zs.c revision 1.28 1 /* $NetBSD: zs.c,v 1.28 1995/04/21 15:51:26 pk Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 *
44 * @(#)zs.c 8.1 (Berkeley) 7/19/93
45 */
46
47 /*
48 * Zilog Z8530 (ZSCC) driver.
49 *
50 * Runs two tty ports (ttya and ttyb) on zs0,
51 * and runs a keyboard and mouse on zs1.
52 *
53 * This driver knows far too much about chip to usage mappings.
54 */
55 #define NZS 2 /* XXX */
56
57 #include <sys/param.h>
58 #include <sys/proc.h>
59 #include <sys/device.h>
60 #include <sys/conf.h>
61 #include <sys/file.h>
62 #include <sys/ioctl.h>
63 #include <sys/tty.h>
64 #include <sys/time.h>
65 #include <sys/kernel.h>
66 #include <sys/syslog.h>
67
68 #include <machine/autoconf.h>
69 #include <machine/cpu.h>
70
71 #include <sparc/sparc/vaddrs.h>
72 #include <sparc/sparc/auxreg.h>
73
74 #include <machine/kbd.h>
75 #include <dev/ic/z8530.h>
76 #include <sparc/dev/zsvar.h>
77
78 #ifdef KGDB
79 #include <machine/remote-sl.h>
80 #endif
81
82 #define ZSMAJOR 12 /* XXX */
83
84 #define ZS_KBD 2 /* XXX */
85 #define ZS_MOUSE 3 /* XXX */
86
87 /* the magic number below was stolen from the Sprite source. */
88 #define PCLK (19660800/4) /* PCLK pin input clock rate */
89
90 /*
91 * Select software interrupt bit based on TTY ipl.
92 */
93 #if PIL_TTY == 1
94 # define IE_ZSSOFT IE_L1
95 #elif PIL_TTY == 4
96 # define IE_ZSSOFT IE_L4
97 #elif PIL_TTY == 6
98 # define IE_ZSSOFT IE_L6
99 #else
100 # error "no suitable software interrupt bit"
101 #endif
102
103 /*
104 * Software state per found chip. This would be called `zs_softc',
105 * but the previous driver had a rather different zs_softc....
106 */
107 struct zsinfo {
108 struct device zi_dev; /* base device */
109 volatile struct zsdevice *zi_zs;/* chip registers */
110 struct zs_chanstate zi_cs[2]; /* channel A and B software state */
111 };
112
113 /* Definition of the driver for autoconfig. */
114 static int zsmatch __P((struct device *, void *, void *));
115 static void zsattach __P((struct device *, struct device *, void *));
116 struct cfdriver zscd =
117 { NULL, "zs", zsmatch, zsattach, DV_TTY, sizeof(struct zsinfo) };
118
119 /* Interrupt handlers. */
120 static int zshard __P((void *));
121 static struct intrhand levelhard = { zshard };
122 static int zssoft __P((void *));
123 static struct intrhand levelsoft = { zssoft };
124
125 struct zs_chanstate *zslist;
126
127 /* Routines called from other code. */
128 static void zsiopen __P((struct tty *));
129 static void zsiclose __P((struct tty *));
130 static void zsstart __P((struct tty *));
131 void zsstop __P((struct tty *, int));
132 static int zsparam __P((struct tty *, struct termios *));
133
134 /* Routines purely local to this driver. */
135 static int zs_getspeed __P((volatile struct zschan *));
136 static void zs_reset __P((volatile struct zschan *, int, int));
137 static void zs_modem __P((struct zs_chanstate *, int));
138 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
139
140 /* Console stuff. */
141 static struct tty *zs_ctty; /* console `struct tty *' */
142 static int zs_consin = -1, zs_consout = -1;
143 static int zscnputc __P((int)); /* console putc function */
144 static volatile struct zschan *zs_conschan;
145 static struct tty *zs_checkcons __P((struct zsinfo *, int, struct zs_chanstate *));
146
147 #ifdef KGDB
148 /* KGDB stuff. Must reboot to change zs_kgdbunit. */
149 extern int kgdb_dev, kgdb_rate;
150 static int zs_kgdb_savedspeed;
151 static void zs_checkkgdb __P((int, struct zs_chanstate *, struct tty *));
152 #endif
153
154 extern volatile struct zsdevice *findzs(int);
155 static volatile struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */
156
157 /*
158 * Console keyboard L1-A processing is done in the hardware interrupt code,
159 * so we need to duplicate some of the console keyboard decode state. (We
160 * must not use the regular state as the hardware code keeps ahead of the
161 * software state: the software state tracks the most recent ring input but
162 * the hardware state tracks the most recent ZSCC input.) See also kbd.h.
163 */
164 static struct conk_state { /* console keyboard state */
165 char conk_id; /* true => ID coming up (console only) */
166 char conk_l1; /* true => L1 pressed (console only) */
167 } zsconk_state;
168
169 int zshardscope;
170 int zsshortcuts; /* number of "shortcut" software interrupts */
171
172 #ifdef SUN4
173 static u_char
174 zs_read(zc, reg)
175 volatile struct zschan *zc;
176 u_char reg;
177 {
178 u_char val;
179
180 zc->zc_csr = reg;
181 ZS_DELAY();
182 val = zc->zc_csr;
183 ZS_DELAY();
184 return val;
185 }
186
187 static u_char
188 zs_write(zc, reg, val)
189 volatile struct zschan *zc;
190 u_char reg, val;
191 {
192 zc->zc_csr = reg;
193 ZS_DELAY();
194 zc->zc_csr = val;
195 ZS_DELAY();
196 return val;
197 }
198 #endif /* SUN4 */
199
200 /*
201 * Match slave number to zs unit number, so that misconfiguration will
202 * not set up the keyboard as ttya, etc.
203 */
204 static int
205 zsmatch(parent, vcf, aux)
206 struct device *parent;
207 void *vcf, *aux;
208 {
209 struct cfdata *cf = vcf;
210 struct confargs *ca = aux;
211 struct romaux *ra = &ca->ca_ra;
212
213 if (strcmp(cf->cf_driver->cd_name, ra->ra_name))
214 return (0);
215 if (ca->ca_bustype==BUS_MAIN && cputyp!=CPU_SUN4)
216 return (getpropint(ra->ra_node, "slave", -2) == cf->cf_unit);
217 ra->ra_len = NBPG;
218 return (probeget(ra->ra_vaddr, 1) != -1);
219 }
220
221 /*
222 * Attach a found zs.
223 *
224 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
225 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
226 */
227 static void
228 zsattach(parent, dev, aux)
229 struct device *parent;
230 struct device *dev;
231 void *aux;
232 {
233 register int zs = dev->dv_unit, unit;
234 register struct zsinfo *zi;
235 register struct zs_chanstate *cs;
236 register volatile struct zsdevice *addr;
237 register struct tty *tp, *ctp;
238 register struct confargs *ca = aux;
239 register struct romaux *ra = &ca->ca_ra;
240 int pri;
241 static int didintr, prevpri;
242
243 if ((addr = zsaddr[zs]) == NULL)
244 addr = zsaddr[zs] = findzs(zs);
245 if (ca->ca_bustype==BUS_MAIN)
246 if ((void *)addr != ra->ra_vaddr)
247 panic("zsattach");
248 if (ra->ra_nintr != 1) {
249 printf(": expected 1 interrupt, got %d\n", ra->ra_nintr);
250 return;
251 }
252 pri = ra->ra_intr[0].int_pri;
253 printf(" pri %d, softpri %d\n", pri, PIL_TTY);
254 if (!didintr) {
255 didintr = 1;
256 prevpri = pri;
257 intr_establish(pri, &levelhard);
258 intr_establish(PIL_TTY, &levelsoft);
259 } else if (pri != prevpri)
260 panic("broken zs interrupt scheme");
261 zi = (struct zsinfo *)dev;
262 zi->zi_zs = addr;
263 unit = zs * 2;
264 cs = zi->zi_cs;
265 cs->cs_ttyp = tp = ttymalloc();
266
267 /* link into interrupt list with order (A,B) (B=A+1) */
268 cs[0].cs_next = &cs[1];
269 cs[1].cs_next = zslist;
270 zslist = cs;
271
272 cs->cs_unit = unit;
273 cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_A]);
274 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
275 tp->t_dev = makedev(ZSMAJOR, unit);
276 tp->t_oproc = zsstart;
277 tp->t_param = zsparam;
278 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
279 cs->cs_ttyp = tp = ctp;
280 #ifdef KGDB
281 if (ctp == NULL)
282 zs_checkkgdb(unit, cs, tp);
283 #endif
284 if (unit == ZS_KBD) {
285 /*
286 * Keyboard: tell /dev/kbd driver how to talk to us.
287 */
288 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
289 tp->t_cflag = CS8;
290 kbd_serial(tp, zsiopen, zsiclose);
291 cs->cs_conk = 1; /* do L1-A processing */
292 }
293 unit++;
294 cs++;
295 cs->cs_ttyp = tp = ttymalloc();
296 cs->cs_unit = unit;
297 cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_B]);
298 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
299 tp->t_dev = makedev(ZSMAJOR, unit);
300 tp->t_oproc = zsstart;
301 tp->t_param = zsparam;
302 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
303 cs->cs_ttyp = tp = ctp;
304 #ifdef KGDB
305 if (ctp == NULL)
306 zs_checkkgdb(unit, cs, tp);
307 #endif
308 if (unit == ZS_MOUSE) {
309 /*
310 * Mouse: tell /dev/mouse driver how to talk to us.
311 */
312 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
313 tp->t_cflag = CS8;
314 ms_serial(tp, zsiopen, zsiclose);
315 }
316 }
317
318 /*
319 * Put a channel in a known state. Interrupts may be left disabled
320 * or enabled, as desired.
321 */
322 static void
323 zs_reset(zc, inten, speed)
324 volatile struct zschan *zc;
325 int inten, speed;
326 {
327 int tconst;
328 static u_char reg[16] = {
329 0,
330 0,
331 0,
332 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
333 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
334 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
335 0,
336 0,
337 0,
338 0,
339 ZSWR10_NRZ,
340 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
341 0,
342 0,
343 ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
344 ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
345 };
346
347 reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
348 tconst = BPS_TO_TCONST(PCLK / 16, speed);
349 reg[12] = tconst;
350 reg[13] = tconst >> 8;
351 zs_loadchannelregs(zc, reg);
352 }
353
354 /*
355 * Declare the given tty (which is in fact &cons) as a console input
356 * or output. This happens before the zs chip is attached; the hookup
357 * is finished later, in zs_setcons() below.
358 *
359 * This is used only for ports a and b. The console keyboard is decoded
360 * independently (we always send unit-2 input to /dev/kbd, which will
361 * direct it to /dev/console if appropriate).
362 */
363 void
364 zsconsole(tp, unit, out, fnstop)
365 register struct tty *tp;
366 register int unit;
367 int out;
368 void (**fnstop) __P((struct tty *, int));
369 {
370 extern int (*v_putc)();
371 int zs;
372 volatile struct zsdevice *addr;
373
374 if (unit >= ZS_KBD)
375 panic("zsconsole");
376 if (out) {
377 zs_consout = unit;
378 zs = unit >> 1;
379 if ((addr = zsaddr[zs]) == NULL)
380 addr = zsaddr[zs] = findzs(zs);
381 zs_conschan = (unit & 1) == 0 ? &addr->zs_chan[ZS_CHAN_A] :
382 &addr->zs_chan[ZS_CHAN_B];
383 v_putc = zscnputc;
384 } else
385 zs_consin = unit;
386 if(fnstop)
387 *fnstop = &zsstop;
388 zs_ctty = tp;
389 }
390
391 /*
392 * Polled console output putchar.
393 */
394 static int
395 zscnputc(c)
396 int c;
397 {
398 register volatile struct zschan *zc = zs_conschan;
399 register int s;
400
401 if (c == '\n')
402 zscnputc('\r');
403 /*
404 * Must block output interrupts (i.e., raise to >= splzs) without
405 * lowering current ipl. Need a better way.
406 */
407 s = splhigh();
408 #ifdef SUN4C /* XXX */
409 if (cputyp==CPU_SUN4C && s <= (12 << 8))
410 (void) splzs();
411 #endif
412 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
413 ZS_DELAY();
414 zc->zc_data = c;
415 ZS_DELAY();
416 splx(s);
417 }
418
419 /*
420 * Set up the given unit as console input, output, both, or neither, as
421 * needed. Return console tty if it is to receive console input.
422 */
423 static struct tty *
424 zs_checkcons(zi, unit, cs)
425 struct zsinfo *zi;
426 int unit;
427 struct zs_chanstate *cs;
428 {
429 register struct tty *tp;
430 char *i, *o;
431
432 if ((tp = zs_ctty) == NULL)
433 return (0);
434 i = zs_consin == unit ? "input" : NULL;
435 o = zs_consout == unit ? "output" : NULL;
436 if (i == NULL && o == NULL)
437 return (0);
438
439 /* rewire the minor device (gack) */
440 tp->t_dev = makedev(major(tp->t_dev), unit);
441
442 /*
443 * Rewire input and/or output. Note that baud rate reflects
444 * input settings, not output settings, but we can do no better
445 * if the console is split across two ports.
446 *
447 * XXX split consoles don't work anyway -- this needs to be
448 * thrown away and redone
449 */
450 if (i) {
451 tp->t_param = zsparam;
452 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
453 tp->t_cflag = CS8;
454 ttsetwater(tp);
455 }
456 if (o) {
457 tp->t_oproc = zsstart;
458 }
459 printf("%s%c: console %s\n",
460 zi->zi_dev.dv_xname, (unit & 1) + 'a', i ? (o ? "i/o" : i) : o);
461 cs->cs_consio = 1;
462 cs->cs_brkabort = 1;
463 return (tp);
464 }
465
466 #ifdef KGDB
467 /*
468 * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
469 * Pick up the current speed and character size and restore the original
470 * speed.
471 */
472 static void
473 zs_checkkgdb(unit, cs, tp)
474 int unit;
475 struct zs_chanstate *cs;
476 struct tty *tp;
477 {
478
479 if (kgdb_dev == makedev(ZSMAJOR, unit)) {
480 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
481 tp->t_cflag = CS8;
482 cs->cs_kgdb = 1;
483 cs->cs_speed = zs_kgdb_savedspeed;
484 (void) zsparam(tp, &tp->t_termios);
485 }
486 }
487 #endif
488
489 /*
490 * Compute the current baud rate given a ZSCC channel.
491 */
492 static int
493 zs_getspeed(zc)
494 register volatile struct zschan *zc;
495 {
496 register int tconst;
497
498 tconst = ZS_READ(zc, 12);
499 tconst |= ZS_READ(zc, 13) << 8;
500 return (TCONST_TO_BPS(PCLK / 16, tconst));
501 }
502
503
504 /*
505 * Do an internal open.
506 */
507 static void
508 zsiopen(tp)
509 struct tty *tp;
510 {
511
512 (void) zsparam(tp, &tp->t_termios);
513 ttsetwater(tp);
514 tp->t_state = TS_ISOPEN | TS_CARR_ON;
515 }
516
517 /*
518 * Do an internal close. Eventually we should shut off the chip when both
519 * ports on it are closed.
520 */
521 static void
522 zsiclose(tp)
523 struct tty *tp;
524 {
525
526 ttylclose(tp, 0); /* ??? */
527 ttyclose(tp); /* ??? */
528 tp->t_state = 0;
529 }
530
531
532 /*
533 * Open a zs serial port. This interface may not be used to open
534 * the keyboard and mouse ports. (XXX)
535 */
536 int
537 zsopen(dev, flags, mode, p)
538 dev_t dev;
539 int flags;
540 int mode;
541 struct proc *p;
542 {
543 register struct tty *tp;
544 register struct zs_chanstate *cs;
545 struct zsinfo *zi;
546 int unit = minor(dev), zs = unit >> 1, error, s;
547
548 if (zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL ||
549 unit == ZS_KBD || unit == ZS_MOUSE)
550 return (ENXIO);
551 cs = &zi->zi_cs[unit & 1];
552 if (cs->cs_consio)
553 return (ENXIO); /* ??? */
554 tp = cs->cs_ttyp;
555 s = spltty();
556 if ((tp->t_state & TS_ISOPEN) == 0) {
557 ttychars(tp);
558 if (tp->t_ispeed == 0) {
559 tp->t_iflag = TTYDEF_IFLAG;
560 tp->t_oflag = TTYDEF_OFLAG;
561 tp->t_cflag = TTYDEF_CFLAG;
562 tp->t_lflag = TTYDEF_LFLAG;
563 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
564 }
565 (void) zsparam(tp, &tp->t_termios);
566 ttsetwater(tp);
567 } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
568 splx(s);
569 return (EBUSY);
570 }
571 error = 0;
572 for (;;) {
573 /* loop, turning on the device, until carrier present */
574 zs_modem(cs, 1);
575 if (cs->cs_softcar)
576 tp->t_state |= TS_CARR_ON;
577 if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
578 tp->t_state & TS_CARR_ON)
579 break;
580 tp->t_state |= TS_WOPEN;
581 if (error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
582 ttopen, 0)) {
583 if (!(tp->t_state & TS_ISOPEN)) {
584 zs_modem(cs, 0);
585 tp->t_state &= ~TS_WOPEN;
586 ttwakeup(tp);
587 }
588 splx(s);
589 return error;
590 }
591 }
592 splx(s);
593 if (error == 0)
594 error = linesw[tp->t_line].l_open(dev, tp);
595 if (error)
596 zs_modem(cs, 0);
597 return (error);
598 }
599
600 /*
601 * Close a zs serial port.
602 */
603 int
604 zsclose(dev, flags, mode, p)
605 dev_t dev;
606 int flags;
607 int mode;
608 struct proc *p;
609 {
610 register struct zs_chanstate *cs;
611 register struct tty *tp;
612 struct zsinfo *zi;
613 int unit = minor(dev), s;
614
615 zi = zscd.cd_devs[unit >> 1];
616 cs = &zi->zi_cs[unit & 1];
617 tp = cs->cs_ttyp;
618 linesw[tp->t_line].l_close(tp, flags);
619 if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
620 (tp->t_state & TS_ISOPEN) == 0) {
621 zs_modem(cs, 0);
622 /* hold low for 1 second */
623 (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
624 }
625 if (cs->cs_creg[5] & ZSWR5_BREAK)
626 {
627 s = splzs();
628 cs->cs_preg[5] &= ~ZSWR5_BREAK;
629 cs->cs_creg[5] &= ~ZSWR5_BREAK;
630 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
631 splx(s);
632 }
633 ttyclose(tp);
634 #ifdef KGDB
635 /* Reset the speed if we're doing kgdb on this port */
636 if (cs->cs_kgdb) {
637 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
638 (void) zsparam(tp, &tp->t_termios);
639 }
640 #endif
641 return (0);
642 }
643
644 /*
645 * Read/write zs serial port.
646 */
647 int
648 zsread(dev, uio, flags)
649 dev_t dev;
650 struct uio *uio;
651 int flags;
652 {
653 register struct zs_chanstate *cs;
654 register struct zsinfo *zi;
655 register struct tty *tp;
656 int unit = minor(dev);
657
658 zi = zscd.cd_devs[unit >> 1];
659 cs = &zi->zi_cs[unit & 1];
660 tp = cs->cs_ttyp;
661
662 return (linesw[tp->t_line].l_read(tp, uio, flags));
663
664 }
665
666 int
667 zswrite(dev, uio, flags)
668 dev_t dev;
669 struct uio *uio;
670 int flags;
671 {
672 register struct zs_chanstate *cs;
673 register struct zsinfo *zi;
674 register struct tty *tp;
675 int unit = minor(dev);
676
677 zi = zscd.cd_devs[unit >> 1];
678 cs = &zi->zi_cs[unit & 1];
679 tp = cs->cs_ttyp;
680
681 return (linesw[tp->t_line].l_write(tp, uio, flags));
682 }
683
684 struct tty *
685 zstty(dev)
686 dev_t dev;
687 {
688 register struct zs_chanstate *cs;
689 register struct zsinfo *zi;
690 int unit = minor(dev);
691
692 zi = zscd.cd_devs[unit >> 1];
693 cs = &zi->zi_cs[unit & 1];
694
695 return (cs->cs_ttyp);
696
697 }
698
699 /*
700 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
701 * channels are kept in (A,B) pairs.
702 *
703 * Do just a little, then get out; set a software interrupt if more
704 * work is needed.
705 *
706 * We deliberately ignore the vectoring Zilog gives us, and match up
707 * only the number of `reset interrupt under service' operations, not
708 * the order.
709 */
710 /* ARGSUSED */
711 int
712 zshard(intrarg)
713 void *intrarg;
714 {
715 register struct zs_chanstate *a;
716 #define b (a + 1)
717 register volatile struct zschan *zc;
718 register int rr3, intflags = 0, v, i;
719 static int zsrint(struct zs_chanstate *, volatile struct zschan *);
720 static int zsxint(struct zs_chanstate *, volatile struct zschan *);
721 static int zssint(struct zs_chanstate *, volatile struct zschan *);
722
723 for (a = zslist; a != NULL; a = b->cs_next) {
724 rr3 = ZS_READ(a->cs_zc, 3);
725 if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
726 intflags |= 2;
727 zc = a->cs_zc;
728 i = a->cs_rbput;
729 if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
730 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
731 intflags |= 1;
732 }
733 if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
734 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
735 intflags |= 1;
736 }
737 if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
738 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
739 intflags |= 1;
740 }
741 a->cs_rbput = i;
742 }
743 if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
744 intflags |= 2;
745 zc = b->cs_zc;
746 i = b->cs_rbput;
747 if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
748 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
749 intflags |= 1;
750 }
751 if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
752 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
753 intflags |= 1;
754 }
755 if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
756 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
757 intflags |= 1;
758 }
759 b->cs_rbput = i;
760 }
761 }
762 #undef b
763
764 if (intflags & 1) {
765 #if defined(SUN4C) || defined(SUN4M)
766 if (cputyp==CPU_SUN4M || cputyp==CPU_SUN4C) {
767 /* XXX -- but this will go away when zshard moves to locore.s */
768 struct clockframe *p = intrarg;
769
770 if ((p->psr & PSR_PIL) < (PIL_TTY << 8)) {
771 zsshortcuts++;
772 (void) spltty();
773 if (zshardscope) {
774 LED_ON;
775 LED_OFF;
776 }
777 return (zssoft(intrarg));
778 }
779 }
780 #endif
781 ienab_bis(IE_ZSSOFT);
782 }
783 return (intflags & 2);
784 }
785
786 static int
787 zsrint(cs, zc)
788 register struct zs_chanstate *cs;
789 register volatile struct zschan *zc;
790 {
791 register int c = zc->zc_data;
792
793 if (cs->cs_conk) {
794 register struct conk_state *conk = &zsconk_state;
795
796 /*
797 * Check here for console abort function, so that we
798 * can abort even when interrupts are locking up the
799 * machine.
800 */
801 if (c == KBD_RESET) {
802 conk->conk_id = 1; /* ignore next byte */
803 conk->conk_l1 = 0;
804 } else if (conk->conk_id)
805 conk->conk_id = 0; /* stop ignoring bytes */
806 else if (c == KBD_L1)
807 conk->conk_l1 = 1; /* L1 went down */
808 else if (c == (KBD_L1|KBD_UP))
809 conk->conk_l1 = 0; /* L1 went up */
810 else if (c == KBD_A && conk->conk_l1) {
811 zsabort();
812 conk->conk_l1 = 0; /* we never see the up */
813 goto clearit; /* eat the A after L1-A */
814 }
815 }
816 #ifdef KGDB
817 if (c == FRAME_START && cs->cs_kgdb &&
818 (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
819 zskgdb(cs->cs_unit);
820 goto clearit;
821 }
822 #endif
823 /* compose receive character and status */
824 c <<= 8;
825 c |= ZS_READ(zc, 1);
826
827 /* clear receive error & interrupt condition */
828 zc->zc_csr = ZSWR0_RESET_ERRORS;
829 ZS_DELAY();
830 zc->zc_csr = ZSWR0_CLR_INTR;
831 ZS_DELAY();
832
833 return (ZRING_MAKE(ZRING_RINT, c));
834
835 clearit:
836 zc->zc_csr = ZSWR0_RESET_ERRORS;
837 ZS_DELAY();
838 zc->zc_csr = ZSWR0_CLR_INTR;
839 ZS_DELAY();
840 return (0);
841 }
842
843 static int
844 zsxint(cs, zc)
845 register struct zs_chanstate *cs;
846 register volatile struct zschan *zc;
847 {
848 register int i = cs->cs_tbc;
849
850 if (i == 0) {
851 zc->zc_csr = ZSWR0_RESET_TXINT;
852 ZS_DELAY();
853 zc->zc_csr = ZSWR0_CLR_INTR;
854 ZS_DELAY();
855 return (ZRING_MAKE(ZRING_XINT, 0));
856 }
857 cs->cs_tbc = i - 1;
858 zc->zc_data = *cs->cs_tba++;
859 ZS_DELAY();
860 zc->zc_csr = ZSWR0_CLR_INTR;
861 ZS_DELAY();
862 return (0);
863 }
864
865 static int
866 zssint(cs, zc)
867 register struct zs_chanstate *cs;
868 register volatile struct zschan *zc;
869 {
870 register int rr0;
871
872 rr0 = zc->zc_csr;
873 zc->zc_csr = ZSWR0_RESET_STATUS;
874 ZS_DELAY();
875 zc->zc_csr = ZSWR0_CLR_INTR;
876 ZS_DELAY();
877 /*
878 * The chip's hardware flow control is, as noted in zsreg.h,
879 * busted---if the DCD line goes low the chip shuts off the
880 * receiver (!). If we want hardware CTS flow control but do
881 * not have it, and carrier is now on, turn HFC on; if we have
882 * HFC now but carrier has gone low, turn it off.
883 */
884 if (rr0 & ZSRR0_DCD) {
885 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
886 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
887 cs->cs_creg[3] |= ZSWR3_HFC;
888 ZS_WRITE(zc, 3, cs->cs_creg[3]);
889 }
890 } else {
891 if (cs->cs_creg[3] & ZSWR3_HFC) {
892 cs->cs_creg[3] &= ~ZSWR3_HFC;
893 ZS_WRITE(zc, 3, cs->cs_creg[3]);
894 }
895 }
896 if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
897 #ifdef SUN4
898 /*
899 * XXX This might not be necessary. Test and
900 * delete if it isn't.
901 */
902 if (cputyp==CPU_SUN4) {
903 while (zc->zc_csr & ZSRR0_BREAK)
904 ZS_DELAY();
905 }
906 #endif
907 zsabort();
908 return (0);
909 }
910 return (ZRING_MAKE(ZRING_SINT, rr0));
911 }
912
913 zsabort()
914 {
915
916 #ifdef DDB
917 Debugger();
918 #else
919 printf("stopping on keyboard abort\n");
920 callrom();
921 #endif
922 }
923
924 #ifdef KGDB
925 /*
926 * KGDB framing character received: enter kernel debugger. This probably
927 * should time out after a few seconds to avoid hanging on spurious input.
928 */
929 zskgdb(unit)
930 int unit;
931 {
932
933 printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
934 kgdb_connect(1);
935 }
936 #endif
937
938 /*
939 * Print out a ring or fifo overrun error message.
940 */
941 static void
942 zsoverrun(unit, ptime, what)
943 int unit;
944 long *ptime;
945 char *what;
946 {
947
948 if (*ptime != time.tv_sec) {
949 *ptime = time.tv_sec;
950 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
951 (unit & 1) + 'a', what);
952 }
953 }
954
955 /*
956 * ZS software interrupt. Scan all channels for deferred interrupts.
957 */
958 int
959 zssoft(arg)
960 void *arg;
961 {
962 register struct zs_chanstate *cs;
963 register volatile struct zschan *zc;
964 register struct linesw *line;
965 register struct tty *tp;
966 register int get, n, c, cc, unit, s;
967 int retval = 0;
968
969 for (cs = zslist; cs != NULL; cs = cs->cs_next) {
970 get = cs->cs_rbget;
971 again:
972 n = cs->cs_rbput; /* atomic */
973 if (get == n) /* nothing more on this line */
974 continue;
975 retval = 1;
976 unit = cs->cs_unit; /* set up to handle interrupts */
977 zc = cs->cs_zc;
978 tp = cs->cs_ttyp;
979 line = &linesw[tp->t_line];
980 /*
981 * Compute the number of interrupts in the receive ring.
982 * If the count is overlarge, we lost some events, and
983 * must advance to the first valid one. It may get
984 * overwritten if more data are arriving, but this is
985 * too expensive to check and gains nothing (we already
986 * lost out; all we can do at this point is trade one
987 * kind of loss for another).
988 */
989 n -= get;
990 if (n > ZLRB_RING_SIZE) {
991 zsoverrun(unit, &cs->cs_rotime, "ring");
992 get += n - ZLRB_RING_SIZE;
993 n = ZLRB_RING_SIZE;
994 }
995 while (--n >= 0) {
996 /* race to keep ahead of incoming interrupts */
997 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
998 switch (ZRING_TYPE(c)) {
999
1000 case ZRING_RINT:
1001 c = ZRING_VALUE(c);
1002 if (c & ZSRR1_DO)
1003 zsoverrun(unit, &cs->cs_fotime, "fifo");
1004 cc = c >> 8;
1005 if (c & ZSRR1_FE)
1006 cc |= TTY_FE;
1007 if (c & ZSRR1_PE)
1008 cc |= TTY_PE;
1009 /*
1010 * this should be done through
1011 * bstreams XXX gag choke
1012 */
1013 if (unit == ZS_KBD)
1014 kbd_rint(cc);
1015 else if (unit == ZS_MOUSE)
1016 ms_rint(cc);
1017 else
1018 line->l_rint(cc, tp);
1019 break;
1020
1021 case ZRING_XINT:
1022 /*
1023 * Transmit done: change registers and resume,
1024 * or clear BUSY.
1025 */
1026 if (cs->cs_heldchange) {
1027 s = splzs();
1028 c = zc->zc_csr;
1029 ZS_DELAY();
1030 if ((c & ZSRR0_DCD) == 0)
1031 cs->cs_preg[3] &= ~ZSWR3_HFC;
1032 bcopy((caddr_t)cs->cs_preg,
1033 (caddr_t)cs->cs_creg, 16);
1034 zs_loadchannelregs(zc, cs->cs_creg);
1035 splx(s);
1036 cs->cs_heldchange = 0;
1037 if (cs->cs_heldtbc &&
1038 (tp->t_state & TS_TTSTOP) == 0) {
1039 cs->cs_tbc = cs->cs_heldtbc - 1;
1040 zc->zc_data = *cs->cs_tba++;
1041 ZS_DELAY();
1042 goto again;
1043 }
1044 }
1045 tp->t_state &= ~TS_BUSY;
1046 if (tp->t_state & TS_FLUSH)
1047 tp->t_state &= ~TS_FLUSH;
1048 else
1049 ndflush(&tp->t_outq,
1050 cs->cs_tba - (caddr_t)tp->t_outq.c_cf);
1051 line->l_start(tp);
1052 break;
1053
1054 case ZRING_SINT:
1055 /*
1056 * Status line change. HFC bit is run in
1057 * hardware interrupt, to avoid locking
1058 * at splzs here.
1059 */
1060 c = ZRING_VALUE(c);
1061 if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
1062 cc = (c & ZSRR0_DCD) != 0;
1063 if (line->l_modem(tp, cc) == 0)
1064 zs_modem(cs, cc);
1065 }
1066 cs->cs_rr0 = c;
1067 break;
1068
1069 default:
1070 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
1071 unit >> 1, (unit & 1) + 'a', c);
1072 break;
1073 }
1074 }
1075 cs->cs_rbget = get;
1076 goto again;
1077 }
1078 return (retval);
1079 }
1080
1081 int
1082 zsioctl(dev, cmd, data, flag, p)
1083 dev_t dev;
1084 u_long cmd;
1085 caddr_t data;
1086 int flag;
1087 struct proc *p;
1088 {
1089 int unit = minor(dev);
1090 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1091 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp;
1092 register int error, s;
1093 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1094
1095 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
1096 if (error >= 0)
1097 return (error);
1098 error = ttioctl(tp, cmd, data, flag, p);
1099 if (error >= 0)
1100 return (error);
1101
1102 switch (cmd) {
1103 case TIOCSBRK:
1104 s = splzs();
1105 cs->cs_preg[5] |= ZSWR5_BREAK;
1106 cs->cs_creg[5] |= ZSWR5_BREAK;
1107 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1108 splx(s);
1109 break;
1110 case TIOCCBRK:
1111 s = splzs();
1112 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1113 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1114 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1115 splx(s);
1116 break;
1117 case TIOCGFLAGS: {
1118 int bits = 0;
1119
1120 if (cs->cs_softcar)
1121 bits |= TIOCFLAG_SOFTCAR;
1122 if (cs->cs_creg[15] & ZSWR15_DCD_IE)
1123 bits |= TIOCFLAG_CLOCAL;
1124 if (cs->cs_creg[3] & ZSWR3_HFC)
1125 bits |= TIOCFLAG_CRTSCTS;
1126 *(int *)data = bits;
1127 break;
1128 }
1129 case TIOCSFLAGS: {
1130 int userbits, driverbits = 0;
1131
1132 error = suser(p->p_ucred, &p->p_acflag);
1133 if (error != 0)
1134 return (EPERM);
1135
1136 userbits = *(int *)data;
1137
1138 /*
1139 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
1140 # defaulting to software flow control.
1141 */
1142 if (userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
1143 return(EINVAL);
1144 if (userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
1145 return(ENXIO);
1146
1147 s = splzs();
1148 if ((userbits & TIOCFLAG_SOFTCAR) || (tp == zs_ctty)) {
1149 cs->cs_softcar = 1; /* turn on softcar */
1150 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
1151 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
1152 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1153 } else if (userbits & TIOCFLAG_CLOCAL) {
1154 cs->cs_softcar = 0; /* turn off softcar */
1155 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
1156 cs->cs_creg[15] |= ZSWR15_DCD_IE;
1157 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1158 tp->t_termios.c_cflag |= CLOCAL;
1159 }
1160 if (userbits & TIOCFLAG_CRTSCTS) {
1161 cs->cs_preg[15] |= ZSWR15_CTS_IE;
1162 cs->cs_creg[15] |= ZSWR15_CTS_IE;
1163 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1164 cs->cs_preg[3] |= ZSWR3_HFC;
1165 cs->cs_creg[3] |= ZSWR3_HFC;
1166 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
1167 tp->t_termios.c_cflag |= CRTSCTS;
1168 } else {
1169 /* no mdmbuf, so we must want software flow control */
1170 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
1171 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
1172 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1173 cs->cs_preg[3] &= ~ZSWR3_HFC;
1174 cs->cs_creg[3] &= ~ZSWR3_HFC;
1175 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
1176 tp->t_termios.c_cflag &= ~CRTSCTS;
1177 }
1178 splx(s);
1179 break;
1180 }
1181 case TIOCSDTR:
1182 zs_modem(cs, 1);
1183 break;
1184 case TIOCCDTR:
1185 zs_modem(cs, 0);
1186 break;
1187 case TIOCMSET:
1188 case TIOCMBIS:
1189 case TIOCMBIC:
1190 case TIOCMGET:
1191 default:
1192 return (ENOTTY);
1193 }
1194 return (0);
1195 }
1196
1197 /*
1198 * Start or restart transmission.
1199 */
1200 static void
1201 zsstart(tp)
1202 register struct tty *tp;
1203 {
1204 register struct zs_chanstate *cs;
1205 register int s, nch;
1206 int unit = minor(tp->t_dev);
1207 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1208
1209 cs = &zi->zi_cs[unit & 1];
1210 s = spltty();
1211
1212 /*
1213 * If currently active or delaying, no need to do anything.
1214 */
1215 if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1216 goto out;
1217
1218 /*
1219 * If there are sleepers, and output has drained below low
1220 * water mark, awaken.
1221 */
1222 if (tp->t_outq.c_cc <= tp->t_lowat) {
1223 if (tp->t_state & TS_ASLEEP) {
1224 tp->t_state &= ~TS_ASLEEP;
1225 wakeup((caddr_t)&tp->t_outq);
1226 }
1227 selwakeup(&tp->t_wsel);
1228 }
1229
1230 nch = ndqb(&tp->t_outq, 0); /* XXX */
1231 if (nch) {
1232 register char *p = tp->t_outq.c_cf;
1233
1234 /* mark busy, enable tx done interrupts, & send first byte */
1235 tp->t_state |= TS_BUSY;
1236 (void) splzs();
1237 cs->cs_preg[1] |= ZSWR1_TIE;
1238 cs->cs_creg[1] |= ZSWR1_TIE;
1239 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1240 cs->cs_zc->zc_data = *p;
1241 ZS_DELAY();
1242 cs->cs_tba = p + 1;
1243 cs->cs_tbc = nch - 1;
1244 } else {
1245 /*
1246 * Nothing to send, turn off transmit done interrupts.
1247 * This is useful if something is doing polled output.
1248 */
1249 (void) splzs();
1250 cs->cs_preg[1] &= ~ZSWR1_TIE;
1251 cs->cs_creg[1] &= ~ZSWR1_TIE;
1252 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1253 }
1254 out:
1255 splx(s);
1256 }
1257
1258 /*
1259 * Stop output, e.g., for ^S or output flush.
1260 */
1261 void
1262 zsstop(tp, flag)
1263 register struct tty *tp;
1264 int flag;
1265 {
1266 register struct zs_chanstate *cs;
1267 register int s, unit = minor(tp->t_dev);
1268 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1269
1270 cs = &zi->zi_cs[unit & 1];
1271 s = splzs();
1272 if (tp->t_state & TS_BUSY) {
1273 /*
1274 * Device is transmitting; must stop it.
1275 */
1276 cs->cs_tbc = 0;
1277 if ((tp->t_state & TS_TTSTOP) == 0)
1278 tp->t_state |= TS_FLUSH;
1279 }
1280 splx(s);
1281 }
1282
1283 /*
1284 * Set ZS tty parameters from termios.
1285 *
1286 * This routine makes use of the fact that only registers
1287 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1288 */
1289 static int
1290 zsparam(tp, t)
1291 register struct tty *tp;
1292 register struct termios *t;
1293 {
1294 int unit = minor(tp->t_dev);
1295 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1296 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1297 register int tmp, tmp5, cflag, s;
1298
1299 /*
1300 * Because PCLK is only run at 4.9 MHz, the fastest we
1301 * can go is 51200 baud (this corresponds to TC=1).
1302 * This is somewhat unfortunate as there is no real
1303 * reason we should not be able to handle higher rates.
1304 */
1305 tmp = t->c_ospeed;
1306 if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
1307 return (EINVAL);
1308 if (tmp == 0) {
1309 /* stty 0 => drop DTR and RTS */
1310 zs_modem(cs, 0);
1311 return (0);
1312 }
1313 tmp = BPS_TO_TCONST(PCLK / 16, tmp);
1314 if (tmp < 2)
1315 return (EINVAL);
1316
1317 cflag = t->c_cflag;
1318 tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
1319 tp->t_cflag = cflag;
1320
1321 /*
1322 * Block interrupts so that state will not
1323 * be altered until we are done setting it up.
1324 */
1325 s = splzs();
1326 cs->cs_preg[12] = tmp;
1327 cs->cs_preg[13] = tmp >> 8;
1328 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1329 switch (cflag & CSIZE) {
1330 case CS5:
1331 tmp = ZSWR3_RX_5;
1332 tmp5 = ZSWR5_TX_5;
1333 break;
1334 case CS6:
1335 tmp = ZSWR3_RX_6;
1336 tmp5 = ZSWR5_TX_6;
1337 break;
1338 case CS7:
1339 tmp = ZSWR3_RX_7;
1340 tmp5 = ZSWR5_TX_7;
1341 break;
1342 case CS8:
1343 default:
1344 tmp = ZSWR3_RX_8;
1345 tmp5 = ZSWR5_TX_8;
1346 break;
1347 }
1348
1349 /*
1350 * Output hardware flow control on the chip is horrendous: if
1351 * carrier detect drops, the receiver is disabled. Hence we
1352 * can only do this when the carrier is on.
1353 */
1354 if (cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1355 tmp |= ZSWR3_HFC | ZSWR3_RX_ENABLE;
1356 else
1357 tmp |= ZSWR3_RX_ENABLE;
1358 cs->cs_preg[3] = tmp;
1359 cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1360
1361 tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
1362 if ((cflag & PARODD) == 0)
1363 tmp |= ZSWR4_EVENP;
1364 if (cflag & PARENB)
1365 tmp |= ZSWR4_PARENB;
1366 cs->cs_preg[4] = tmp;
1367 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR;
1368 cs->cs_preg[10] = ZSWR10_NRZ;
1369 cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
1370 cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
1371 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1372
1373 /*
1374 * If nothing is being transmitted, set up new current values,
1375 * else mark them as pending.
1376 */
1377 if (cs->cs_heldchange == 0) {
1378 if (cs->cs_ttyp->t_state & TS_BUSY) {
1379 cs->cs_heldtbc = cs->cs_tbc;
1380 cs->cs_tbc = 0;
1381 cs->cs_heldchange = 1;
1382 } else {
1383 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1384 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1385 }
1386 }
1387 splx(s);
1388 return (0);
1389 }
1390
1391 /*
1392 * Raise or lower modem control (DTR/RTS) signals. If a character is
1393 * in transmission, the change is deferred.
1394 */
1395 static void
1396 zs_modem(cs, onoff)
1397 struct zs_chanstate *cs;
1398 int onoff;
1399 {
1400 int s, bis, and;
1401
1402 if (onoff) {
1403 bis = ZSWR5_DTR | ZSWR5_RTS;
1404 and = ~0;
1405 } else {
1406 bis = 0;
1407 and = ~(ZSWR5_DTR | ZSWR5_RTS);
1408 }
1409 s = splzs();
1410 cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
1411 if (cs->cs_heldchange == 0) {
1412 if (cs->cs_ttyp->t_state & TS_BUSY) {
1413 cs->cs_heldtbc = cs->cs_tbc;
1414 cs->cs_tbc = 0;
1415 cs->cs_heldchange = 1;
1416 } else {
1417 cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
1418 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1419 }
1420 }
1421 splx(s);
1422 }
1423
1424 /*
1425 * Write the given register set to the given zs channel in the proper order.
1426 * The channel must not be transmitting at the time. The receiver will
1427 * be disabled for the time it takes to write all the registers.
1428 */
1429 static void
1430 zs_loadchannelregs(zc, reg)
1431 volatile struct zschan *zc;
1432 u_char *reg;
1433 {
1434 int i;
1435
1436 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1437 ZS_DELAY();
1438 i = zc->zc_data; /* drain fifo */
1439 ZS_DELAY();
1440 i = zc->zc_data;
1441 ZS_DELAY();
1442 i = zc->zc_data;
1443 ZS_DELAY();
1444 ZS_WRITE(zc, 4, reg[4]);
1445 ZS_WRITE(zc, 10, reg[10]);
1446 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1447 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1448 ZS_WRITE(zc, 1, reg[1]);
1449 ZS_WRITE(zc, 9, reg[9]);
1450 ZS_WRITE(zc, 11, reg[11]);
1451 ZS_WRITE(zc, 12, reg[12]);
1452 ZS_WRITE(zc, 13, reg[13]);
1453 ZS_WRITE(zc, 14, reg[14]);
1454 ZS_WRITE(zc, 15, reg[15]);
1455 ZS_WRITE(zc, 3, reg[3]);
1456 ZS_WRITE(zc, 5, reg[5]);
1457 }
1458
1459 #ifdef KGDB
1460 /*
1461 * Get a character from the given kgdb channel. Called at splhigh().
1462 */
1463 static int
1464 zs_kgdb_getc(arg)
1465 void *arg;
1466 {
1467 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1468
1469 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
1470 ZS_DELAY();
1471 return (zc->zc_data);
1472 }
1473
1474 /*
1475 * Put a character to the given kgdb channel. Called at splhigh().
1476 */
1477 static void
1478 zs_kgdb_putc(arg, c)
1479 void *arg;
1480 int c;
1481 {
1482 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1483
1484 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
1485 ZS_DELAY();
1486 zc->zc_data = c;
1487 ZS_DELAY();
1488 }
1489
1490 /*
1491 * Set up for kgdb; called at boot time before configuration.
1492 * KGDB interrupts will be enabled later when zs0 is configured.
1493 */
1494 void
1495 zs_kgdb_init()
1496 {
1497 volatile struct zsdevice *addr;
1498 volatile struct zschan *zc;
1499 int unit, zs;
1500
1501 if (major(kgdb_dev) != ZSMAJOR)
1502 return;
1503 unit = minor(kgdb_dev);
1504 /*
1505 * Unit must be 0 or 1 (zs0).
1506 */
1507 if ((unsigned)unit >= ZS_KBD) {
1508 printf("zs_kgdb_init: bad minor dev %d\n", unit);
1509 return;
1510 }
1511 zs = unit >> 1;
1512 if ((addr = zsaddr[zs]) == NULL)
1513 addr = zsaddr[zs] = findzs(zs);
1514 unit &= 1;
1515 zc = unit == 0 ? &addr->zs_chan[ZS_CHAN_A] : &addr->zs_chan[ZS_CHAN_B];
1516 zs_kgdb_savedspeed = zs_getspeed(zc);
1517 printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
1518 zs, unit + 'a', kgdb_rate);
1519 zs_reset(zc, 1, kgdb_rate);
1520 kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
1521 }
1522 #endif /* KGDB */
1523