zs.c revision 1.27 1 /* $NetBSD: zs.c,v 1.27 1995/04/11 02:43:02 mycroft Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 *
44 * @(#)zs.c 8.1 (Berkeley) 7/19/93
45 */
46
47 /*
48 * Zilog Z8530 (ZSCC) driver.
49 *
50 * Runs two tty ports (ttya and ttyb) on zs0,
51 * and runs a keyboard and mouse on zs1.
52 *
53 * This driver knows far too much about chip to usage mappings.
54 */
55 #define NZS 2 /* XXX */
56
57 #include <sys/param.h>
58 #include <sys/proc.h>
59 #include <sys/device.h>
60 #include <sys/conf.h>
61 #include <sys/file.h>
62 #include <sys/ioctl.h>
63 #include <sys/tty.h>
64 #include <sys/time.h>
65 #include <sys/kernel.h>
66 #include <sys/syslog.h>
67
68 #include <machine/autoconf.h>
69 #include <machine/cpu.h>
70
71 #include <sparc/sparc/vaddrs.h>
72 #include <sparc/sparc/auxreg.h>
73
74 #include <machine/kbd.h>
75 #include <dev/ic/z8530.h>
76 #include <sparc/dev/zsvar.h>
77
78 #ifdef KGDB
79 #include <machine/remote-sl.h>
80 #endif
81
82 #define ZSMAJOR 12 /* XXX */
83
84 #define ZS_KBD 2 /* XXX */
85 #define ZS_MOUSE 3 /* XXX */
86
87 /* the magic number below was stolen from the Sprite source. */
88 #define PCLK (19660800/4) /* PCLK pin input clock rate */
89
90 /*
91 * Select software interrupt bit based on TTY ipl.
92 */
93 #if PIL_TTY == 1
94 # define IE_ZSSOFT IE_L1
95 #elif PIL_TTY == 4
96 # define IE_ZSSOFT IE_L4
97 #elif PIL_TTY == 6
98 # define IE_ZSSOFT IE_L6
99 #else
100 # error "no suitable software interrupt bit"
101 #endif
102
103 /*
104 * Software state per found chip. This would be called `zs_softc',
105 * but the previous driver had a rather different zs_softc....
106 */
107 struct zsinfo {
108 struct device zi_dev; /* base device */
109 volatile struct zsdevice *zi_zs;/* chip registers */
110 struct zs_chanstate zi_cs[2]; /* channel A and B software state */
111 };
112
113 struct tty *zs_tty[NZS * 2]; /* XXX should be dynamic */
114
115 /* Definition of the driver for autoconfig. */
116 static int zsmatch __P((struct device *, void *, void *));
117 static void zsattach __P((struct device *, struct device *, void *));
118 struct cfdriver zscd =
119 { NULL, "zs", zsmatch, zsattach, DV_TTY, sizeof(struct zsinfo) };
120
121 /* Interrupt handlers. */
122 static int zshard __P((void *));
123 static struct intrhand levelhard = { zshard };
124 static int zssoft __P((void *));
125 static struct intrhand levelsoft = { zssoft };
126
127 struct zs_chanstate *zslist;
128
129 /* Routines called from other code. */
130 static void zsiopen __P((struct tty *));
131 static void zsiclose __P((struct tty *));
132 static void zsstart __P((struct tty *));
133 void zsstop __P((struct tty *, int));
134 static int zsparam __P((struct tty *, struct termios *));
135
136 /* Routines purely local to this driver. */
137 static int zs_getspeed __P((volatile struct zschan *));
138 static void zs_reset __P((volatile struct zschan *, int, int));
139 static void zs_modem __P((struct zs_chanstate *, int));
140 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
141
142 /* Console stuff. */
143 static struct tty *zs_ctty; /* console `struct tty *' */
144 static int zs_consin = -1, zs_consout = -1;
145 static int zscnputc __P((int)); /* console putc function */
146 static volatile struct zschan *zs_conschan;
147 static struct tty *zs_checkcons __P((struct zsinfo *, int, struct zs_chanstate *));
148
149 #ifdef KGDB
150 /* KGDB stuff. Must reboot to change zs_kgdbunit. */
151 extern int kgdb_dev, kgdb_rate;
152 static int zs_kgdb_savedspeed;
153 static void zs_checkkgdb __P((int, struct zs_chanstate *, struct tty *));
154 #endif
155
156 extern volatile struct zsdevice *findzs(int);
157 static volatile struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */
158
159 /*
160 * Console keyboard L1-A processing is done in the hardware interrupt code,
161 * so we need to duplicate some of the console keyboard decode state. (We
162 * must not use the regular state as the hardware code keeps ahead of the
163 * software state: the software state tracks the most recent ring input but
164 * the hardware state tracks the most recent ZSCC input.) See also kbd.h.
165 */
166 static struct conk_state { /* console keyboard state */
167 char conk_id; /* true => ID coming up (console only) */
168 char conk_l1; /* true => L1 pressed (console only) */
169 } zsconk_state;
170
171 int zshardscope;
172 int zsshortcuts; /* number of "shortcut" software interrupts */
173
174 #ifdef SUN4
175 static u_char
176 zs_read(zc, reg)
177 volatile struct zschan *zc;
178 u_char reg;
179 {
180 u_char val;
181
182 zc->zc_csr = reg;
183 ZS_DELAY();
184 val = zc->zc_csr;
185 ZS_DELAY();
186 return val;
187 }
188
189 static u_char
190 zs_write(zc, reg, val)
191 volatile struct zschan *zc;
192 u_char reg, val;
193 {
194 zc->zc_csr = reg;
195 ZS_DELAY();
196 zc->zc_csr = val;
197 ZS_DELAY();
198 return val;
199 }
200 #endif /* SUN4 */
201
202 /*
203 * Match slave number to zs unit number, so that misconfiguration will
204 * not set up the keyboard as ttya, etc.
205 */
206 static int
207 zsmatch(parent, vcf, aux)
208 struct device *parent;
209 void *vcf, *aux;
210 {
211 struct cfdata *cf = vcf;
212 struct confargs *ca = aux;
213 struct romaux *ra = &ca->ca_ra;
214
215 if (strcmp(cf->cf_driver->cd_name, ra->ra_name))
216 return (0);
217 if (ca->ca_bustype==BUS_MAIN && cputyp!=CPU_SUN4)
218 return (getpropint(ra->ra_node, "slave", -2) == cf->cf_unit);
219 ra->ra_len = NBPG;
220 return (probeget(ra->ra_vaddr, 1) != -1);
221 }
222
223 /*
224 * Attach a found zs.
225 *
226 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
227 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
228 */
229 static void
230 zsattach(parent, dev, aux)
231 struct device *parent;
232 struct device *dev;
233 void *aux;
234 {
235 register int zs = dev->dv_unit, unit;
236 register struct zsinfo *zi;
237 register struct zs_chanstate *cs;
238 register volatile struct zsdevice *addr;
239 register struct tty *tp, *ctp;
240 register struct confargs *ca = aux;
241 register struct romaux *ra = &ca->ca_ra;
242 int pri;
243 static int didintr, prevpri;
244
245 if ((addr = zsaddr[zs]) == NULL)
246 addr = zsaddr[zs] = findzs(zs);
247 if (ca->ca_bustype==BUS_MAIN)
248 if ((void *)addr != ra->ra_vaddr)
249 panic("zsattach");
250 if (ra->ra_nintr != 1) {
251 printf(": expected 1 interrupt, got %d\n", ra->ra_nintr);
252 return;
253 }
254 pri = ra->ra_intr[0].int_pri;
255 printf(" pri %d, softpri %d\n", pri, PIL_TTY);
256 if (!didintr) {
257 didintr = 1;
258 prevpri = pri;
259 intr_establish(pri, &levelhard);
260 intr_establish(PIL_TTY, &levelsoft);
261 } else if (pri != prevpri)
262 panic("broken zs interrupt scheme");
263 zi = (struct zsinfo *)dev;
264 zi->zi_zs = addr;
265 unit = zs * 2;
266 cs = zi->zi_cs;
267
268 if(!zs_tty[unit])
269 zs_tty[unit] = ttymalloc();
270 tp = zs_tty[unit];
271 if(!zs_tty[unit+1])
272 zs_tty[unit+1] = ttymalloc();
273
274 /* link into interrupt list with order (A,B) (B=A+1) */
275 cs[0].cs_next = &cs[1];
276 cs[1].cs_next = zslist;
277 zslist = cs;
278
279 cs->cs_unit = unit;
280 cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_A]);
281 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
282 tp->t_dev = makedev(ZSMAJOR, unit);
283 tp->t_oproc = zsstart;
284 tp->t_param = zsparam;
285 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
286 tp = ctp;
287 cs->cs_ttyp = tp;
288 #ifdef KGDB
289 if (ctp == NULL)
290 zs_checkkgdb(unit, cs, tp);
291 #endif
292 if (unit == ZS_KBD) {
293 /*
294 * Keyboard: tell /dev/kbd driver how to talk to us.
295 */
296 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
297 tp->t_cflag = CS8;
298 kbd_serial(tp, zsiopen, zsiclose);
299 cs->cs_conk = 1; /* do L1-A processing */
300 }
301 unit++;
302 cs++;
303 tp = zs_tty[unit];
304 cs->cs_unit = unit;
305 cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_B]);
306 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
307 tp->t_dev = makedev(ZSMAJOR, unit);
308 tp->t_oproc = zsstart;
309 tp->t_param = zsparam;
310 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
311 tp = ctp;
312 cs->cs_ttyp = tp;
313 #ifdef KGDB
314 if (ctp == NULL)
315 zs_checkkgdb(unit, cs, tp);
316 #endif
317 if (unit == ZS_MOUSE) {
318 /*
319 * Mouse: tell /dev/mouse driver how to talk to us.
320 */
321 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
322 tp->t_cflag = CS8;
323 ms_serial(tp, zsiopen, zsiclose);
324 }
325 }
326
327 /*
328 * Put a channel in a known state. Interrupts may be left disabled
329 * or enabled, as desired.
330 */
331 static void
332 zs_reset(zc, inten, speed)
333 volatile struct zschan *zc;
334 int inten, speed;
335 {
336 int tconst;
337 static u_char reg[16] = {
338 0,
339 0,
340 0,
341 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
342 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
343 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
344 0,
345 0,
346 0,
347 0,
348 ZSWR10_NRZ,
349 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
350 0,
351 0,
352 ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
353 ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
354 };
355
356 reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
357 tconst = BPS_TO_TCONST(PCLK / 16, speed);
358 reg[12] = tconst;
359 reg[13] = tconst >> 8;
360 zs_loadchannelregs(zc, reg);
361 }
362
363 /*
364 * Declare the given tty (which is in fact &cons) as a console input
365 * or output. This happens before the zs chip is attached; the hookup
366 * is finished later, in zs_setcons() below.
367 *
368 * This is used only for ports a and b. The console keyboard is decoded
369 * independently (we always send unit-2 input to /dev/kbd, which will
370 * direct it to /dev/console if appropriate).
371 */
372 void
373 zsconsole(tp, unit, out, fnstop)
374 register struct tty *tp;
375 register int unit;
376 int out;
377 void (**fnstop) __P((struct tty *, int));
378 {
379 extern int (*v_putc)();
380 int zs;
381 volatile struct zsdevice *addr;
382
383 if (unit >= ZS_KBD)
384 panic("zsconsole");
385 if (out) {
386 zs_consout = unit;
387 zs = unit >> 1;
388 if ((addr = zsaddr[zs]) == NULL)
389 addr = zsaddr[zs] = findzs(zs);
390 zs_conschan = (unit & 1) == 0 ? &addr->zs_chan[ZS_CHAN_A] :
391 &addr->zs_chan[ZS_CHAN_B];
392 v_putc = zscnputc;
393 } else
394 zs_consin = unit;
395 if(fnstop)
396 *fnstop = &zsstop;
397 zs_ctty = tp;
398 }
399
400 /*
401 * Polled console output putchar.
402 */
403 static int
404 zscnputc(c)
405 int c;
406 {
407 register volatile struct zschan *zc = zs_conschan;
408 register int s;
409
410 if (c == '\n')
411 zscnputc('\r');
412 /*
413 * Must block output interrupts (i.e., raise to >= splzs) without
414 * lowering current ipl. Need a better way.
415 */
416 s = splhigh();
417 #ifdef SUN4C /* XXX */
418 if (cputyp==CPU_SUN4C && s <= (12 << 8))
419 (void) splzs();
420 #endif
421 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
422 ZS_DELAY();
423 zc->zc_data = c;
424 ZS_DELAY();
425 splx(s);
426 }
427
428 /*
429 * Set up the given unit as console input, output, both, or neither, as
430 * needed. Return console tty if it is to receive console input.
431 */
432 static struct tty *
433 zs_checkcons(zi, unit, cs)
434 struct zsinfo *zi;
435 int unit;
436 struct zs_chanstate *cs;
437 {
438 register struct tty *tp;
439 char *i, *o;
440
441 if ((tp = zs_ctty) == NULL)
442 return (0);
443 i = zs_consin == unit ? "input" : NULL;
444 o = zs_consout == unit ? "output" : NULL;
445 if (i == NULL && o == NULL)
446 return (0);
447
448 /* rewire the minor device (gack) */
449 tp->t_dev = makedev(major(tp->t_dev), unit);
450
451 /*
452 * Rewire input and/or output. Note that baud rate reflects
453 * input settings, not output settings, but we can do no better
454 * if the console is split across two ports.
455 *
456 * XXX split consoles don't work anyway -- this needs to be
457 * thrown away and redone
458 */
459 if (i) {
460 tp->t_param = zsparam;
461 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
462 tp->t_cflag = CS8;
463 ttsetwater(tp);
464 }
465 if (o) {
466 tp->t_oproc = zsstart;
467 }
468 printf("%s%c: console %s\n",
469 zi->zi_dev.dv_xname, (unit & 1) + 'a', i ? (o ? "i/o" : i) : o);
470 cs->cs_consio = 1;
471 cs->cs_brkabort = 1;
472 return (tp);
473 }
474
475 #ifdef KGDB
476 /*
477 * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
478 * Pick up the current speed and character size and restore the original
479 * speed.
480 */
481 static void
482 zs_checkkgdb(unit, cs, tp)
483 int unit;
484 struct zs_chanstate *cs;
485 struct tty *tp;
486 {
487
488 if (kgdb_dev == makedev(ZSMAJOR, unit)) {
489 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
490 tp->t_cflag = CS8;
491 cs->cs_kgdb = 1;
492 cs->cs_speed = zs_kgdb_savedspeed;
493 (void) zsparam(tp, &tp->t_termios);
494 }
495 }
496 #endif
497
498 /*
499 * Compute the current baud rate given a ZSCC channel.
500 */
501 static int
502 zs_getspeed(zc)
503 register volatile struct zschan *zc;
504 {
505 register int tconst;
506
507 tconst = ZS_READ(zc, 12);
508 tconst |= ZS_READ(zc, 13) << 8;
509 return (TCONST_TO_BPS(PCLK / 16, tconst));
510 }
511
512
513 /*
514 * Do an internal open.
515 */
516 static void
517 zsiopen(tp)
518 struct tty *tp;
519 {
520
521 (void) zsparam(tp, &tp->t_termios);
522 ttsetwater(tp);
523 tp->t_state = TS_ISOPEN | TS_CARR_ON;
524 }
525
526 /*
527 * Do an internal close. Eventually we should shut off the chip when both
528 * ports on it are closed.
529 */
530 static void
531 zsiclose(tp)
532 struct tty *tp;
533 {
534
535 ttylclose(tp, 0); /* ??? */
536 ttyclose(tp); /* ??? */
537 tp->t_state = 0;
538 }
539
540
541 /*
542 * Open a zs serial port. This interface may not be used to open
543 * the keyboard and mouse ports. (XXX)
544 */
545 int
546 zsopen(dev, flags, mode, p)
547 dev_t dev;
548 int flags;
549 int mode;
550 struct proc *p;
551 {
552 register struct tty *tp;
553 register struct zs_chanstate *cs;
554 struct zsinfo *zi;
555 int unit = minor(dev), zs = unit >> 1, error, s;
556
557 if (zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL ||
558 unit == ZS_KBD || unit == ZS_MOUSE)
559 return (ENXIO);
560 cs = &zi->zi_cs[unit & 1];
561 if (cs->cs_consio)
562 return (ENXIO); /* ??? */
563 tp = cs->cs_ttyp;
564 s = spltty();
565 if ((tp->t_state & TS_ISOPEN) == 0) {
566 ttychars(tp);
567 if (tp->t_ispeed == 0) {
568 tp->t_iflag = TTYDEF_IFLAG;
569 tp->t_oflag = TTYDEF_OFLAG;
570 tp->t_cflag = TTYDEF_CFLAG;
571 tp->t_lflag = TTYDEF_LFLAG;
572 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
573 }
574 (void) zsparam(tp, &tp->t_termios);
575 ttsetwater(tp);
576 } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
577 splx(s);
578 return (EBUSY);
579 }
580 error = 0;
581 for (;;) {
582 /* loop, turning on the device, until carrier present */
583 zs_modem(cs, 1);
584 if (cs->cs_softcar)
585 tp->t_state |= TS_CARR_ON;
586 if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
587 tp->t_state & TS_CARR_ON)
588 break;
589 tp->t_state |= TS_WOPEN;
590 if (error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
591 ttopen, 0)) {
592 if (!(tp->t_state & TS_ISOPEN)) {
593 zs_modem(cs, 0);
594 tp->t_state &= ~TS_WOPEN;
595 ttwakeup(tp);
596 }
597 splx(s);
598 return error;
599 }
600 }
601 splx(s);
602 if (error == 0)
603 error = linesw[tp->t_line].l_open(dev, tp);
604 if (error)
605 zs_modem(cs, 0);
606 return (error);
607 }
608
609 /*
610 * Close a zs serial port.
611 */
612 int
613 zsclose(dev, flags, mode, p)
614 dev_t dev;
615 int flags;
616 int mode;
617 struct proc *p;
618 {
619 register struct zs_chanstate *cs;
620 register struct tty *tp;
621 struct zsinfo *zi;
622 int unit = minor(dev), s;
623
624 zi = zscd.cd_devs[unit >> 1];
625 cs = &zi->zi_cs[unit & 1];
626 tp = cs->cs_ttyp;
627 linesw[tp->t_line].l_close(tp, flags);
628 if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
629 (tp->t_state & TS_ISOPEN) == 0) {
630 zs_modem(cs, 0);
631 /* hold low for 1 second */
632 (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
633 }
634 if (cs->cs_creg[5] & ZSWR5_BREAK)
635 {
636 s = splzs();
637 cs->cs_preg[5] &= ~ZSWR5_BREAK;
638 cs->cs_creg[5] &= ~ZSWR5_BREAK;
639 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
640 splx(s);
641 }
642 ttyclose(tp);
643 #ifdef KGDB
644 /* Reset the speed if we're doing kgdb on this port */
645 if (cs->cs_kgdb) {
646 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
647 (void) zsparam(tp, &tp->t_termios);
648 }
649 #endif
650 return (0);
651 }
652
653 /*
654 * Read/write zs serial port.
655 */
656 int
657 zsread(dev, uio, flags)
658 dev_t dev;
659 struct uio *uio;
660 int flags;
661 {
662 register struct tty *tp = zs_tty[minor(dev)];
663
664 return (linesw[tp->t_line].l_read(tp, uio, flags));
665 }
666
667 int
668 zswrite(dev, uio, flags)
669 dev_t dev;
670 struct uio *uio;
671 int flags;
672 {
673 register struct tty *tp = zs_tty[minor(dev)];
674
675 return (linesw[tp->t_line].l_write(tp, uio, flags));
676 }
677
678 /*
679 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
680 * channels are kept in (A,B) pairs.
681 *
682 * Do just a little, then get out; set a software interrupt if more
683 * work is needed.
684 *
685 * We deliberately ignore the vectoring Zilog gives us, and match up
686 * only the number of `reset interrupt under service' operations, not
687 * the order.
688 */
689 /* ARGSUSED */
690 int
691 zshard(intrarg)
692 void *intrarg;
693 {
694 register struct zs_chanstate *a;
695 #define b (a + 1)
696 register volatile struct zschan *zc;
697 register int rr3, intflags = 0, v, i;
698 static int zsrint(struct zs_chanstate *, volatile struct zschan *);
699 static int zsxint(struct zs_chanstate *, volatile struct zschan *);
700 static int zssint(struct zs_chanstate *, volatile struct zschan *);
701
702 for (a = zslist; a != NULL; a = b->cs_next) {
703 rr3 = ZS_READ(a->cs_zc, 3);
704 if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
705 intflags |= 2;
706 zc = a->cs_zc;
707 i = a->cs_rbput;
708 if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
709 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
710 intflags |= 1;
711 }
712 if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
713 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
714 intflags |= 1;
715 }
716 if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
717 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
718 intflags |= 1;
719 }
720 a->cs_rbput = i;
721 }
722 if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
723 intflags |= 2;
724 zc = b->cs_zc;
725 i = b->cs_rbput;
726 if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
727 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
728 intflags |= 1;
729 }
730 if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
731 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
732 intflags |= 1;
733 }
734 if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
735 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
736 intflags |= 1;
737 }
738 b->cs_rbput = i;
739 }
740 }
741 #undef b
742
743 if (intflags & 1) {
744 #if defined(SUN4C) || defined(SUN4M)
745 if (cputyp==CPU_SUN4M || cputyp==CPU_SUN4C) {
746 /* XXX -- but this will go away when zshard moves to locore.s */
747 struct clockframe *p = intrarg;
748
749 if ((p->psr & PSR_PIL) < (PIL_TTY << 8)) {
750 zsshortcuts++;
751 (void) spltty();
752 if (zshardscope) {
753 LED_ON;
754 LED_OFF;
755 }
756 return (zssoft(intrarg));
757 }
758 }
759 #endif
760 ienab_bis(IE_ZSSOFT);
761 }
762 return (intflags & 2);
763 }
764
765 static int
766 zsrint(cs, zc)
767 register struct zs_chanstate *cs;
768 register volatile struct zschan *zc;
769 {
770 register int c = zc->zc_data;
771
772 if (cs->cs_conk) {
773 register struct conk_state *conk = &zsconk_state;
774
775 /*
776 * Check here for console abort function, so that we
777 * can abort even when interrupts are locking up the
778 * machine.
779 */
780 if (c == KBD_RESET) {
781 conk->conk_id = 1; /* ignore next byte */
782 conk->conk_l1 = 0;
783 } else if (conk->conk_id)
784 conk->conk_id = 0; /* stop ignoring bytes */
785 else if (c == KBD_L1)
786 conk->conk_l1 = 1; /* L1 went down */
787 else if (c == (KBD_L1|KBD_UP))
788 conk->conk_l1 = 0; /* L1 went up */
789 else if (c == KBD_A && conk->conk_l1) {
790 zsabort();
791 conk->conk_l1 = 0; /* we never see the up */
792 goto clearit; /* eat the A after L1-A */
793 }
794 }
795 #ifdef KGDB
796 if (c == FRAME_START && cs->cs_kgdb &&
797 (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
798 zskgdb(cs->cs_unit);
799 goto clearit;
800 }
801 #endif
802 /* compose receive character and status */
803 c <<= 8;
804 c |= ZS_READ(zc, 1);
805
806 /* clear receive error & interrupt condition */
807 zc->zc_csr = ZSWR0_RESET_ERRORS;
808 ZS_DELAY();
809 zc->zc_csr = ZSWR0_CLR_INTR;
810 ZS_DELAY();
811
812 return (ZRING_MAKE(ZRING_RINT, c));
813
814 clearit:
815 zc->zc_csr = ZSWR0_RESET_ERRORS;
816 ZS_DELAY();
817 zc->zc_csr = ZSWR0_CLR_INTR;
818 ZS_DELAY();
819 return (0);
820 }
821
822 static int
823 zsxint(cs, zc)
824 register struct zs_chanstate *cs;
825 register volatile struct zschan *zc;
826 {
827 register int i = cs->cs_tbc;
828
829 if (i == 0) {
830 zc->zc_csr = ZSWR0_RESET_TXINT;
831 ZS_DELAY();
832 zc->zc_csr = ZSWR0_CLR_INTR;
833 ZS_DELAY();
834 return (ZRING_MAKE(ZRING_XINT, 0));
835 }
836 cs->cs_tbc = i - 1;
837 zc->zc_data = *cs->cs_tba++;
838 ZS_DELAY();
839 zc->zc_csr = ZSWR0_CLR_INTR;
840 ZS_DELAY();
841 return (0);
842 }
843
844 static int
845 zssint(cs, zc)
846 register struct zs_chanstate *cs;
847 register volatile struct zschan *zc;
848 {
849 register int rr0;
850
851 rr0 = zc->zc_csr;
852 zc->zc_csr = ZSWR0_RESET_STATUS;
853 ZS_DELAY();
854 zc->zc_csr = ZSWR0_CLR_INTR;
855 ZS_DELAY();
856 /*
857 * The chip's hardware flow control is, as noted in zsreg.h,
858 * busted---if the DCD line goes low the chip shuts off the
859 * receiver (!). If we want hardware CTS flow control but do
860 * not have it, and carrier is now on, turn HFC on; if we have
861 * HFC now but carrier has gone low, turn it off.
862 */
863 if (rr0 & ZSRR0_DCD) {
864 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
865 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
866 cs->cs_creg[3] |= ZSWR3_HFC;
867 ZS_WRITE(zc, 3, cs->cs_creg[3]);
868 }
869 } else {
870 if (cs->cs_creg[3] & ZSWR3_HFC) {
871 cs->cs_creg[3] &= ~ZSWR3_HFC;
872 ZS_WRITE(zc, 3, cs->cs_creg[3]);
873 }
874 }
875 if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
876 #ifdef SUN4
877 /*
878 * XXX This might not be necessary. Test and
879 * delete if it isn't.
880 */
881 if (cputyp==CPU_SUN4) {
882 while (zc->zc_csr & ZSRR0_BREAK)
883 ZS_DELAY();
884 }
885 #endif
886 zsabort();
887 return (0);
888 }
889 return (ZRING_MAKE(ZRING_SINT, rr0));
890 }
891
892 zsabort()
893 {
894
895 #ifdef DDB
896 Debugger();
897 #else
898 printf("stopping on keyboard abort\n");
899 callrom();
900 #endif
901 }
902
903 #ifdef KGDB
904 /*
905 * KGDB framing character received: enter kernel debugger. This probably
906 * should time out after a few seconds to avoid hanging on spurious input.
907 */
908 zskgdb(unit)
909 int unit;
910 {
911
912 printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
913 kgdb_connect(1);
914 }
915 #endif
916
917 /*
918 * Print out a ring or fifo overrun error message.
919 */
920 static void
921 zsoverrun(unit, ptime, what)
922 int unit;
923 long *ptime;
924 char *what;
925 {
926
927 if (*ptime != time.tv_sec) {
928 *ptime = time.tv_sec;
929 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
930 (unit & 1) + 'a', what);
931 }
932 }
933
934 /*
935 * ZS software interrupt. Scan all channels for deferred interrupts.
936 */
937 int
938 zssoft(arg)
939 void *arg;
940 {
941 register struct zs_chanstate *cs;
942 register volatile struct zschan *zc;
943 register struct linesw *line;
944 register struct tty *tp;
945 register int get, n, c, cc, unit, s;
946 int retval = 0;
947
948 for (cs = zslist; cs != NULL; cs = cs->cs_next) {
949 get = cs->cs_rbget;
950 again:
951 n = cs->cs_rbput; /* atomic */
952 if (get == n) /* nothing more on this line */
953 continue;
954 retval = 1;
955 unit = cs->cs_unit; /* set up to handle interrupts */
956 zc = cs->cs_zc;
957 tp = cs->cs_ttyp;
958 line = &linesw[tp->t_line];
959 /*
960 * Compute the number of interrupts in the receive ring.
961 * If the count is overlarge, we lost some events, and
962 * must advance to the first valid one. It may get
963 * overwritten if more data are arriving, but this is
964 * too expensive to check and gains nothing (we already
965 * lost out; all we can do at this point is trade one
966 * kind of loss for another).
967 */
968 n -= get;
969 if (n > ZLRB_RING_SIZE) {
970 zsoverrun(unit, &cs->cs_rotime, "ring");
971 get += n - ZLRB_RING_SIZE;
972 n = ZLRB_RING_SIZE;
973 }
974 while (--n >= 0) {
975 /* race to keep ahead of incoming interrupts */
976 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
977 switch (ZRING_TYPE(c)) {
978
979 case ZRING_RINT:
980 c = ZRING_VALUE(c);
981 if (c & ZSRR1_DO)
982 zsoverrun(unit, &cs->cs_fotime, "fifo");
983 cc = c >> 8;
984 if (c & ZSRR1_FE)
985 cc |= TTY_FE;
986 if (c & ZSRR1_PE)
987 cc |= TTY_PE;
988 /*
989 * this should be done through
990 * bstreams XXX gag choke
991 */
992 if (unit == ZS_KBD)
993 kbd_rint(cc);
994 else if (unit == ZS_MOUSE)
995 ms_rint(cc);
996 else
997 line->l_rint(cc, tp);
998 break;
999
1000 case ZRING_XINT:
1001 /*
1002 * Transmit done: change registers and resume,
1003 * or clear BUSY.
1004 */
1005 if (cs->cs_heldchange) {
1006 s = splzs();
1007 c = zc->zc_csr;
1008 ZS_DELAY();
1009 if ((c & ZSRR0_DCD) == 0)
1010 cs->cs_preg[3] &= ~ZSWR3_HFC;
1011 bcopy((caddr_t)cs->cs_preg,
1012 (caddr_t)cs->cs_creg, 16);
1013 zs_loadchannelregs(zc, cs->cs_creg);
1014 splx(s);
1015 cs->cs_heldchange = 0;
1016 if (cs->cs_heldtbc &&
1017 (tp->t_state & TS_TTSTOP) == 0) {
1018 cs->cs_tbc = cs->cs_heldtbc - 1;
1019 zc->zc_data = *cs->cs_tba++;
1020 ZS_DELAY();
1021 goto again;
1022 }
1023 }
1024 tp->t_state &= ~TS_BUSY;
1025 if (tp->t_state & TS_FLUSH)
1026 tp->t_state &= ~TS_FLUSH;
1027 else
1028 ndflush(&tp->t_outq,
1029 cs->cs_tba - (caddr_t)tp->t_outq.c_cf);
1030 line->l_start(tp);
1031 break;
1032
1033 case ZRING_SINT:
1034 /*
1035 * Status line change. HFC bit is run in
1036 * hardware interrupt, to avoid locking
1037 * at splzs here.
1038 */
1039 c = ZRING_VALUE(c);
1040 if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
1041 cc = (c & ZSRR0_DCD) != 0;
1042 if (line->l_modem(tp, cc) == 0)
1043 zs_modem(cs, cc);
1044 }
1045 cs->cs_rr0 = c;
1046 break;
1047
1048 default:
1049 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
1050 unit >> 1, (unit & 1) + 'a', c);
1051 break;
1052 }
1053 }
1054 cs->cs_rbget = get;
1055 goto again;
1056 }
1057 return (retval);
1058 }
1059
1060 int
1061 zsioctl(dev, cmd, data, flag, p)
1062 dev_t dev;
1063 u_long cmd;
1064 caddr_t data;
1065 int flag;
1066 struct proc *p;
1067 {
1068 int unit = minor(dev);
1069 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1070 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
1071 register int error, s;
1072 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1073
1074 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
1075 if (error >= 0)
1076 return (error);
1077 error = ttioctl(tp, cmd, data, flag, p);
1078 if (error >= 0)
1079 return (error);
1080
1081 switch (cmd) {
1082 case TIOCSBRK:
1083 s = splzs();
1084 cs->cs_preg[5] |= ZSWR5_BREAK;
1085 cs->cs_creg[5] |= ZSWR5_BREAK;
1086 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1087 splx(s);
1088 break;
1089 case TIOCCBRK:
1090 s = splzs();
1091 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1092 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1093 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1094 splx(s);
1095 break;
1096 case TIOCGFLAGS: {
1097 int bits = 0;
1098
1099 if (cs->cs_softcar)
1100 bits |= TIOCFLAG_SOFTCAR;
1101 if (cs->cs_creg[15] & ZSWR15_DCD_IE)
1102 bits |= TIOCFLAG_CLOCAL;
1103 if (cs->cs_creg[3] & ZSWR3_HFC)
1104 bits |= TIOCFLAG_CRTSCTS;
1105 *(int *)data = bits;
1106 break;
1107 }
1108 case TIOCSFLAGS: {
1109 int userbits, driverbits = 0;
1110
1111 error = suser(p->p_ucred, &p->p_acflag);
1112 if (error != 0)
1113 return (EPERM);
1114
1115 userbits = *(int *)data;
1116
1117 /*
1118 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
1119 # defaulting to software flow control.
1120 */
1121 if (userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
1122 return(EINVAL);
1123 if (userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
1124 return(ENXIO);
1125
1126 s = splzs();
1127 if ((userbits & TIOCFLAG_SOFTCAR) || (tp == zs_ctty)) {
1128 cs->cs_softcar = 1; /* turn on softcar */
1129 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
1130 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
1131 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1132 } else if (userbits & TIOCFLAG_CLOCAL) {
1133 cs->cs_softcar = 0; /* turn off softcar */
1134 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
1135 cs->cs_creg[15] |= ZSWR15_DCD_IE;
1136 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1137 tp->t_termios.c_cflag |= CLOCAL;
1138 }
1139 if (userbits & TIOCFLAG_CRTSCTS) {
1140 cs->cs_preg[15] |= ZSWR15_CTS_IE;
1141 cs->cs_creg[15] |= ZSWR15_CTS_IE;
1142 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1143 cs->cs_preg[3] |= ZSWR3_HFC;
1144 cs->cs_creg[3] |= ZSWR3_HFC;
1145 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
1146 tp->t_termios.c_cflag |= CRTSCTS;
1147 } else {
1148 /* no mdmbuf, so we must want software flow control */
1149 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
1150 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
1151 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1152 cs->cs_preg[3] &= ~ZSWR3_HFC;
1153 cs->cs_creg[3] &= ~ZSWR3_HFC;
1154 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
1155 tp->t_termios.c_cflag &= ~CRTSCTS;
1156 }
1157 splx(s);
1158 break;
1159 }
1160 case TIOCSDTR:
1161 zs_modem(cs, 1);
1162 break;
1163 case TIOCCDTR:
1164 zs_modem(cs, 0);
1165 break;
1166 case TIOCMSET:
1167 case TIOCMBIS:
1168 case TIOCMBIC:
1169 case TIOCMGET:
1170 default:
1171 return (ENOTTY);
1172 }
1173 return (0);
1174 }
1175
1176 /*
1177 * Start or restart transmission.
1178 */
1179 static void
1180 zsstart(tp)
1181 register struct tty *tp;
1182 {
1183 register struct zs_chanstate *cs;
1184 register int s, nch;
1185 int unit = minor(tp->t_dev);
1186 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1187
1188 cs = &zi->zi_cs[unit & 1];
1189 s = spltty();
1190
1191 /*
1192 * If currently active or delaying, no need to do anything.
1193 */
1194 if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1195 goto out;
1196
1197 /*
1198 * If there are sleepers, and output has drained below low
1199 * water mark, awaken.
1200 */
1201 if (tp->t_outq.c_cc <= tp->t_lowat) {
1202 if (tp->t_state & TS_ASLEEP) {
1203 tp->t_state &= ~TS_ASLEEP;
1204 wakeup((caddr_t)&tp->t_outq);
1205 }
1206 selwakeup(&tp->t_wsel);
1207 }
1208
1209 nch = ndqb(&tp->t_outq, 0); /* XXX */
1210 if (nch) {
1211 register char *p = tp->t_outq.c_cf;
1212
1213 /* mark busy, enable tx done interrupts, & send first byte */
1214 tp->t_state |= TS_BUSY;
1215 (void) splzs();
1216 cs->cs_preg[1] |= ZSWR1_TIE;
1217 cs->cs_creg[1] |= ZSWR1_TIE;
1218 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1219 cs->cs_zc->zc_data = *p;
1220 ZS_DELAY();
1221 cs->cs_tba = p + 1;
1222 cs->cs_tbc = nch - 1;
1223 } else {
1224 /*
1225 * Nothing to send, turn off transmit done interrupts.
1226 * This is useful if something is doing polled output.
1227 */
1228 (void) splzs();
1229 cs->cs_preg[1] &= ~ZSWR1_TIE;
1230 cs->cs_creg[1] &= ~ZSWR1_TIE;
1231 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1232 }
1233 out:
1234 splx(s);
1235 }
1236
1237 /*
1238 * Stop output, e.g., for ^S or output flush.
1239 */
1240 void
1241 zsstop(tp, flag)
1242 register struct tty *tp;
1243 int flag;
1244 {
1245 register struct zs_chanstate *cs;
1246 register int s, unit = minor(tp->t_dev);
1247 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1248
1249 cs = &zi->zi_cs[unit & 1];
1250 s = splzs();
1251 if (tp->t_state & TS_BUSY) {
1252 /*
1253 * Device is transmitting; must stop it.
1254 */
1255 cs->cs_tbc = 0;
1256 if ((tp->t_state & TS_TTSTOP) == 0)
1257 tp->t_state |= TS_FLUSH;
1258 }
1259 splx(s);
1260 }
1261
1262 /*
1263 * Set ZS tty parameters from termios.
1264 *
1265 * This routine makes use of the fact that only registers
1266 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1267 */
1268 static int
1269 zsparam(tp, t)
1270 register struct tty *tp;
1271 register struct termios *t;
1272 {
1273 int unit = minor(tp->t_dev);
1274 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1275 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1276 register int tmp, tmp5, cflag, s;
1277
1278 /*
1279 * Because PCLK is only run at 4.9 MHz, the fastest we
1280 * can go is 51200 baud (this corresponds to TC=1).
1281 * This is somewhat unfortunate as there is no real
1282 * reason we should not be able to handle higher rates.
1283 */
1284 tmp = t->c_ospeed;
1285 if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
1286 return (EINVAL);
1287 if (tmp == 0) {
1288 /* stty 0 => drop DTR and RTS */
1289 zs_modem(cs, 0);
1290 return (0);
1291 }
1292 tmp = BPS_TO_TCONST(PCLK / 16, tmp);
1293 if (tmp < 2)
1294 return (EINVAL);
1295
1296 cflag = t->c_cflag;
1297 tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
1298 tp->t_cflag = cflag;
1299
1300 /*
1301 * Block interrupts so that state will not
1302 * be altered until we are done setting it up.
1303 */
1304 s = splzs();
1305 cs->cs_preg[12] = tmp;
1306 cs->cs_preg[13] = tmp >> 8;
1307 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1308 switch (cflag & CSIZE) {
1309 case CS5:
1310 tmp = ZSWR3_RX_5;
1311 tmp5 = ZSWR5_TX_5;
1312 break;
1313 case CS6:
1314 tmp = ZSWR3_RX_6;
1315 tmp5 = ZSWR5_TX_6;
1316 break;
1317 case CS7:
1318 tmp = ZSWR3_RX_7;
1319 tmp5 = ZSWR5_TX_7;
1320 break;
1321 case CS8:
1322 default:
1323 tmp = ZSWR3_RX_8;
1324 tmp5 = ZSWR5_TX_8;
1325 break;
1326 }
1327
1328 /*
1329 * Output hardware flow control on the chip is horrendous: if
1330 * carrier detect drops, the receiver is disabled. Hence we
1331 * can only do this when the carrier is on.
1332 */
1333 if (cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1334 tmp |= ZSWR3_HFC | ZSWR3_RX_ENABLE;
1335 else
1336 tmp |= ZSWR3_RX_ENABLE;
1337 cs->cs_preg[3] = tmp;
1338 cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1339
1340 tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
1341 if ((cflag & PARODD) == 0)
1342 tmp |= ZSWR4_EVENP;
1343 if (cflag & PARENB)
1344 tmp |= ZSWR4_PARENB;
1345 cs->cs_preg[4] = tmp;
1346 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR;
1347 cs->cs_preg[10] = ZSWR10_NRZ;
1348 cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
1349 cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
1350 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1351
1352 /*
1353 * If nothing is being transmitted, set up new current values,
1354 * else mark them as pending.
1355 */
1356 if (cs->cs_heldchange == 0) {
1357 if (cs->cs_ttyp->t_state & TS_BUSY) {
1358 cs->cs_heldtbc = cs->cs_tbc;
1359 cs->cs_tbc = 0;
1360 cs->cs_heldchange = 1;
1361 } else {
1362 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1363 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1364 }
1365 }
1366 splx(s);
1367 return (0);
1368 }
1369
1370 /*
1371 * Raise or lower modem control (DTR/RTS) signals. If a character is
1372 * in transmission, the change is deferred.
1373 */
1374 static void
1375 zs_modem(cs, onoff)
1376 struct zs_chanstate *cs;
1377 int onoff;
1378 {
1379 int s, bis, and;
1380
1381 if (onoff) {
1382 bis = ZSWR5_DTR | ZSWR5_RTS;
1383 and = ~0;
1384 } else {
1385 bis = 0;
1386 and = ~(ZSWR5_DTR | ZSWR5_RTS);
1387 }
1388 s = splzs();
1389 cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
1390 if (cs->cs_heldchange == 0) {
1391 if (cs->cs_ttyp->t_state & TS_BUSY) {
1392 cs->cs_heldtbc = cs->cs_tbc;
1393 cs->cs_tbc = 0;
1394 cs->cs_heldchange = 1;
1395 } else {
1396 cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
1397 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1398 }
1399 }
1400 splx(s);
1401 }
1402
1403 /*
1404 * Write the given register set to the given zs channel in the proper order.
1405 * The channel must not be transmitting at the time. The receiver will
1406 * be disabled for the time it takes to write all the registers.
1407 */
1408 static void
1409 zs_loadchannelregs(zc, reg)
1410 volatile struct zschan *zc;
1411 u_char *reg;
1412 {
1413 int i;
1414
1415 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1416 ZS_DELAY();
1417 i = zc->zc_data; /* drain fifo */
1418 ZS_DELAY();
1419 i = zc->zc_data;
1420 ZS_DELAY();
1421 i = zc->zc_data;
1422 ZS_DELAY();
1423 ZS_WRITE(zc, 4, reg[4]);
1424 ZS_WRITE(zc, 10, reg[10]);
1425 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1426 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1427 ZS_WRITE(zc, 1, reg[1]);
1428 ZS_WRITE(zc, 9, reg[9]);
1429 ZS_WRITE(zc, 11, reg[11]);
1430 ZS_WRITE(zc, 12, reg[12]);
1431 ZS_WRITE(zc, 13, reg[13]);
1432 ZS_WRITE(zc, 14, reg[14]);
1433 ZS_WRITE(zc, 15, reg[15]);
1434 ZS_WRITE(zc, 3, reg[3]);
1435 ZS_WRITE(zc, 5, reg[5]);
1436 }
1437
1438 #ifdef KGDB
1439 /*
1440 * Get a character from the given kgdb channel. Called at splhigh().
1441 */
1442 static int
1443 zs_kgdb_getc(arg)
1444 void *arg;
1445 {
1446 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1447
1448 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
1449 ZS_DELAY();
1450 return (zc->zc_data);
1451 }
1452
1453 /*
1454 * Put a character to the given kgdb channel. Called at splhigh().
1455 */
1456 static void
1457 zs_kgdb_putc(arg, c)
1458 void *arg;
1459 int c;
1460 {
1461 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1462
1463 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
1464 ZS_DELAY();
1465 zc->zc_data = c;
1466 ZS_DELAY();
1467 }
1468
1469 /*
1470 * Set up for kgdb; called at boot time before configuration.
1471 * KGDB interrupts will be enabled later when zs0 is configured.
1472 */
1473 void
1474 zs_kgdb_init()
1475 {
1476 volatile struct zsdevice *addr;
1477 volatile struct zschan *zc;
1478 int unit, zs;
1479
1480 if (major(kgdb_dev) != ZSMAJOR)
1481 return;
1482 unit = minor(kgdb_dev);
1483 /*
1484 * Unit must be 0 or 1 (zs0).
1485 */
1486 if ((unsigned)unit >= ZS_KBD) {
1487 printf("zs_kgdb_init: bad minor dev %d\n", unit);
1488 return;
1489 }
1490 zs = unit >> 1;
1491 if ((addr = zsaddr[zs]) == NULL)
1492 addr = zsaddr[zs] = findzs(zs);
1493 unit &= 1;
1494 zc = unit == 0 ? &addr->zs_chan[ZS_CHAN_A] : &addr->zs_chan[ZS_CHAN_B];
1495 zs_kgdb_savedspeed = zs_getspeed(zc);
1496 printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
1497 zs, unit + 'a', kgdb_rate);
1498 zs_reset(zc, 1, kgdb_rate);
1499 kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
1500 }
1501 #endif /* KGDB */
1502