 12);
511 tconst |= ZS_READ(zc, 13) << 8;
512 return (TCONST_TO_BPS(PCLK / 16, tconst));
513 }
514
515
516 /*
517 * Do an internal open.
518 */
519 static void
520 zsiopen(tp)
521 struct tty *tp;
522 {
523
524 (void) zsparam(tp, &tp->t_termios);
525 ttsetwater(tp);
526 tp->t_state = TS_ISOPEN | TS_CARR_ON;
527 }
528
529 /*
530 * Do an internal close. Eventually we should shut off the chip when both
531 * ports on it are closed.
532 */
533 static void
534 zsiclose(tp)
535 struct tty *tp;
536 {
537
538 ttylclose(tp, 0); /* ??? */
539 ttyclose(tp); /* ??? */
540 tp->t_state = 0;
541 }
542
543
544 /*
545 * Open a zs serial port. This interface may not be used to open
546 * the keyboard and mouse ports. (XXX)
547 */
548 int
549 zsopen(dev, flags, mode, p)
550 dev_t dev;
551 int flags;
552 int mode;
553 struct proc *p;
554 {
555 register struct tty *tp;
556 register struct zs_chanstate *cs;
557 struct zsinfo *zi;
558 int unit = minor(dev), zs = unit >> 1, error, s;
559
560 if (zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL ||
561 unit == ZS_KBD || unit == ZS_MOUSE)
562 return (ENXIO);
563 cs = &zi->zi_cs[unit & 1];
564 if (cs->cs_consio)
565 return (ENXIO); /* ??? */
566 tp = cs->cs_ttyp;
567 s = spltty();
568 if ((tp->t_state & TS_ISOPEN) == 0) {
569 ttychars(tp);
570 if (tp->t_ispeed == 0) {
571 tp->t_iflag = TTYDEF_IFLAG;
572 tp->t_oflag = TTYDEF_OFLAG;
573 tp->t_cflag = TTYDEF_CFLAG;
574 tp->t_lflag = TTYDEF_LFLAG;
575 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
576 }
577 (void) zsparam(tp, &tp->t_termios);
578 ttsetwater(tp);
579 } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
580 splx(s);
581 return (EBUSY);
582 }
583 error = 0;
584 for (;;) {
585 /* loop, turning on the device, until carrier present */
586 zs_modem(cs, 1);
587 if (cs->cs_softcar)
588 tp->t_state |= TS_CARR_ON;
589 if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
590 tp->t_state & TS_CARR_ON)
591 break;
592 tp->t_state |= TS_WOPEN;
593 if (error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
594 ttopen, 0)) {
595 if (!(tp->t_state & TS_ISOPEN)) {
596 zs_modem(cs, 0);
597 tp->t_state &= ~TS_WOPEN;
598 ttwakeup(tp);
599 }
600 splx(s);
601 return error;
602 }
603 }
604 splx(s);
605 if (error == 0)
606 error = linesw[tp->t_line].l_open(dev, tp);
607 if (error)
608 zs_modem(cs, 0);
609 return (error);
610 }
611
612 /*
613 * Close a zs serial port.
614 */
615 int
616 zsclose(dev, flags, mode, p)
617 dev_t dev;
618 int flags;
619 int mode;
620 struct proc *p;
621 {
622 register struct zs_chanstate *cs;
623 register struct tty *tp;
624 struct zsinfo *zi;
625 int unit = minor(dev), s;
626
627 zi = zscd.cd_devs[unit >> 1];
628 cs = &zi->zi_cs[unit & 1];
629 tp = cs->cs_ttyp;
630 linesw[tp->t_line].l_close(tp, flags);
631 if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
632 (tp->t_state & TS_ISOPEN) == 0) {
633 zs_modem(cs, 0);
634 /* hold low for 1 second */
635 (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
636 }
637 if (cs->cs_creg[5] & ZSWR5_BREAK)
638 {
639 s = splzs();
640 cs->cs_preg[5] &= ~ZSWR5_BREAK;
641 cs->cs_creg[5] &= ~ZSWR5_BREAK;
642 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
643 splx(s);
644 }
645 ttyclose(tp);
646 #ifdef KGDB
647 /* Reset the speed if we're doing kgdb on this port */
648 if (cs->cs_kgdb) {
649 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
650 (void) zsparam(tp, &tp->t_termios);
651 }
652 #endif
653 return (0);
654 }
655
656 /*
657 * Read/write zs serial port.
658 */
659 int
660 zsread(dev, uio, flags)
661 dev_t dev;
662 struct uio *uio;
663 int flags;
664 {
665 register struct tty *tp = zs_tty[minor(dev)];
666
667 return (linesw[tp->t_line].l_read(tp, uio, flags));
668 }
669
670 int
671 zswrite(dev, uio, flags)
672 dev_t dev;
673 struct uio *uio;
674 int flags;
675 {
676 register struct tty *tp = zs_tty[minor(dev)];
677
678 return (linesw[tp->t_line].l_write(tp, uio, flags));
679 }
680
681 /*
682 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
683 * channels are kept in (A,B) pairs.
684 *
685 * Do just a little, then get out; set a software interrupt if more
686 * work is needed.
687 *
688 * We deliberately ignore the vectoring Zilog gives us, and match up
689 * only the number of `reset interrupt under service' operations, not
690 * the order.
691 */
692 /* ARGSUSED */
693 int
694 zshard(intrarg)
695 void *intrarg;
696 {
697 register struct zs_chanstate *a;
698 #define b (a + 1)
699 register volatile struct zschan *zc;
700 register int rr3, intflags = 0, v, i;
701 static int zsrint(struct zs_chanstate *, volatile struct zschan *);
702 static int zsxint(struct zs_chanstate *, volatile struct zschan *);
703 static int zssint(struct zs_chanstate *, volatile struct zschan *);
704
705 for (a = zslist; a != NULL; a = b->cs_next) {
706 rr3 = ZS_READ(a->cs_zc, 3);
707 if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
708 intflags |= 2;
709 zc = a->cs_zc;
710 i = a->cs_rbput;
711 if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
712 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
713 intflags |= 1;
714 }
715 if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
716 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
717 intflags |= 1;
718 }
719 if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
720 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
721 intflags |= 1;
722 }
723 a->cs_rbput = i;
724 }
725 if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
726 intflags |= 2;
727 zc = b->cs_zc;
728 i = b->cs_rbput;
729 if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
730 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
731 intflags |= 1;
732 }
733 if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
734 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
735 intflags |= 1;
736 }
737 if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
738 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
739 intflags |= 1;
740 }
741 b->cs_rbput = i;
742 }
743 }
744 #undef b
745
746 if (intflags & 1) {
747 #if defined(SUN4C) || defined(SUN4M)
748 if (cputyp==CPU_SUN4M || cputyp==CPU_SUN4C) {
749 /* XXX -- but this will go away when zshard moves to locore.s */
750 struct clockframe *p = intrarg;
751
752 if ((p->psr & PSR_PIL) < (PIL_TTY << 8)) {
753 zsshortcuts++;
754 (void) spltty();
755 if (zshardscope) {
756 LED_ON;
757 LED_OFF;
758 }
759 return (zssoft(intrarg));
760 }
761 }
762 #endif
763 ienab_bis(IE_ZSSOFT);
764 }
765 return (intflags & 2);
766 }
767
768 static int
769 zsrint(cs, zc)
770 register struct zs_chanstate *cs;
771 register volatile struct zschan *zc;
772 {
773 register int c = zc->zc_data;
774
775 if (cs->cs_conk) {
776 register struct conk_state *conk = &zsconk_state;
777
778 /*
779 * Check here for console abort function, so that we
780 * can abort even when interrupts are locking up the
781 * machine.
782 */
783 if (c == KBD_RESET) {
784 conk->conk_id = 1; /* ignore next byte */
785 conk->conk_l1 = 0;
786 } else if (conk->conk_id)
787 conk->conk_id = 0; /* stop ignoring bytes */
788 else if (c == KBD_L1)
789 conk->conk_l1 = 1; /* L1 went down */
790 else if (c == (KBD_L1|KBD_UP))
791 conk->conk_l1 = 0; /* L1 went up */
792 else if (c == KBD_A && conk->conk_l1) {
793 zsabort();
794 conk->conk_l1 = 0; /* we never see the up */
795 goto clearit; /* eat the A after L1-A */
796 }
797 }
798 #ifdef KGDB
799 if (c == FRAME_START && cs->cs_kgdb &&
800 (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
801 zskgdb(cs->cs_unit);
802 goto clearit;
803 }
804 #endif
805 /* compose receive character and status */
806 c <<= 8;
807 c |= ZS_READ(zc, 1);
808
809 /* clear receive error & interrupt condition */
810 zc->zc_csr = ZSWR0_RESET_ERRORS;
811 ZS_DELAY();
812 zc->zc_csr = ZSWR0_CLR_INTR;
813 ZS_DELAY();
814
815 return (ZRING_MAKE(ZRING_RINT, c));
816
817 clearit:
818 zc->zc_csr = ZSWR0_RESET_ERRORS;
819 ZS_DELAY();
820 zc->zc_csr = ZSWR0_CLR_INTR;
821 ZS_DELAY();
822 return (0);
823 }
824
825 static int
826 zsxint(cs, zc)
827 register struct zs_chanstate *cs;
828 register volatile struct zschan *zc;
829 {
830 register int i = cs->cs_tbc;
831
832 if (i == 0) {
833 zc->zc_csr = ZSWR0_RESET_TXINT;
834 ZS_DELAY();
835 zc->zc_csr = ZSWR0_CLR_INTR;
836 ZS_DELAY();
837 return (ZRING_MAKE(ZRING_XINT, 0));
838 }
839 cs->cs_tbc = i - 1;
840 zc->zc_data = *cs->cs_tba++;
841 ZS_DELAY();
842 zc->zc_csr = ZSWR0_CLR_INTR;
843 ZS_DELAY();
844 return (0);
845 }
846
847 static int
848 zssint(cs, zc)
849 register struct zs_chanstate *cs;
850 register volatile struct zschan *zc;
851 {
852 register int rr0;
853
854 rr0 = zc->zc_csr;
855 zc->zc_csr = ZSWR0_RESET_STATUS;
856 ZS_DELAY();
857 zc->zc_csr = ZSWR0_CLR_INTR;
858 ZS_DELAY();
859 /*
860 * The chip's hardware flow control is, as noted in zsreg.h,
861 * busted---if the DCD line goes low the chip shuts off the
862 * receiver (!). If we want hardware CTS flow control but do
863 * not have it, and carrier is now on, turn HFC on; if we have
864 * HFC now but carrier has gone low, turn it off.
865 */
866 if (rr0 & ZSRR0_DCD) {
867 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
868 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
869 cs->cs_creg[3] |= ZSWR3_HFC;
870 ZS_WRITE(zc, 3, cs->cs_creg[3]);
871 }
872 } else {
873 if (cs->cs_creg[3] & ZSWR3_HFC) {
874 cs->cs_creg[3] &= ~ZSWR3_HFC;
875 ZS_WRITE(zc, 3, cs->cs_creg[3]);
876 }
877 }
878 if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
879 #ifdef SUN4
880 /*
881 * XXX This might not be necessary. Test and
882 * delete if it isn't.
883 */
884 if (cputyp==CPU_SUN4) {
885 while (zc->zc_csr & ZSRR0_BREAK)
886 ZS_DELAY();
887 }
888 #endif
889 zsabort();
890 return (0);
891 }
892 return (ZRING_MAKE(ZRING_SINT, rr0));
893 }
894
895 zsabort()
896 {
897
898 #ifdef DDB
899 Debugger();
900 #else
901 printf("stopping on keyboard abort\n");
902 callrom();
903 #endif
904 }
905
906 #ifdef KGDB
907 /*
908 * KGDB framing character received: enter kernel debugger. This probably
909 * should time out after a few seconds to avoid hanging on spurious input.
910 */
911 zskgdb(unit)
912 int unit;
913 {
914
915 printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
916 kgdb_connect(1);
917 }
918 #endif
919
920 /*
921 * Print out a ring or fifo overrun error message.
922 */
923 static void
924 zsoverrun(unit, ptime, what)
925 int unit;
926 long *ptime;
927 char *what;
928 {
929
930 if (*ptime != time.tv_sec) {
931 *ptime = time.tv_sec;
932 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
933 (unit & 1) + 'a', what);
934 }
935 }
936
937 /*
938 * ZS software interrupt. Scan all channels for deferred interrupts.
939 */
940 int
941 zssoft(arg)
942 void *arg;
943 {
944 register struct zs_chanstate *cs;
945 register volatile struct zschan *zc;
946 register struct linesw *line;
947 register struct tty *tp;
948 register int get, n, c, cc, unit, s;
949 int retval = 0;
950
951 for (cs = zslist; cs != NULL; cs = cs->cs_next) {
952 get = cs->cs_rbget;
953 again:
954 n = cs->cs_rbput; /* atomic */
955 if (get == n) /* nothing more on this line */
956 continue;
957 retval = 1;
958 unit = cs->cs_unit; /* set up to handle interrupts */
959 zc = cs->cs_zc;
960 tp = cs->cs_ttyp;
961 line = &linesw[tp->t_line];
962 /*
963 * Compute the number of interrupts in the receive ring.
964 * If the count is overlarge, we lost some events, and
965 * must advance to the first valid one. It may get
966 * overwritten if more data are arriving, but this is
967 * too expensive to check and gains nothing (we already
968 * lost out; all we can do at this point is trade one
969 * kind of loss for another).
970 */
971 n -= get;
972 if (n > ZLRB_RING_SIZE) {
973 zsoverrun(unit, &cs->cs_rotime, "ring");
974 get += n - ZLRB_RING_SIZE;
975 n = ZLRB_RING_SIZE;
976 }
977 while (--n >= 0) {
978 /* race to keep ahead of incoming interrupts */
979 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
980 switch (ZRING_TYPE(c)) {
981
982 case ZRING_RINT:
983 c = ZRING_VALUE(c);
984 if (c & ZSRR1_DO)
985 zsoverrun(unit, &cs->cs_fotime, "fifo");
986 cc = c >> 8;
987 if (c & ZSRR1_FE)
988 cc |= TTY_FE;
989 if (c & ZSRR1_PE)
990 cc |= TTY_PE;
991 /*
992 * this should be done through
993 * bstreams XXX gag choke
994 */
995 if (unit == ZS_KBD)
996 kbd_rint(cc);
997 else if (unit == ZS_MOUSE)
998 ms_rint(cc);
999 else
1000 line->l_rint(cc, tp);
1001 break;
1002
1003 case ZRING_XINT:
1004 /*
1005 * Transmit done: change registers and resume,
1006 * or clear BUSY.
1007 */
1008 if (cs->cs_heldchange) {
1009 s = splzs();
1010 c = zc->zc_csr;
1011 ZS_DELAY();
1012 if ((c & ZSRR0_DCD) == 0)
1013 cs->cs_preg[3] &= ~ZSWR3_HFC;
1014 bcopy((caddr_t)cs->cs_preg,
1015 (caddr_t)cs->cs_creg, 16);
1016 zs_loadchannelregs(zc, cs->cs_creg);
1017 splx(s);
1018 cs->cs_heldchange = 0;
1019 if (cs->cs_heldtbc &&
1020 (tp->t_state & TS_TTSTOP) == 0) {
1021 cs->cs_tbc = cs->cs_heldtbc - 1;
1022 zc->zc_data = *cs->cs_tba++;
1023 ZS_DELAY();
1024 goto again;
1025 }
1026 }
1027 tp->t_state &= ~TS_BUSY;
1028 if (tp->t_state & TS_FLUSH)
1029 tp->t_state &= ~TS_FLUSH;
1030 else
1031 ndflush(&tp->t_outq,
1032 cs->cs_tba - (caddr_t)tp->t_outq.c_cf);
1033 line->l_start(tp);
1034 break;
1035
1036 case ZRING_SINT:
1037 /*
1038 * Status line change. HFC bit is run in
1039 * hardware interrupt, to avoid locking
1040 * at splzs here.
1041 */
1042 c = ZRING_VALUE(c);
1043 if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
1044 cc = (c & ZSRR0_DCD) != 0;
1045 if (line->l_modem(tp, cc) == 0)
1046 zs_modem(cs, cc);
1047 }
1048 cs->cs_rr0 = c;
1049 break;
1050
1051 default:
1052 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
1053 unit >> 1, (unit & 1) + 'a', c);
1054 break;
1055 }
1056 }
1057 cs->cs_rbget = get;
1058 goto again;
1059 }
1060 return (retval);
1061 }
1062
1063 int
1064 zsioctl(dev, cmd, data, flag, p)
1065 dev_t dev;
1066 u_long cmd;
1067 caddr_t data;
1068 int flag;
1069 struct proc *p;
1070 {
1071 int unit = minor(dev);
1072 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1073 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
1074 register int error, s;
1075 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1076
1077 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
1078 if (error >= 0)
1079 return (error);
1080 error = ttioctl(tp, cmd, data, flag, p);
1081 if (error >= 0)
1082 return (error);
1083
1084 switch (cmd) {
1085 case TIOCSBRK:
1086 s = splzs();
1087 cs->cs_preg[5] |= ZSWR5_BREAK;
1088 cs->cs_creg[5] |= ZSWR5_BREAK;
1089 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1090 splx(s);
1091 break;
1092 case TIOCCBRK:
1093 s = splzs();
1094 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1095 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1096 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1097 splx(s);
1098 break;
1099 case TIOCGFLAGS: {
1100 int bits = 0;
1101
1102 if (cs->cs_softcar)
1103 bits |= TIOCFLAG_SOFTCAR;
1104 if (cs->cs_creg[15] & ZSWR15_DCD_IE)
1105 bits |= TIOCFLAG_CLOCAL;
1106 if (cs->cs_creg[3] & ZSWR3_HFC)
1107 bits |= TIOCFLAG_CRTSCTS;
1108 *(int *)data = bits;
1109 break;
1110 }
1111 case TIOCSFLAGS: {
1112 int userbits, driverbits = 0;
1113
1114 error = suser(p->p_ucred, &p->p_acflag);
1115 if (error != 0)
1116 return (EPERM);
1117
1118 userbits = *(int *)data;
1119
1120 /*
1121 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
1122 # defaulting to software flow control.
1123 */
1124 if (userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
1125 return(EINVAL);
1126 if (userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
1127 return(ENXIO);
1128
1129 s = splzs();
1130 if ((userbits & TIOCFLAG_SOFTCAR) || (tp == zs_ctty)) {
1131 cs->cs_softcar = 1; /* turn on softcar */
1132 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
1133 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
1134 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1135 } else if (userbits & TIOCFLAG_CLOCAL) {
1136 cs->cs_softcar = 0; /* turn off softcar */
1137 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
1138 cs->cs_creg[15] |= ZSWR15_DCD_IE;
1139 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1140 tp->t_termios.c_cflag |= CLOCAL;
1141 }
1142 if (userbits & TIOCFLAG_CRTSCTS) {
1143 cs->cs_preg[15] |= ZSWR15_CTS_IE;
1144 cs->cs_creg[15] |= ZSWR15_CTS_IE;
1145 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1146 cs->cs_preg[3] |= ZSWR3_HFC;
1147 cs->cs_creg[3] |= ZSWR3_HFC;
1148 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
1149 tp->t_termios.c_cflag |= CRTSCTS;
1150 } else {
1151 /* no mdmbuf, so we must want software flow control */
1152 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
1153 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
1154 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1155 cs->cs_preg[3] &= ~ZSWR3_HFC;
1156 cs->cs_creg[3] &= ~ZSWR3_HFC;
1157 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
1158 tp->t_termios.c_cflag &= ~CRTSCTS;
1159 }
1160 splx(s);
1161 break;
1162 }
1163 case TIOCSDTR:
1164 zs_modem(cs, 1);
1165 break;
1166 case TIOCCDTR:
1167 zs_modem(cs, 0);
1168 break;
1169 case TIOCMSET:
1170 case TIOCMBIS:
1171 case TIOCMBIC:
1172 case TIOCMGET:
1173 default:
1174 return (ENOTTY);
1175 }
1176 return (0);
1177 }
1178
1179 /*
1180 * Start or restart transmission.
1181 */
1182 static void
1183 zsstart(tp)
1184 register struct tty *tp;
1185 {
1186 register struct zs_chanstate *cs;
1187 register int s, nch;
1188 int unit = minor(tp->t_dev);
1189 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1190
1191 cs = &zi->zi_cs[unit & 1];
1192 s = spltty();
1193
1194 /*
1195 * If currently active or delaying, no need to do anything.
1196 */
1197 if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1198 goto out;
1199
1200 /*
1201 * If there are sleepers, and output has drained below low
1202 * water mark, awaken.
1203 */
1204 if (tp->t_outq.c_cc <= tp->t_lowat) {
1205 if (tp->t_state & TS_ASLEEP) {
1206 tp->t_state &= ~TS_ASLEEP;
1207 wakeup((caddr_t)&tp->t_outq);
1208 }
1209 selwakeup(&tp->t_wsel);
1210 }
1211
1212 nch = ndqb(&tp->t_outq, 0); /* XXX */
1213 if (nch) {
1214 register char *p = tp->t_outq.c_cf;
1215
1216 /* mark busy, enable tx done interrupts, & send first byte */
1217 tp->t_state |= TS_BUSY;
1218 (void) splzs();
1219 cs->cs_preg[1] |= ZSWR1_TIE;
1220 cs->cs_creg[1] |= ZSWR1_TIE;
1221 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1222 cs->cs_zc->zc_data = *p;
1223 ZS_DELAY();
1224 cs->cs_tba = p + 1;
1225 cs->cs_tbc = nch - 1;
1226 } else {
1227 /*
1228 * Nothing to send, turn off transmit done interrupts.
1229 * This is useful if something is doing polled output.
1230 */
1231 (void) splzs();
1232 cs->cs_preg[1] &= ~ZSWR1_TIE;
1233 cs->cs_creg[1] &= ~ZSWR1_TIE;
1234 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1235 }
1236 out:
1237 splx(s);
1238 }
1239
1240 /*
1241 * Stop output, e.g., for ^S or output flush.
1242 */
1243 void
1244 zsstop(tp, flag)
1245 register struct tty *tp;
1246 int flag;
1247 {
1248 register struct zs_chanstate *cs;
1249 register int s, unit = minor(tp->t_dev);
1250 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1251
1252 cs = &zi->zi_cs[unit & 1];
1253 s = splzs();
1254 if (tp->t_state & TS_BUSY) {
1255 /*
1256 * Device is transmitting; must stop it.
1257 */
1258 cs->cs_tbc = 0;
1259 if ((tp->t_state & TS_TTSTOP) == 0)
1260 tp->t_state |= TS_FLUSH;
1261 }
1262 splx(s);
1263 }
1264
1265 /*
1266 * Set ZS tty parameters from termios.
1267 *
1268 * This routine makes use of the fact that only registers
1269 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1270 */
1271 static int
1272 zsparam(tp, t)
1273 register struct tty *tp;
1274 register struct termios *t;
1275 {
1276 int unit = minor(tp->t_dev);
1277 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1278 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1279 register int tmp, tmp5, cflag, s;
1280
1281 /*
1282 * Because PCLK is only run at 4.9 MHz, the fastest we
1283 * can go is 51200 baud (this corresponds to TC=1).
1284 * This is somewhat unfortunate as there is no real
1285 * reason we should not be able to handle higher rates.
1286 */
1287 tmp = t->c_ospeed;
1288 if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
1289 return (EINVAL);
1290 if (tmp == 0) {
1291 /* stty 0 => drop DTR and RTS */
1292 zs_modem(cs, 0);
1293 return (0);
1294 }
1295 tmp = BPS_TO_TCONST(PCLK / 16, tmp);
1296 if (tmp < 2)
1297 return (EINVAL);
1298
1299 cflag = t->c_cflag;
1300 tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
1301 tp->t_cflag = cflag;
1302
1303 /*
1304 * Block interrupts so that state will not
1305 * be altered until we are done setting it up.
1306 */
1307 s = splzs();
1308 cs->cs_preg[12] = tmp;
1309 cs->cs_preg[13] = tmp >> 8;
1310 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1311 switch (cflag & CSIZE) {
1312 case CS5:
1313 tmp = ZSWR3_RX_5;
1314 tmp5 = ZSWR5_TX_5;
1315 break;
1316 case CS6:
1317 tmp = ZSWR3_RX_6;
1318 tmp5 = ZSWR5_TX_6;
1319 break;
1320 case CS7:
1321 tmp = ZSWR3_RX_7;
1322 tmp5 = ZSWR5_TX_7;
1323 break;
1324 case CS8:
1325 default:
1326 tmp = ZSWR3_RX_8;
1327 tmp5 = ZSWR5_TX_8;
1328 break;
1329 }
1330
1331 /*
1332 * Output hardware flow control on the chip is horrendous: if
1333 * carrier detect drops, the receiver is disabled. Hence we
1334 * can only do this when the carrier is on.
1335 */
1336 if (cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1337 tmp |= ZSWR3_HFC | ZSWR3_RX_ENABLE;
1338 else
1339 tmp |= ZSWR3_RX_ENABLE;
1340 cs->cs_preg[3] = tmp;
1341 cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1342
1343 tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
1344 if ((cflag & PARODD) == 0)
1345 tmp |= ZSWR4_EVENP;
1346 if (cflag & PARENB)
1347 tmp |= ZSWR4_PARENB;
1348 cs->cs_preg[4] = tmp;
1349 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR;
1350 cs->cs_preg[10] = ZSWR10_NRZ;
1351 cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
1352 cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
1353 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1354
1355 /*
1356 * If nothing is being transmitted, set up new current values,
1357 * else mark them as pending.
1358 */
1359 if (cs->cs_heldchange == 0) {
1360 if (cs->cs_ttyp->t_state & TS_BUSY) {
1361 cs->cs_heldtbc = cs->cs_tbc;
1362 cs->cs_tbc = 0;
1363 cs->cs_heldchange = 1;
1364 } else {
1365 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1366 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1367 }
1368 }
1369 splx(s);
1370 return (0);
1371 }
1372
1373 /*
1374 * Raise or lower modem control (DTR/RTS) signals. If a character is
1375 * in transmission, the change is deferred.
1376 */
1377 static void
1378 zs_modem(cs, onoff)
1379 struct zs_chanstate *cs;
1380 int onoff;
1381 {
1382 int s, bis, and;
1383
1384 if (onoff) {
1385 bis = ZSWR5_DTR | ZSWR5_RTS;
1386 and = ~0;
1387 } else {
1388 bis = 0;
1389 and = ~(ZSWR5_DTR | ZSWR5_RTS);
1390 }
1391 s = splzs();
1392 cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
1393 if (cs->cs_heldchange == 0) {
1394 if (cs->cs_ttyp->t_state & TS_BUSY) {
1395 cs->cs_heldtbc = cs->cs_tbc;
1396 cs->cs_tbc = 0;
1397 cs->cs_heldchange = 1;
1398 } else {
1399 cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
1400 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1401 }
1402 }
1403 splx(s);
1404 }
1405
1406 /*
1407 * Write the given register set to the given zs channel in the proper order.
1408 * The channel must not be transmitting at the time. The receiver will
1409 * be disabled for the time it takes to write all the registers.
1410 */
1411 static void
1412 zs_loadchannelregs(zc, reg)
1413 volatile struct zschan *zc;
1414 u_char *reg;
1415 {
1416 int i;
1417
1418 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1419 ZS_DELAY();
1420 i = zc->zc_data; /* drain fifo */
1421 ZS_DELAY();
1422 i = zc->zc_data;
1423 ZS_DELAY();
1424 i = zc->zc_data;
1425 ZS_DELAY();
1426 ZS_WRITE(zc, 4, reg[4]);
1427 ZS_WRITE(zc, 10, reg[10]);
1428 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1429 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1430 ZS_WRITE(zc, 1, reg[1]);
1431 ZS_WRITE(zc, 9, reg[9]);
1432 ZS_WRITE(zc, 11, reg[11]);
1433 ZS_WRITE(zc, 12, reg[12]);
1434 ZS_WRITE(zc, 13, reg[13]);
1435 ZS_WRITE(zc, 14, reg[14]);
1436 ZS_WRITE(zc, 15, reg[15]);
1437 ZS_WRITE(zc, 3, reg[3]);
1438 ZS_WRITE(zc, 5, reg[5]);
1439 }
1440
1441 #ifdef KGDB
1442 /*
1443 * Get a character from the given kgdb channel. Called at splhigh().
1444 */
1445 static int
1446 zs_kgdb_getc(arg)
1447 void *arg;
1448 {
1449 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1450
1451 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
1452 ZS_DELAY();
1453 return (zc->zc_data);
1454 }
1455
1456 /*
1457 * Put a character to the given kgdb channel. Called at splhigh().
1458 */
1459 static void
1460 zs_kgdb_putc(arg, c)
1461 void *arg;
1462 int c;
1463 {
1464 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1465
1466 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
1467 ZS_DELAY();
1468 zc->zc_data = c;
1469 ZS_DELAY();
1470 }
1471
1472 /*
1473 * Set up for kgdb; called at boot time before configuration.
1474 * KGDB interrupts will be enabled later when zs0 is configured.
1475 */
1476 void
1477 zs_kgdb_init()
1478 {
1479 volatile struct zsdevice *addr;
1480 volatile struct zschan *zc;
1481 int unit, zs;
1482
1483 if (major(kgdb_dev) != ZSMAJOR)
1484 return;
1485 unit = minor(kgdb_dev);
1486 /*
1487 * Unit must be 0 or 1 (zs0).
1488 */
1489 if ((unsigned)unit >= ZS_KBD) {
1490 printf("zs_kgdb_init: bad minor dev %d\n", unit);
1491 return;
1492 }
1493 zs = unit >> 1;
1494 if ((addr = zsaddr[zs]) == NULL)
1495 addr = zsaddr[zs] = findzs(zs);
1496 unit &= 1;
1497 zc = unit == 0 ? &addr->zs_chan[CHAN_A] : &addr->zs_chan[CHAN_B];
1498 zs_kgdb_savedspeed = zs_getspeed(zc);
1499 printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
1500 zs, unit + 'a', kgdb_rate);
1501 zs_reset(zc, 1, kgdb_rate);
1502 kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
1503 }
1504 #endif /* KGDB */
1505