zs.c revision 1.32 1 /* $NetBSD: zs.c,v 1.32 1995/11/29 23:41:35 pk Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 *
44 * @(#)zs.c 8.1 (Berkeley) 7/19/93
45 */
46
47 /*
48 * Zilog Z8530 (ZSCC) driver.
49 *
50 * Runs two tty ports (ttya and ttyb) on zs0,
51 * and runs a keyboard and mouse on zs1.
52 *
53 * This driver knows far too much about chip to usage mappings.
54 */
55 #define NZS 2 /* XXX */
56
57 #include <sys/param.h>
58 #include <sys/proc.h>
59 #include <sys/device.h>
60 #include <sys/conf.h>
61 #include <sys/file.h>
62 #include <sys/ioctl.h>
63 #include <sys/malloc.h>
64 #include <sys/tty.h>
65 #include <sys/time.h>
66 #include <sys/kernel.h>
67 #include <sys/syslog.h>
68
69 #include <machine/autoconf.h>
70 #include <machine/cpu.h>
71
72 #include <sparc/sparc/vaddrs.h>
73 #include <sparc/sparc/auxreg.h>
74
75 #include <machine/kbd.h>
76 #include <dev/ic/z8530reg.h>
77 #include <sparc/dev/zsvar.h>
78
79 #ifdef KGDB
80 #include <machine/remote-sl.h>
81 #endif
82
83 #define ZSMAJOR 12 /* XXX */
84
85 #define ZS_KBD 2 /* XXX */
86 #define ZS_MOUSE 3 /* XXX */
87
88 /* the magic number below was stolen from the Sprite source. */
89 #define PCLK (19660800/4) /* PCLK pin input clock rate */
90
91 /*
92 * Select software interrupt bit based on TTY ipl.
93 */
94 #if PIL_TTY == 1
95 # define IE_ZSSOFT IE_L1
96 #elif PIL_TTY == 4
97 # define IE_ZSSOFT IE_L4
98 #elif PIL_TTY == 6
99 # define IE_ZSSOFT IE_L6
100 #else
101 # error "no suitable software interrupt bit"
102 #endif
103
104 /*
105 * Software state per found chip. This would be called `zs_softc',
106 * but the previous driver had a rather different zs_softc....
107 */
108 struct zsinfo {
109 struct device zi_dev; /* base device */
110 volatile struct zsdevice *zi_zs;/* chip registers */
111 struct zs_chanstate zi_cs[2]; /* channel A and B software state */
112 };
113
114 /* Definition of the driver for autoconfig. */
115 static int zsmatch __P((struct device *, void *, void *));
116 static void zsattach __P((struct device *, struct device *, void *));
117 struct cfdriver zscd =
118 { NULL, "zs", zsmatch, zsattach, DV_TTY, sizeof(struct zsinfo) };
119
120 /* Interrupt handlers. */
121 static int zshard __P((void *));
122 static struct intrhand levelhard = { zshard };
123 static int zssoft __P((void *));
124 static struct intrhand levelsoft = { zssoft };
125
126 struct zs_chanstate *zslist;
127
128 /* Routines called from other code. */
129 static void zsiopen __P((struct tty *));
130 static void zsiclose __P((struct tty *));
131 static void zsstart __P((struct tty *));
132 void zsstop __P((struct tty *, int));
133 static int zsparam __P((struct tty *, struct termios *));
134
135 /* Routines purely local to this driver. */
136 static int zs_getspeed __P((volatile struct zschan *));
137 static void zs_reset __P((volatile struct zschan *, int, int));
138 static void zs_modem __P((struct zs_chanstate *, int));
139 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
140
141 /* Console stuff. */
142 static struct tty *zs_ctty; /* console `struct tty *' */
143 static int zs_consin = -1, zs_consout = -1;
144 static int zscnputc __P((int)); /* console putc function */
145 static volatile struct zschan *zs_conschan;
146 static struct tty *zs_checkcons __P((struct zsinfo *, int, struct zs_chanstate *));
147
148 #ifdef KGDB
149 /* KGDB stuff. Must reboot to change zs_kgdbunit. */
150 extern int kgdb_dev, kgdb_rate;
151 static int zs_kgdb_savedspeed;
152 static void zs_checkkgdb __P((int, struct zs_chanstate *, struct tty *));
153 #endif
154
155 extern volatile struct zsdevice *findzs(int);
156 static volatile struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */
157
158 /*
159 * Console keyboard L1-A processing is done in the hardware interrupt code,
160 * so we need to duplicate some of the console keyboard decode state. (We
161 * must not use the regular state as the hardware code keeps ahead of the
162 * software state: the software state tracks the most recent ring input but
163 * the hardware state tracks the most recent ZSCC input.) See also kbd.h.
164 */
165 static struct conk_state { /* console keyboard state */
166 char conk_id; /* true => ID coming up (console only) */
167 char conk_l1; /* true => L1 pressed (console only) */
168 } zsconk_state;
169
170 int zshardscope;
171 int zsshortcuts; /* number of "shortcut" software interrupts */
172
173 #ifdef SUN4
174 static u_char
175 zs_read(zc, reg)
176 volatile struct zschan *zc;
177 u_char reg;
178 {
179 u_char val;
180
181 zc->zc_csr = reg;
182 ZS_DELAY();
183 val = zc->zc_csr;
184 ZS_DELAY();
185 return val;
186 }
187
188 static u_char
189 zs_write(zc, reg, val)
190 volatile struct zschan *zc;
191 u_char reg, val;
192 {
193 zc->zc_csr = reg;
194 ZS_DELAY();
195 zc->zc_csr = val;
196 ZS_DELAY();
197 return val;
198 }
199 #endif /* SUN4 */
200
201 /*
202 * Match slave number to zs unit number, so that misconfiguration will
203 * not set up the keyboard as ttya, etc.
204 */
205 static int
206 zsmatch(parent, vcf, aux)
207 struct device *parent;
208 void *vcf, *aux;
209 {
210 struct cfdata *cf = vcf;
211 struct confargs *ca = aux;
212 struct romaux *ra = &ca->ca_ra;
213
214 if (strcmp(cf->cf_driver->cd_name, ra->ra_name))
215 return (0);
216 if (ca->ca_bustype==BUS_MAIN && cputyp!=CPU_SUN4)
217 return (getpropint(ra->ra_node, "slave", -2) == cf->cf_unit);
218 ra->ra_len = NBPG;
219 return (probeget(ra->ra_vaddr, 1) != -1);
220 }
221
222 /*
223 * Attach a found zs.
224 *
225 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
226 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
227 */
228 static void
229 zsattach(parent, dev, aux)
230 struct device *parent;
231 struct device *dev;
232 void *aux;
233 {
234 register int zs = dev->dv_unit, unit;
235 register struct zsinfo *zi;
236 register struct zs_chanstate *cs;
237 register volatile struct zsdevice *addr;
238 register struct tty *tp, *ctp;
239 register struct confargs *ca = aux;
240 register struct romaux *ra = &ca->ca_ra;
241 int pri;
242 static int didintr, prevpri;
243 int ringsize;
244
245 if ((addr = zsaddr[zs]) == NULL)
246 addr = zsaddr[zs] = findzs(zs);
247 if (ca->ca_bustype==BUS_MAIN)
248 if ((void *)addr != ra->ra_vaddr)
249 panic("zsattach");
250 if (ra->ra_nintr != 1) {
251 printf(": expected 1 interrupt, got %d\n", ra->ra_nintr);
252 return;
253 }
254 pri = ra->ra_intr[0].int_pri;
255 printf(" pri %d, softpri %d\n", pri, PIL_TTY);
256 if (!didintr) {
257 didintr = 1;
258 prevpri = pri;
259 intr_establish(pri, &levelhard);
260 intr_establish(PIL_TTY, &levelsoft);
261 } else if (pri != prevpri)
262 panic("broken zs interrupt scheme");
263 zi = (struct zsinfo *)dev;
264 zi->zi_zs = addr;
265 unit = zs * 2;
266 cs = zi->zi_cs;
267 cs->cs_ttyp = tp = ttymalloc();
268
269 /* link into interrupt list with order (A,B) (B=A+1) */
270 cs[0].cs_next = &cs[1];
271 cs[1].cs_next = zslist;
272 zslist = cs;
273
274 cs->cs_unit = unit;
275 cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_A]);
276 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
277 tp->t_dev = makedev(ZSMAJOR, unit);
278 tp->t_oproc = zsstart;
279 tp->t_param = zsparam;
280 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
281 cs->cs_ttyp = tp = ctp;
282 #ifdef KGDB
283 if (ctp == NULL)
284 zs_checkkgdb(unit, cs, tp);
285 #endif
286 if (unit == ZS_KBD) {
287 /*
288 * Keyboard: tell /dev/kbd driver how to talk to us.
289 */
290 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
291 tp->t_cflag = CS8;
292 kbd_serial(tp, zsiopen, zsiclose);
293 cs->cs_conk = 1; /* do L1-A processing */
294 ringsize = 128;
295 } else
296 ringsize = 4096;
297
298 cs->cs_ringmask = ringsize - 1;
299 cs->cs_rbuf = malloc((u_long)ringsize * sizeof(*cs->cs_rbuf),
300 M_DEVBUF, M_NOWAIT);
301 unit++;
302 cs++;
303 cs->cs_ttyp = tp = ttymalloc();
304 cs->cs_unit = unit;
305 cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_B]);
306 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
307 tp->t_dev = makedev(ZSMAJOR, unit);
308 tp->t_oproc = zsstart;
309 tp->t_param = zsparam;
310 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
311 cs->cs_ttyp = tp = ctp;
312 #ifdef KGDB
313 if (ctp == NULL)
314 zs_checkkgdb(unit, cs, tp);
315 #endif
316 if (unit == ZS_MOUSE) {
317 /*
318 * Mouse: tell /dev/mouse driver how to talk to us.
319 */
320 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
321 tp->t_cflag = CS8;
322 ms_serial(tp, zsiopen, zsiclose);
323 ringsize = 128;
324 } else
325 ringsize = 4096;
326 cs->cs_ringmask = ringsize - 1;
327 cs->cs_rbuf = malloc((u_long)ringsize * sizeof(*cs->cs_rbuf),
328 M_DEVBUF, M_NOWAIT);
329 }
330
331 /*
332 * Put a channel in a known state. Interrupts may be left disabled
333 * or enabled, as desired.
334 */
335 static void
336 zs_reset(zc, inten, speed)
337 volatile struct zschan *zc;
338 int inten, speed;
339 {
340 int tconst;
341 static u_char reg[16] = {
342 0,
343 0,
344 0,
345 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
346 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
347 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
348 0,
349 0,
350 0,
351 0,
352 ZSWR10_NRZ,
353 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
354 0,
355 0,
356 ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
357 ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
358 };
359
360 reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
361 tconst = BPS_TO_TCONST(PCLK / 16, speed);
362 reg[12] = tconst;
363 reg[13] = tconst >> 8;
364 zs_loadchannelregs(zc, reg);
365 }
366
367 /*
368 * Declare the given tty (which is in fact &cons) as a console input
369 * or output. This happens before the zs chip is attached; the hookup
370 * is finished later, in zs_setcons() below.
371 *
372 * This is used only for ports a and b. The console keyboard is decoded
373 * independently (we always send unit-2 input to /dev/kbd, which will
374 * direct it to /dev/console if appropriate).
375 */
376 void
377 zsconsole(tp, unit, out, fnstop)
378 register struct tty *tp;
379 register int unit;
380 int out;
381 void (**fnstop) __P((struct tty *, int));
382 {
383 extern int (*v_putc)();
384 int zs;
385 volatile struct zsdevice *addr;
386
387 if (unit >= ZS_KBD)
388 panic("zsconsole");
389 if (out) {
390 zs_consout = unit;
391 zs = unit >> 1;
392 if ((addr = zsaddr[zs]) == NULL)
393 addr = zsaddr[zs] = findzs(zs);
394 zs_conschan = (unit & 1) == 0 ? &addr->zs_chan[ZS_CHAN_A] :
395 &addr->zs_chan[ZS_CHAN_B];
396 v_putc = zscnputc;
397 } else
398 zs_consin = unit;
399 if(fnstop)
400 *fnstop = &zsstop;
401 zs_ctty = tp;
402 }
403
404 /*
405 * Polled console output putchar.
406 */
407 static int
408 zscnputc(c)
409 int c;
410 {
411 register volatile struct zschan *zc = zs_conschan;
412 register int s;
413
414 if (c == '\n')
415 zscnputc('\r');
416 /*
417 * Must block output interrupts (i.e., raise to >= splzs) without
418 * lowering current ipl. Need a better way.
419 */
420 s = splhigh();
421 #ifdef SUN4C /* XXX */
422 if (cputyp==CPU_SUN4C && s <= (12 << 8))
423 (void) splzs();
424 #endif
425 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
426 ZS_DELAY();
427 zc->zc_data = c;
428 ZS_DELAY();
429 splx(s);
430 }
431
432 /*
433 * Set up the given unit as console input, output, both, or neither, as
434 * needed. Return console tty if it is to receive console input.
435 */
436 static struct tty *
437 zs_checkcons(zi, unit, cs)
438 struct zsinfo *zi;
439 int unit;
440 struct zs_chanstate *cs;
441 {
442 register struct tty *tp;
443 char *i, *o;
444
445 if ((tp = zs_ctty) == NULL) /* XXX */
446 return (0);
447 i = zs_consin == unit ? "input" : NULL;
448 o = zs_consout == unit ? "output" : NULL;
449 if (i == NULL && o == NULL)
450 return (0);
451
452 /* rewire the minor device (gack) */
453 tp->t_dev = makedev(major(tp->t_dev), unit);
454
455 /*
456 * Rewire input and/or output. Note that baud rate reflects
457 * input settings, not output settings, but we can do no better
458 * if the console is split across two ports.
459 *
460 * XXX split consoles don't work anyway -- this needs to be
461 * thrown away and redone
462 */
463 if (i) {
464 tp->t_param = zsparam;
465 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
466 tp->t_cflag = CS8;
467 ttsetwater(tp);
468 }
469 if (o) {
470 tp->t_oproc = zsstart;
471 }
472 printf("%s%c: console %s\n",
473 zi->zi_dev.dv_xname, (unit & 1) + 'a', i ? (o ? "i/o" : i) : o);
474 cs->cs_consio = 1;
475 cs->cs_brkabort = 1;
476 return (tp);
477 }
478
479 #ifdef KGDB
480 /*
481 * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
482 * Pick up the current speed and character size and restore the original
483 * speed.
484 */
485 static void
486 zs_checkkgdb(unit, cs, tp)
487 int unit;
488 struct zs_chanstate *cs;
489 struct tty *tp;
490 {
491
492 if (kgdb_dev == makedev(ZSMAJOR, unit)) {
493 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
494 tp->t_cflag = CS8;
495 cs->cs_kgdb = 1;
496 cs->cs_speed = zs_kgdb_savedspeed;
497 (void) zsparam(tp, &tp->t_termios);
498 }
499 }
500 #endif
501
502 /*
503 * Compute the current baud rate given a ZSCC channel.
504 */
505 static int
506 zs_getspeed(zc)
507 register volatile struct zschan *zc;
508 {
509 register int tconst;
510
511 tconst = ZS_READ(zc, 12);
512 tconst |= ZS_READ(zc, 13) << 8;
513 return (TCONST_TO_BPS(PCLK / 16, tconst));
514 }
515
516
517 /*
518 * Do an internal open.
519 */
520 static void
521 zsiopen(tp)
522 struct tty *tp;
523 {
524
525 (void) zsparam(tp, &tp->t_termios);
526 ttsetwater(tp);
527 tp->t_state = TS_ISOPEN | TS_CARR_ON;
528 }
529
530 /*
531 * Do an internal close. Eventually we should shut off the chip when both
532 * ports on it are closed.
533 */
534 static void
535 zsiclose(tp)
536 struct tty *tp;
537 {
538
539 ttylclose(tp, 0); /* ??? */
540 ttyclose(tp); /* ??? */
541 tp->t_state = 0;
542 }
543
544
545 /*
546 * Open a zs serial port. This interface may not be used to open
547 * the keyboard and mouse ports. (XXX)
548 */
549 int
550 zsopen(dev, flags, mode, p)
551 dev_t dev;
552 int flags;
553 int mode;
554 struct proc *p;
555 {
556 register struct tty *tp;
557 register struct zs_chanstate *cs;
558 struct zsinfo *zi;
559 int unit = minor(dev), zs = unit >> 1, error, s;
560
561 if (zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL ||
562 unit == ZS_KBD || unit == ZS_MOUSE)
563 return (ENXIO);
564 cs = &zi->zi_cs[unit & 1];
565 if (cs->cs_consio)
566 return (ENXIO); /* ??? */
567 tp = cs->cs_ttyp;
568 s = spltty();
569 if ((tp->t_state & TS_ISOPEN) == 0) {
570 ttychars(tp);
571 if (tp->t_ispeed == 0) {
572 tp->t_iflag = TTYDEF_IFLAG;
573 tp->t_oflag = TTYDEF_OFLAG;
574 tp->t_cflag = TTYDEF_CFLAG;
575 tp->t_lflag = TTYDEF_LFLAG;
576 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
577 }
578 (void) zsparam(tp, &tp->t_termios);
579 ttsetwater(tp);
580 } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
581 splx(s);
582 return (EBUSY);
583 }
584 error = 0;
585 for (;;) {
586 register int rr0;
587
588 /* loop, turning on the device, until carrier present */
589 zs_modem(cs, 1);
590 /* May never get status intr if carrier already on. -gwr */
591 rr0 = cs->cs_zc->zc_csr;
592 ZS_DELAY();
593 if ((rr0 & ZSRR0_DCD) || cs->cs_softcar)
594 tp->t_state |= TS_CARR_ON;
595 if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
596 tp->t_state & TS_CARR_ON)
597 break;
598 tp->t_state |= TS_WOPEN;
599 if (error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
600 ttopen, 0)) {
601 if (!(tp->t_state & TS_ISOPEN)) {
602 zs_modem(cs, 0);
603 tp->t_state &= ~TS_WOPEN;
604 ttwakeup(tp);
605 }
606 splx(s);
607 return error;
608 }
609 }
610 splx(s);
611 if (error == 0)
612 error = linesw[tp->t_line].l_open(dev, tp);
613 if (error)
614 zs_modem(cs, 0);
615 return (error);
616 }
617
618 /*
619 * Close a zs serial port.
620 */
621 int
622 zsclose(dev, flags, mode, p)
623 dev_t dev;
624 int flags;
625 int mode;
626 struct proc *p;
627 {
628 register struct zs_chanstate *cs;
629 register struct tty *tp;
630 struct zsinfo *zi;
631 int unit = minor(dev), s;
632
633 zi = zscd.cd_devs[unit >> 1];
634 cs = &zi->zi_cs[unit & 1];
635 tp = cs->cs_ttyp;
636 linesw[tp->t_line].l_close(tp, flags);
637 if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
638 (tp->t_state & TS_ISOPEN) == 0) {
639 zs_modem(cs, 0);
640 /* hold low for 1 second */
641 (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
642 }
643 if (cs->cs_creg[5] & ZSWR5_BREAK)
644 {
645 s = splzs();
646 cs->cs_preg[5] &= ~ZSWR5_BREAK;
647 cs->cs_creg[5] &= ~ZSWR5_BREAK;
648 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
649 splx(s);
650 }
651 ttyclose(tp);
652 #ifdef KGDB
653 /* Reset the speed if we're doing kgdb on this port */
654 if (cs->cs_kgdb) {
655 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
656 (void) zsparam(tp, &tp->t_termios);
657 }
658 #endif
659 return (0);
660 }
661
662 /*
663 * Read/write zs serial port.
664 */
665 int
666 zsread(dev, uio, flags)
667 dev_t dev;
668 struct uio *uio;
669 int flags;
670 {
671 register struct zs_chanstate *cs;
672 register struct zsinfo *zi;
673 register struct tty *tp;
674 int unit = minor(dev);
675
676 zi = zscd.cd_devs[unit >> 1];
677 cs = &zi->zi_cs[unit & 1];
678 tp = cs->cs_ttyp;
679
680 return (linesw[tp->t_line].l_read(tp, uio, flags));
681
682 }
683
684 int
685 zswrite(dev, uio, flags)
686 dev_t dev;
687 struct uio *uio;
688 int flags;
689 {
690 register struct zs_chanstate *cs;
691 register struct zsinfo *zi;
692 register struct tty *tp;
693 int unit = minor(dev);
694
695 zi = zscd.cd_devs[unit >> 1];
696 cs = &zi->zi_cs[unit & 1];
697 tp = cs->cs_ttyp;
698
699 return (linesw[tp->t_line].l_write(tp, uio, flags));
700 }
701
702 struct tty *
703 zstty(dev)
704 dev_t dev;
705 {
706 register struct zs_chanstate *cs;
707 register struct zsinfo *zi;
708 int unit = minor(dev);
709
710 zi = zscd.cd_devs[unit >> 1];
711 cs = &zi->zi_cs[unit & 1];
712
713 return (cs->cs_ttyp);
714
715 }
716
717 /*
718 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
719 * channels are kept in (A,B) pairs.
720 *
721 * Do just a little, then get out; set a software interrupt if more
722 * work is needed.
723 *
724 * We deliberately ignore the vectoring Zilog gives us, and match up
725 * only the number of `reset interrupt under service' operations, not
726 * the order.
727 */
728 /* ARGSUSED */
729 int
730 zshard(intrarg)
731 void *intrarg;
732 {
733 register struct zs_chanstate *a;
734 #define b (a + 1)
735 register volatile struct zschan *zc;
736 register int rr3, intflags = 0, v, i, ringmask;
737 static int zsrint(struct zs_chanstate *, volatile struct zschan *);
738 static int zsxint(struct zs_chanstate *, volatile struct zschan *);
739 static int zssint(struct zs_chanstate *, volatile struct zschan *);
740
741 for (a = zslist; a != NULL; a = b->cs_next) {
742 ringmask = a->cs_ringmask;
743 rr3 = ZS_READ(a->cs_zc, 3);
744 if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
745 intflags |= 2;
746 zc = a->cs_zc;
747 i = a->cs_rbput;
748 if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
749 a->cs_rbuf[i++ & ringmask] = v;
750 intflags |= 1;
751 }
752 if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
753 a->cs_rbuf[i++ & ringmask] = v;
754 intflags |= 1;
755 }
756 if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
757 a->cs_rbuf[i++ & ringmask] = v;
758 intflags |= 1;
759 }
760 a->cs_rbput = i;
761 }
762 if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
763 intflags |= 2;
764 zc = b->cs_zc;
765 i = b->cs_rbput;
766 if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
767 b->cs_rbuf[i++ & ringmask] = v;
768 intflags |= 1;
769 }
770 if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
771 b->cs_rbuf[i++ & ringmask] = v;
772 intflags |= 1;
773 }
774 if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
775 b->cs_rbuf[i++ & ringmask] = v;
776 intflags |= 1;
777 }
778 b->cs_rbput = i;
779 }
780 }
781 #undef b
782
783 if (intflags & 1) {
784 #if defined(SUN4C) || defined(SUN4M)
785 if (cputyp==CPU_SUN4M || cputyp==CPU_SUN4C) {
786 /* XXX -- but this will go away when zshard moves to locore.s */
787 struct clockframe *p = intrarg;
788
789 if ((p->psr & PSR_PIL) < (PIL_TTY << 8)) {
790 zsshortcuts++;
791 (void) spltty();
792 if (zshardscope) {
793 LED_ON;
794 LED_OFF;
795 }
796 return (zssoft(intrarg));
797 }
798 }
799 #endif
800 ienab_bis(IE_ZSSOFT);
801 }
802 return (intflags & 2);
803 }
804
805 static int
806 zsrint(cs, zc)
807 register struct zs_chanstate *cs;
808 register volatile struct zschan *zc;
809 {
810 register int c = zc->zc_data;
811
812 ZS_DELAY();
813 if (cs->cs_conk) {
814 register struct conk_state *conk = &zsconk_state;
815
816 /*
817 * Check here for console abort function, so that we
818 * can abort even when interrupts are locking up the
819 * machine.
820 */
821 if (c == KBD_RESET) {
822 conk->conk_id = 1; /* ignore next byte */
823 conk->conk_l1 = 0;
824 } else if (conk->conk_id)
825 conk->conk_id = 0; /* stop ignoring bytes */
826 else if (c == KBD_L1)
827 conk->conk_l1 = 1; /* L1 went down */
828 else if (c == (KBD_L1|KBD_UP))
829 conk->conk_l1 = 0; /* L1 went up */
830 else if (c == KBD_A && conk->conk_l1) {
831 zsabort();
832 conk->conk_l1 = 0; /* we never see the up */
833 goto clearit; /* eat the A after L1-A */
834 }
835 }
836 #ifdef KGDB
837 if (c == FRAME_START && cs->cs_kgdb &&
838 (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
839 zskgdb(cs->cs_unit);
840 goto clearit;
841 }
842 #endif
843 /* compose receive character and status */
844 c <<= 8;
845 c |= ZS_READ(zc, 1);
846
847 /* clear receive error & interrupt condition */
848 zc->zc_csr = ZSWR0_RESET_ERRORS;
849 ZS_DELAY();
850 zc->zc_csr = ZSWR0_CLR_INTR;
851 ZS_DELAY();
852
853 return (ZRING_MAKE(ZRING_RINT, c));
854
855 clearit:
856 zc->zc_csr = ZSWR0_RESET_ERRORS;
857 ZS_DELAY();
858 zc->zc_csr = ZSWR0_CLR_INTR;
859 ZS_DELAY();
860 return (0);
861 }
862
863 static int
864 zsxint(cs, zc)
865 register struct zs_chanstate *cs;
866 register volatile struct zschan *zc;
867 {
868 register int i = cs->cs_tbc;
869
870 if (i == 0) {
871 zc->zc_csr = ZSWR0_RESET_TXINT;
872 ZS_DELAY();
873 zc->zc_csr = ZSWR0_CLR_INTR;
874 ZS_DELAY();
875 return (ZRING_MAKE(ZRING_XINT, 0));
876 }
877 cs->cs_tbc = i - 1;
878 zc->zc_data = *cs->cs_tba++;
879 ZS_DELAY();
880 zc->zc_csr = ZSWR0_CLR_INTR;
881 ZS_DELAY();
882 return (0);
883 }
884
885 static int
886 zssint(cs, zc)
887 register struct zs_chanstate *cs;
888 register volatile struct zschan *zc;
889 {
890 register int rr0;
891
892 rr0 = zc->zc_csr;
893 ZS_DELAY();
894 zc->zc_csr = ZSWR0_RESET_STATUS;
895 ZS_DELAY();
896 zc->zc_csr = ZSWR0_CLR_INTR;
897 ZS_DELAY();
898 /*
899 * The chip's hardware flow control is, as noted in zsreg.h,
900 * busted---if the DCD line goes low the chip shuts off the
901 * receiver (!). If we want hardware CTS flow control but do
902 * not have it, and carrier is now on, turn HFC on; if we have
903 * HFC now but carrier has gone low, turn it off.
904 */
905 if (rr0 & ZSRR0_DCD) {
906 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
907 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
908 cs->cs_creg[3] |= ZSWR3_HFC;
909 ZS_WRITE(zc, 3, cs->cs_creg[3]);
910 }
911 } else {
912 if (cs->cs_creg[3] & ZSWR3_HFC) {
913 cs->cs_creg[3] &= ~ZSWR3_HFC;
914 ZS_WRITE(zc, 3, cs->cs_creg[3]);
915 }
916 }
917 if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
918 #ifdef SUN4
919 /*
920 * XXX This might not be necessary. Test and
921 * delete if it isn't.
922 */
923 if (cputyp==CPU_SUN4) {
924 while (zc->zc_csr & ZSRR0_BREAK)
925 ZS_DELAY();
926 }
927 #endif
928 zsabort();
929 return (0);
930 }
931 return (ZRING_MAKE(ZRING_SINT, rr0));
932 }
933
934 zsabort()
935 {
936
937 #ifdef DDB
938 Debugger();
939 #else
940 printf("stopping on keyboard abort\n");
941 callrom();
942 #endif
943 }
944
945 #ifdef KGDB
946 /*
947 * KGDB framing character received: enter kernel debugger. This probably
948 * should time out after a few seconds to avoid hanging on spurious input.
949 */
950 zskgdb(unit)
951 int unit;
952 {
953
954 printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
955 kgdb_connect(1);
956 }
957 #endif
958
959 /*
960 * Print out a ring or fifo overrun error message.
961 */
962 static void
963 zsoverrun(unit, ptime, what)
964 int unit;
965 long *ptime;
966 char *what;
967 {
968
969 if (*ptime != time.tv_sec) {
970 *ptime = time.tv_sec;
971 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
972 (unit & 1) + 'a', what);
973 }
974 }
975
976 /*
977 * ZS software interrupt. Scan all channels for deferred interrupts.
978 */
979 int
980 zssoft(arg)
981 void *arg;
982 {
983 register struct zs_chanstate *cs;
984 register volatile struct zschan *zc;
985 register struct linesw *line;
986 register struct tty *tp;
987 register int get, n, c, cc, unit, s, ringmask, ringsize;
988 int retval = 0;
989
990 for (cs = zslist; cs != NULL; cs = cs->cs_next) {
991 ringmask = cs->cs_ringmask;
992 get = cs->cs_rbget;
993 again:
994 n = cs->cs_rbput; /* atomic */
995 if (get == n) /* nothing more on this line */
996 continue;
997 retval = 1;
998 unit = cs->cs_unit; /* set up to handle interrupts */
999 zc = cs->cs_zc;
1000 tp = cs->cs_ttyp;
1001 line = &linesw[tp->t_line];
1002 /*
1003 * Compute the number of interrupts in the receive ring.
1004 * If the count is overlarge, we lost some events, and
1005 * must advance to the first valid one. It may get
1006 * overwritten if more data are arriving, but this is
1007 * too expensive to check and gains nothing (we already
1008 * lost out; all we can do at this point is trade one
1009 * kind of loss for another).
1010 */
1011 ringsize = ringmask + 1;
1012 n -= get;
1013 if (n > ringsize) {
1014 zsoverrun(unit, &cs->cs_rotime, "ring");
1015 get += n - ringsize;
1016 n = ringsize;
1017 }
1018 while (--n >= 0) {
1019 /* race to keep ahead of incoming interrupts */
1020 c = cs->cs_rbuf[get++ & ringmask];
1021 switch (ZRING_TYPE(c)) {
1022
1023 case ZRING_RINT:
1024 c = ZRING_VALUE(c);
1025 if (c & ZSRR1_DO)
1026 zsoverrun(unit, &cs->cs_fotime, "fifo");
1027 cc = c >> 8;
1028 if (c & ZSRR1_FE)
1029 cc |= TTY_FE;
1030 if (c & ZSRR1_PE)
1031 cc |= TTY_PE;
1032 /*
1033 * this should be done through
1034 * bstreams XXX gag choke
1035 */
1036 if (unit == ZS_KBD)
1037 kbd_rint(cc);
1038 else if (unit == ZS_MOUSE)
1039 ms_rint(cc);
1040 else
1041 line->l_rint(cc, tp);
1042 break;
1043
1044 case ZRING_XINT:
1045 /*
1046 * Transmit done: change registers and resume,
1047 * or clear BUSY.
1048 */
1049 if (cs->cs_heldchange) {
1050 s = splzs();
1051 c = zc->zc_csr;
1052 ZS_DELAY();
1053 if ((c & ZSRR0_DCD) == 0)
1054 cs->cs_preg[3] &= ~ZSWR3_HFC;
1055 bcopy((caddr_t)cs->cs_preg,
1056 (caddr_t)cs->cs_creg, 16);
1057 zs_loadchannelregs(zc, cs->cs_creg);
1058 splx(s);
1059 cs->cs_heldchange = 0;
1060 if (cs->cs_heldtbc &&
1061 (tp->t_state & TS_TTSTOP) == 0) {
1062 cs->cs_tbc = cs->cs_heldtbc - 1;
1063 zc->zc_data = *cs->cs_tba++;
1064 ZS_DELAY();
1065 goto again;
1066 }
1067 }
1068 tp->t_state &= ~TS_BUSY;
1069 if (tp->t_state & TS_FLUSH)
1070 tp->t_state &= ~TS_FLUSH;
1071 else
1072 ndflush(&tp->t_outq,
1073 cs->cs_tba - (caddr_t)tp->t_outq.c_cf);
1074 line->l_start(tp);
1075 break;
1076
1077 case ZRING_SINT:
1078 /*
1079 * Status line change. HFC bit is run in
1080 * hardware interrupt, to avoid locking
1081 * at splzs here.
1082 */
1083 c = ZRING_VALUE(c);
1084 if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
1085 cc = (c & ZSRR0_DCD) != 0;
1086 if (line->l_modem(tp, cc) == 0)
1087 zs_modem(cs, cc);
1088 }
1089 cs->cs_rr0 = c;
1090 break;
1091
1092 default:
1093 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
1094 unit >> 1, (unit & 1) + 'a', c);
1095 break;
1096 }
1097 }
1098 cs->cs_rbget = get;
1099 goto again;
1100 }
1101 return (retval);
1102 }
1103
1104 int
1105 zsioctl(dev, cmd, data, flag, p)
1106 dev_t dev;
1107 u_long cmd;
1108 caddr_t data;
1109 int flag;
1110 struct proc *p;
1111 {
1112 int unit = minor(dev);
1113 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1114 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1115 register struct tty *tp = cs->cs_ttyp;
1116 register int error, s;
1117
1118 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
1119 if (error >= 0)
1120 return (error);
1121 error = ttioctl(tp, cmd, data, flag, p);
1122 if (error >= 0)
1123 return (error);
1124
1125 switch (cmd) {
1126 case TIOCSBRK:
1127 s = splzs();
1128 cs->cs_preg[5] |= ZSWR5_BREAK;
1129 cs->cs_creg[5] |= ZSWR5_BREAK;
1130 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1131 splx(s);
1132 break;
1133 case TIOCCBRK:
1134 s = splzs();
1135 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1136 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1137 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1138 splx(s);
1139 break;
1140 case TIOCGFLAGS: {
1141 int bits = 0;
1142
1143 if (cs->cs_softcar)
1144 bits |= TIOCFLAG_SOFTCAR;
1145 if (cs->cs_creg[15] & ZSWR15_DCD_IE)
1146 bits |= TIOCFLAG_CLOCAL;
1147 if (cs->cs_creg[3] & ZSWR3_HFC)
1148 bits |= TIOCFLAG_CRTSCTS;
1149 *(int *)data = bits;
1150 break;
1151 }
1152 case TIOCSFLAGS: {
1153 int userbits, driverbits = 0;
1154
1155 error = suser(p->p_ucred, &p->p_acflag);
1156 if (error != 0)
1157 return (EPERM);
1158
1159 userbits = *(int *)data;
1160
1161 /*
1162 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
1163 # defaulting to software flow control.
1164 */
1165 if (userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
1166 return(EINVAL);
1167 if (userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
1168 return(ENXIO);
1169
1170 s = splzs();
1171 if ((userbits & TIOCFLAG_SOFTCAR) || cs->cs_consio) {
1172 cs->cs_softcar = 1; /* turn on softcar */
1173 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
1174 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
1175 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1176 } else if (userbits & TIOCFLAG_CLOCAL) {
1177 cs->cs_softcar = 0; /* turn off softcar */
1178 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
1179 cs->cs_creg[15] |= ZSWR15_DCD_IE;
1180 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1181 tp->t_termios.c_cflag |= CLOCAL;
1182 }
1183 if (userbits & TIOCFLAG_CRTSCTS) {
1184 cs->cs_preg[15] |= ZSWR15_CTS_IE;
1185 cs->cs_creg[15] |= ZSWR15_CTS_IE;
1186 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1187 cs->cs_preg[3] |= ZSWR3_HFC;
1188 cs->cs_creg[3] |= ZSWR3_HFC;
1189 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
1190 tp->t_termios.c_cflag |= CRTSCTS;
1191 } else {
1192 /* no mdmbuf, so we must want software flow control */
1193 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
1194 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
1195 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1196 cs->cs_preg[3] &= ~ZSWR3_HFC;
1197 cs->cs_creg[3] &= ~ZSWR3_HFC;
1198 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
1199 tp->t_termios.c_cflag &= ~CRTSCTS;
1200 }
1201 splx(s);
1202 break;
1203 }
1204 case TIOCSDTR:
1205 zs_modem(cs, 1);
1206 break;
1207 case TIOCCDTR:
1208 zs_modem(cs, 0);
1209 break;
1210 case TIOCMSET:
1211 case TIOCMBIS:
1212 case TIOCMBIC:
1213 case TIOCMGET:
1214 default:
1215 return (ENOTTY);
1216 }
1217 return (0);
1218 }
1219
1220 /*
1221 * Start or restart transmission.
1222 */
1223 static void
1224 zsstart(tp)
1225 register struct tty *tp;
1226 {
1227 register struct zs_chanstate *cs;
1228 register int s, nch;
1229 int unit = minor(tp->t_dev);
1230 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1231
1232 cs = &zi->zi_cs[unit & 1];
1233 s = spltty();
1234
1235 /*
1236 * If currently active or delaying, no need to do anything.
1237 */
1238 if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1239 goto out;
1240
1241 /*
1242 * If there are sleepers, and output has drained below low
1243 * water mark, awaken.
1244 */
1245 if (tp->t_outq.c_cc <= tp->t_lowat) {
1246 if (tp->t_state & TS_ASLEEP) {
1247 tp->t_state &= ~TS_ASLEEP;
1248 wakeup((caddr_t)&tp->t_outq);
1249 }
1250 selwakeup(&tp->t_wsel);
1251 }
1252
1253 nch = ndqb(&tp->t_outq, 0); /* XXX */
1254 if (nch) {
1255 register char *p = tp->t_outq.c_cf;
1256
1257 /* mark busy, enable tx done interrupts, & send first byte */
1258 tp->t_state |= TS_BUSY;
1259 (void) splzs();
1260 cs->cs_preg[1] |= ZSWR1_TIE;
1261 cs->cs_creg[1] |= ZSWR1_TIE;
1262 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1263 cs->cs_zc->zc_data = *p;
1264 ZS_DELAY();
1265 cs->cs_tba = p + 1;
1266 cs->cs_tbc = nch - 1;
1267 } else {
1268 /*
1269 * Nothing to send, turn off transmit done interrupts.
1270 * This is useful if something is doing polled output.
1271 */
1272 (void) splzs();
1273 cs->cs_preg[1] &= ~ZSWR1_TIE;
1274 cs->cs_creg[1] &= ~ZSWR1_TIE;
1275 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1276 }
1277 out:
1278 splx(s);
1279 }
1280
1281 /*
1282 * Stop output, e.g., for ^S or output flush.
1283 */
1284 void
1285 zsstop(tp, flag)
1286 register struct tty *tp;
1287 int flag;
1288 {
1289 register struct zs_chanstate *cs;
1290 register int s, unit = minor(tp->t_dev);
1291 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1292
1293 cs = &zi->zi_cs[unit & 1];
1294 s = splzs();
1295 if (tp->t_state & TS_BUSY) {
1296 /*
1297 * Device is transmitting; must stop it.
1298 */
1299 cs->cs_tbc = 0;
1300 if ((tp->t_state & TS_TTSTOP) == 0)
1301 tp->t_state |= TS_FLUSH;
1302 }
1303 splx(s);
1304 }
1305
1306 /*
1307 * Set ZS tty parameters from termios.
1308 *
1309 * This routine makes use of the fact that only registers
1310 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1311 */
1312 static int
1313 zsparam(tp, t)
1314 register struct tty *tp;
1315 register struct termios *t;
1316 {
1317 int unit = minor(tp->t_dev);
1318 struct zsinfo *zi = zscd.cd_devs[unit >> 1];
1319 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1320 register int tmp, tmp5, cflag, s;
1321
1322 /*
1323 * Because PCLK is only run at 4.9 MHz, the fastest we
1324 * can go is 51200 baud (this corresponds to TC=1).
1325 * This is somewhat unfortunate as there is no real
1326 * reason we should not be able to handle higher rates.
1327 */
1328 tmp = t->c_ospeed;
1329 if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
1330 return (EINVAL);
1331 if (tmp == 0) {
1332 /* stty 0 => drop DTR and RTS */
1333 zs_modem(cs, 0);
1334 return (0);
1335 }
1336 tmp = BPS_TO_TCONST(PCLK / 16, tmp);
1337 if (tmp < 2)
1338 return (EINVAL);
1339
1340 cflag = t->c_cflag;
1341 tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
1342 tp->t_cflag = cflag;
1343
1344 /*
1345 * Block interrupts so that state will not
1346 * be altered until we are done setting it up.
1347 */
1348 s = splzs();
1349 cs->cs_preg[12] = tmp;
1350 cs->cs_preg[13] = tmp >> 8;
1351 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1352 switch (cflag & CSIZE) {
1353 case CS5:
1354 tmp = ZSWR3_RX_5;
1355 tmp5 = ZSWR5_TX_5;
1356 break;
1357 case CS6:
1358 tmp = ZSWR3_RX_6;
1359 tmp5 = ZSWR5_TX_6;
1360 break;
1361 case CS7:
1362 tmp = ZSWR3_RX_7;
1363 tmp5 = ZSWR5_TX_7;
1364 break;
1365 case CS8:
1366 default:
1367 tmp = ZSWR3_RX_8;
1368 tmp5 = ZSWR5_TX_8;
1369 break;
1370 }
1371
1372 /*
1373 * Output hardware flow control on the chip is horrendous: if
1374 * carrier detect drops, the receiver is disabled. Hence we
1375 * can only do this when the carrier is on.
1376 */
1377 tmp |= ZSWR3_RX_ENABLE;
1378 if (cflag & CCTS_OFLOW) {
1379 if (cs->cs_zc->zc_csr & ZSRR0_DCD)
1380 tmp |= ZSWR3_HFC;
1381 ZS_DELAY();
1382 }
1383 cs->cs_preg[3] = tmp;
1384 cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1385
1386 tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
1387 if ((cflag & PARODD) == 0)
1388 tmp |= ZSWR4_EVENP;
1389 if (cflag & PARENB)
1390 tmp |= ZSWR4_PARENB;
1391 cs->cs_preg[4] = tmp;
1392 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR;
1393 cs->cs_preg[10] = ZSWR10_NRZ;
1394 cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
1395 cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
1396 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1397
1398 /*
1399 * If nothing is being transmitted, set up new current values,
1400 * else mark them as pending.
1401 */
1402 if (cs->cs_heldchange == 0) {
1403 if (cs->cs_ttyp->t_state & TS_BUSY) {
1404 cs->cs_heldtbc = cs->cs_tbc;
1405 cs->cs_tbc = 0;
1406 cs->cs_heldchange = 1;
1407 } else {
1408 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1409 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1410 }
1411 }
1412 splx(s);
1413 return (0);
1414 }
1415
1416 /*
1417 * Raise or lower modem control (DTR/RTS) signals. If a character is
1418 * in transmission, the change is deferred.
1419 */
1420 static void
1421 zs_modem(cs, onoff)
1422 struct zs_chanstate *cs;
1423 int onoff;
1424 {
1425 int s, bis, and;
1426
1427 if (onoff) {
1428 bis = ZSWR5_DTR | ZSWR5_RTS;
1429 and = ~0;
1430 } else {
1431 bis = 0;
1432 and = ~(ZSWR5_DTR | ZSWR5_RTS);
1433 }
1434 s = splzs();
1435 cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
1436 if (cs->cs_heldchange == 0) {
1437 if (cs->cs_ttyp->t_state & TS_BUSY) {
1438 cs->cs_heldtbc = cs->cs_tbc;
1439 cs->cs_tbc = 0;
1440 cs->cs_heldchange = 1;
1441 } else {
1442 cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
1443 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1444 }
1445 }
1446 splx(s);
1447 }
1448
1449 /*
1450 * Write the given register set to the given zs channel in the proper order.
1451 * The channel must not be transmitting at the time. The receiver will
1452 * be disabled for the time it takes to write all the registers.
1453 */
1454 static void
1455 zs_loadchannelregs(zc, reg)
1456 volatile struct zschan *zc;
1457 u_char *reg;
1458 {
1459 int i;
1460
1461 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1462 ZS_DELAY();
1463 i = zc->zc_data; /* drain fifo */
1464 ZS_DELAY();
1465 i = zc->zc_data;
1466 ZS_DELAY();
1467 i = zc->zc_data;
1468 ZS_DELAY();
1469 ZS_WRITE(zc, 4, reg[4]);
1470 ZS_WRITE(zc, 10, reg[10]);
1471 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1472 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1473 ZS_WRITE(zc, 1, reg[1]);
1474 ZS_WRITE(zc, 9, reg[9]);
1475 ZS_WRITE(zc, 11, reg[11]);
1476 ZS_WRITE(zc, 12, reg[12]);
1477 ZS_WRITE(zc, 13, reg[13]);
1478 ZS_WRITE(zc, 14, reg[14]);
1479 ZS_WRITE(zc, 15, reg[15]);
1480 ZS_WRITE(zc, 3, reg[3]);
1481 ZS_WRITE(zc, 5, reg[5]);
1482 }
1483
1484 #ifdef KGDB
1485 /*
1486 * Get a character from the given kgdb channel. Called at splhigh().
1487 */
1488 static int
1489 zs_kgdb_getc(arg)
1490 void *arg;
1491 {
1492 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1493
1494 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
1495 ZS_DELAY();
1496 return (zc->zc_data);
1497 }
1498
1499 /*
1500 * Put a character to the given kgdb channel. Called at splhigh().
1501 */
1502 static void
1503 zs_kgdb_putc(arg, c)
1504 void *arg;
1505 int c;
1506 {
1507 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1508
1509 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
1510 ZS_DELAY();
1511 zc->zc_data = c;
1512 ZS_DELAY();
1513 }
1514
1515 /*
1516 * Set up for kgdb; called at boot time before configuration.
1517 * KGDB interrupts will be enabled later when zs0 is configured.
1518 */
1519 void
1520 zs_kgdb_init()
1521 {
1522 volatile struct zsdevice *addr;
1523 volatile struct zschan *zc;
1524 int unit, zs;
1525
1526 if (major(kgdb_dev) != ZSMAJOR)
1527 return;
1528 unit = minor(kgdb_dev);
1529 /*
1530 * Unit must be 0 or 1 (zs0).
1531 */
1532 if ((unsigned)unit >= ZS_KBD) {
1533 printf("zs_kgdb_init: bad minor dev %d\n", unit);
1534 return;
1535 }
1536 zs = unit >> 1;
1537 if ((addr = zsaddr[zs]) == NULL)
1538 addr = zsaddr[zs] = findzs(zs);
1539 unit &= 1;
1540 zc = unit == 0 ? &addr->zs_chan[ZS_CHAN_A] : &addr->zs_chan[ZS_CHAN_B];
1541 zs_kgdb_savedspeed = zs_getspeed(zc);
1542 printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
1543 zs, unit + 'a', kgdb_rate);
1544 zs_reset(zc, 1, kgdb_rate);
1545 kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
1546 }
1547 #endif /* KGDB */
1548