Home | History | Annotate | Line # | Download | only in dev
zs.c revision 1.33
      1 /*	$NetBSD: zs.c,v 1.33 1996/02/25 22:03:20 pk Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This software was developed by the Computer Systems Engineering group
      8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  * contributed to Berkeley.
     10  *
     11  * All advertising materials mentioning features or use of this software
     12  * must display the following acknowledgement:
     13  *	This product includes software developed by the University of
     14  *	California, Lawrence Berkeley Laboratory.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  * 1. Redistributions of source code must retain the above copyright
     20  *    notice, this list of conditions and the following disclaimer.
     21  * 2. Redistributions in binary form must reproduce the above copyright
     22  *    notice, this list of conditions and the following disclaimer in the
     23  *    documentation and/or other materials provided with the distribution.
     24  * 3. All advertising materials mentioning features or use of this software
     25  *    must display the following acknowledgement:
     26  *	This product includes software developed by the University of
     27  *	California, Berkeley and its contributors.
     28  * 4. Neither the name of the University nor the names of its contributors
     29  *    may be used to endorse or promote products derived from this software
     30  *    without specific prior written permission.
     31  *
     32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     42  * SUCH DAMAGE.
     43  *
     44  *	@(#)zs.c	8.1 (Berkeley) 7/19/93
     45  */
     46 
     47 /*
     48  * Zilog Z8530 (ZSCC) driver.
     49  *
     50  * Runs two tty ports (ttya and ttyb) on zs0,
     51  * and runs a keyboard and mouse on zs1.
     52  *
     53  * This driver knows far too much about chip to usage mappings.
     54  */
     55 #define	NZS	2		/* XXX */
     56 
     57 #include <sys/param.h>
     58 #include <sys/proc.h>
     59 #include <sys/device.h>
     60 #include <sys/conf.h>
     61 #include <sys/file.h>
     62 #include <sys/ioctl.h>
     63 #include <sys/malloc.h>
     64 #include <sys/tty.h>
     65 #include <sys/time.h>
     66 #include <sys/kernel.h>
     67 #include <sys/syslog.h>
     68 
     69 #include <machine/autoconf.h>
     70 #include <machine/cpu.h>
     71 
     72 #include <sparc/sparc/vaddrs.h>
     73 #include <sparc/sparc/auxreg.h>
     74 
     75 #include <machine/kbd.h>
     76 #include <dev/ic/z8530reg.h>
     77 #include <sparc/dev/zsvar.h>
     78 
     79 #ifdef KGDB
     80 #include <machine/remote-sl.h>
     81 #endif
     82 
     83 #define	ZSMAJOR	12		/* XXX */
     84 
     85 #define	ZS_KBD		2	/* XXX */
     86 #define	ZS_MOUSE	3	/* XXX */
     87 
     88 /* the magic number below was stolen from the Sprite source. */
     89 #define PCLK	(19660800/4)	/* PCLK pin input clock rate */
     90 
     91 /*
     92  * Select software interrupt bit based on TTY ipl.
     93  */
     94 #if PIL_TTY == 1
     95 # define IE_ZSSOFT IE_L1
     96 #elif PIL_TTY == 4
     97 # define IE_ZSSOFT IE_L4
     98 #elif PIL_TTY == 6
     99 # define IE_ZSSOFT IE_L6
    100 #else
    101 # error "no suitable software interrupt bit"
    102 #endif
    103 
    104 /*
    105  * Software state per found chip.  This would be called `zs_softc',
    106  * but the previous driver had a rather different zs_softc....
    107  */
    108 struct zsinfo {
    109 	struct	device zi_dev;		/* base device */
    110 	volatile struct zsdevice *zi_zs;/* chip registers */
    111 	struct	zs_chanstate zi_cs[2];	/* channel A and B software state */
    112 };
    113 
    114 /* Definition of the driver for autoconfig. */
    115 static int	zsmatch __P((struct device *, void *, void *));
    116 static void	zsattach __P((struct device *, struct device *, void *));
    117 struct cfdriver zscd =
    118     { NULL, "zs", zsmatch, zsattach, DV_TTY, sizeof(struct zsinfo) };
    119 
    120 /* Interrupt handlers. */
    121 static int	zshard __P((void *));
    122 static struct intrhand levelhard = { zshard };
    123 static int	zssoft __P((void *));
    124 static struct intrhand levelsoft = { zssoft };
    125 
    126 struct zs_chanstate *zslist;
    127 
    128 /* Routines called from other code. */
    129 static void	zsiopen __P((struct tty *));
    130 static void	zsiclose __P((struct tty *));
    131 static void	zsstart __P((struct tty *));
    132 void		zsstop __P((struct tty *, int));
    133 static int	zsparam __P((struct tty *, struct termios *));
    134 
    135 /* Routines purely local to this driver. */
    136 static int	zs_getspeed __P((volatile struct zschan *));
    137 static void	zs_reset __P((volatile struct zschan *, int, int));
    138 static void	zs_modem __P((struct zs_chanstate *, int));
    139 static void	zs_loadchannelregs __P((volatile struct zschan *, u_char *));
    140 
    141 /* Console stuff. */
    142 static struct tty *zs_ctty;	/* console `struct tty *' */
    143 static int zs_consin = -1, zs_consout = -1;
    144 static int zscnputc __P((int));	/* console putc function */
    145 static volatile struct zschan *zs_conschan;
    146 static struct tty *zs_checkcons __P((struct zsinfo *, int, struct zs_chanstate *));
    147 
    148 #ifdef KGDB
    149 /* KGDB stuff.  Must reboot to change zs_kgdbunit. */
    150 extern int kgdb_dev, kgdb_rate;
    151 static int zs_kgdb_savedspeed;
    152 static void zs_checkkgdb __P((int, struct zs_chanstate *, struct tty *));
    153 #endif
    154 
    155 extern volatile struct zsdevice *findzs(int);
    156 static volatile struct zsdevice *zsaddr[NZS];	/* XXX, but saves work */
    157 
    158 /*
    159  * Console keyboard L1-A processing is done in the hardware interrupt code,
    160  * so we need to duplicate some of the console keyboard decode state.  (We
    161  * must not use the regular state as the hardware code keeps ahead of the
    162  * software state: the software state tracks the most recent ring input but
    163  * the hardware state tracks the most recent ZSCC input.)  See also kbd.h.
    164  */
    165 static struct conk_state {	/* console keyboard state */
    166 	char	conk_id;	/* true => ID coming up (console only) */
    167 	char	conk_l1;	/* true => L1 pressed (console only) */
    168 } zsconk_state;
    169 
    170 int zshardscope;
    171 int zsshortcuts;		/* number of "shortcut" software interrupts */
    172 
    173 #ifdef SUN4
    174 static u_char
    175 zs_read(zc, reg)
    176 	volatile struct zschan *zc;
    177 	u_char reg;
    178 {
    179 	u_char val;
    180 
    181 	zc->zc_csr = reg;
    182 	ZS_DELAY();
    183 	val = zc->zc_csr;
    184 	ZS_DELAY();
    185 	return val;
    186 }
    187 
    188 static u_char
    189 zs_write(zc, reg, val)
    190 	volatile struct zschan *zc;
    191 	u_char reg, val;
    192 {
    193 	zc->zc_csr = reg;
    194 	ZS_DELAY();
    195 	zc->zc_csr = val;
    196 	ZS_DELAY();
    197 	return val;
    198 }
    199 #endif /* SUN4 */
    200 
    201 /*
    202  * Match slave number to zs unit number, so that misconfiguration will
    203  * not set up the keyboard as ttya, etc.
    204  */
    205 static int
    206 zsmatch(parent, vcf, aux)
    207 	struct device *parent;
    208 	void *vcf, *aux;
    209 {
    210 	struct cfdata *cf = vcf;
    211 	struct confargs *ca = aux;
    212 	struct romaux *ra = &ca->ca_ra;
    213 
    214 	if (strcmp(cf->cf_driver->cd_name, ra->ra_name))
    215 		return (0);
    216 	if ((ca->ca_bustype == BUS_MAIN && !CPU_ISSUN4) ||
    217 	    (ca->ca_bustype == BUS_OBIO && CPU_ISSUN4M))
    218 		return (getpropint(ra->ra_node, "slave", -2) == cf->cf_unit);
    219 	ra->ra_len = NBPG;
    220 	return (probeget(ra->ra_vaddr, 1) != -1);
    221 }
    222 
    223 /*
    224  * Attach a found zs.
    225  *
    226  * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
    227  * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
    228  */
    229 static void
    230 zsattach(parent, dev, aux)
    231 	struct device *parent;
    232 	struct device *dev;
    233 	void *aux;
    234 {
    235 	register int zs = dev->dv_unit, unit;
    236 	register struct zsinfo *zi;
    237 	register struct zs_chanstate *cs;
    238 	register volatile struct zsdevice *addr;
    239 	register struct tty *tp, *ctp;
    240 	register struct confargs *ca = aux;
    241 	register struct romaux *ra = &ca->ca_ra;
    242 	int pri;
    243 	static int didintr, prevpri;
    244 	int ringsize;
    245 
    246 	if ((addr = zsaddr[zs]) == NULL)
    247 		addr = zsaddr[zs] = findzs(zs);
    248 	if (ca->ca_bustype==BUS_MAIN)
    249 		if ((void *)addr != ra->ra_vaddr)
    250 			panic("zsattach");
    251 	if (ra->ra_nintr != 1) {
    252 		printf(": expected 1 interrupt, got %d\n", ra->ra_nintr);
    253 		return;
    254 	}
    255 	pri = ra->ra_intr[0].int_pri;
    256 	printf(" pri %d, softpri %d\n", pri, PIL_TTY);
    257 	if (!didintr) {
    258 		didintr = 1;
    259 		prevpri = pri;
    260 		intr_establish(pri, &levelhard);
    261 		intr_establish(PIL_TTY, &levelsoft);
    262 	} else if (pri != prevpri)
    263 		panic("broken zs interrupt scheme");
    264 	zi = (struct zsinfo *)dev;
    265 	zi->zi_zs = addr;
    266 	unit = zs * 2;
    267 	cs = zi->zi_cs;
    268 	cs->cs_ttyp = tp = ttymalloc();
    269 
    270 	/* link into interrupt list with order (A,B) (B=A+1) */
    271 	cs[0].cs_next = &cs[1];
    272 	cs[1].cs_next = zslist;
    273 	zslist = cs;
    274 
    275 	cs->cs_unit = unit;
    276 	cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_A]);
    277 	cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
    278 	tp->t_dev = makedev(ZSMAJOR, unit);
    279 	tp->t_oproc = zsstart;
    280 	tp->t_param = zsparam;
    281 	if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
    282 		cs->cs_ttyp = tp = ctp;
    283 #ifdef KGDB
    284 	if (ctp == NULL)
    285 		zs_checkkgdb(unit, cs, tp);
    286 #endif
    287 	if (unit == ZS_KBD) {
    288 		/*
    289 		 * Keyboard: tell /dev/kbd driver how to talk to us.
    290 		 */
    291 		tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
    292 		tp->t_cflag = CS8;
    293 		kbd_serial(tp, zsiopen, zsiclose);
    294 		cs->cs_conk = 1;		/* do L1-A processing */
    295 		ringsize = 128;
    296 	} else
    297 		ringsize = 4096;
    298 
    299 	cs->cs_ringmask = ringsize - 1;
    300 	cs->cs_rbuf = malloc((u_long)ringsize * sizeof(*cs->cs_rbuf),
    301 			      M_DEVBUF, M_NOWAIT);
    302 	unit++;
    303 	cs++;
    304 	cs->cs_ttyp = tp = ttymalloc();
    305 	cs->cs_unit = unit;
    306 	cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_B]);
    307 	cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
    308 	tp->t_dev = makedev(ZSMAJOR, unit);
    309 	tp->t_oproc = zsstart;
    310 	tp->t_param = zsparam;
    311 	if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
    312 		cs->cs_ttyp = tp = ctp;
    313 #ifdef KGDB
    314 	if (ctp == NULL)
    315 		zs_checkkgdb(unit, cs, tp);
    316 #endif
    317 	if (unit == ZS_MOUSE) {
    318 		/*
    319 		 * Mouse: tell /dev/mouse driver how to talk to us.
    320 		 */
    321 		tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
    322 		tp->t_cflag = CS8;
    323 		ms_serial(tp, zsiopen, zsiclose);
    324 		ringsize = 128;
    325 	} else
    326 		ringsize = 4096;
    327 	cs->cs_ringmask = ringsize - 1;
    328 	cs->cs_rbuf = malloc((u_long)ringsize * sizeof(*cs->cs_rbuf),
    329 			      M_DEVBUF, M_NOWAIT);
    330 }
    331 
    332 /*
    333  * Put a channel in a known state.  Interrupts may be left disabled
    334  * or enabled, as desired.
    335  */
    336 static void
    337 zs_reset(zc, inten, speed)
    338 	volatile struct zschan *zc;
    339 	int inten, speed;
    340 {
    341 	int tconst;
    342 	static u_char reg[16] = {
    343 		0,
    344 		0,
    345 		0,
    346 		ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
    347 		ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
    348 		ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
    349 		0,
    350 		0,
    351 		0,
    352 		0,
    353 		ZSWR10_NRZ,
    354 		ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
    355 		0,
    356 		0,
    357 		ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
    358 		ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
    359 	};
    360 
    361 	reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
    362 	tconst = BPS_TO_TCONST(PCLK / 16, speed);
    363 	reg[12] = tconst;
    364 	reg[13] = tconst >> 8;
    365 	zs_loadchannelregs(zc, reg);
    366 }
    367 
    368 /*
    369  * Declare the given tty (which is in fact &cons) as a console input
    370  * or output.  This happens before the zs chip is attached; the hookup
    371  * is finished later, in zs_setcons() below.
    372  *
    373  * This is used only for ports a and b.  The console keyboard is decoded
    374  * independently (we always send unit-2 input to /dev/kbd, which will
    375  * direct it to /dev/console if appropriate).
    376  */
    377 void
    378 zsconsole(tp, unit, out, fnstop)
    379 	register struct tty *tp;
    380 	register int unit;
    381 	int out;
    382 	void (**fnstop) __P((struct tty *, int));
    383 {
    384 	extern int (*v_putc)();
    385 	int zs;
    386 	volatile struct zsdevice *addr;
    387 
    388 	if (unit >= ZS_KBD)
    389 		panic("zsconsole");
    390 	if (out) {
    391 		zs_consout = unit;
    392 		zs = unit >> 1;
    393 		if ((addr = zsaddr[zs]) == NULL)
    394 			addr = zsaddr[zs] = findzs(zs);
    395 		zs_conschan = (unit & 1) == 0 ? &addr->zs_chan[ZS_CHAN_A] :
    396 		    &addr->zs_chan[ZS_CHAN_B];
    397 		v_putc = zscnputc;
    398 	} else
    399 		zs_consin = unit;
    400 	if(fnstop)
    401 		*fnstop = &zsstop;
    402 	zs_ctty = tp;
    403 }
    404 
    405 /*
    406  * Polled console output putchar.
    407  */
    408 static int
    409 zscnputc(c)
    410 	int c;
    411 {
    412 	register volatile struct zschan *zc = zs_conschan;
    413 	register int s;
    414 
    415 	if (c == '\n')
    416 		zscnputc('\r');
    417 	/*
    418 	 * Must block output interrupts (i.e., raise to >= splzs) without
    419 	 * lowering current ipl.  Need a better way.
    420 	 */
    421 	s = splhigh();
    422 	if (CPU_ISSUN4C && s <= (12 << 8)) /* XXX */
    423 		(void) splzs();
    424 	while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
    425 		ZS_DELAY();
    426 	zc->zc_data = c;
    427 	ZS_DELAY();
    428 	splx(s);
    429 }
    430 
    431 /*
    432  * Set up the given unit as console input, output, both, or neither, as
    433  * needed.  Return console tty if it is to receive console input.
    434  */
    435 static struct tty *
    436 zs_checkcons(zi, unit, cs)
    437 	struct zsinfo *zi;
    438 	int unit;
    439 	struct zs_chanstate *cs;
    440 {
    441 	register struct tty *tp;
    442 	char *i, *o;
    443 
    444 	if ((tp = zs_ctty) == NULL) /* XXX */
    445 		return (0);
    446 	i = zs_consin == unit ? "input" : NULL;
    447 	o = zs_consout == unit ? "output" : NULL;
    448 	if (i == NULL && o == NULL)
    449 		return (0);
    450 
    451 	/* rewire the minor device (gack) */
    452 	tp->t_dev = makedev(major(tp->t_dev), unit);
    453 
    454 	/*
    455 	 * Rewire input and/or output.  Note that baud rate reflects
    456 	 * input settings, not output settings, but we can do no better
    457 	 * if the console is split across two ports.
    458 	 *
    459 	 * XXX	split consoles don't work anyway -- this needs to be
    460 	 *	thrown away and redone
    461 	 */
    462 	if (i) {
    463 		tp->t_param = zsparam;
    464 		tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
    465 		tp->t_cflag = CS8;
    466 		ttsetwater(tp);
    467 	}
    468 	if (o) {
    469 		tp->t_oproc = zsstart;
    470 	}
    471 	printf("%s%c: console %s\n",
    472 	    zi->zi_dev.dv_xname, (unit & 1) + 'a', i ? (o ? "i/o" : i) : o);
    473 	cs->cs_consio = 1;
    474 	cs->cs_brkabort = 1;
    475 	return (tp);
    476 }
    477 
    478 #ifdef KGDB
    479 /*
    480  * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
    481  * Pick up the current speed and character size and restore the original
    482  * speed.
    483  */
    484 static void
    485 zs_checkkgdb(unit, cs, tp)
    486 	int unit;
    487 	struct zs_chanstate *cs;
    488 	struct tty *tp;
    489 {
    490 
    491 	if (kgdb_dev == makedev(ZSMAJOR, unit)) {
    492 		tp->t_ispeed = tp->t_ospeed = kgdb_rate;
    493 		tp->t_cflag = CS8;
    494 		cs->cs_kgdb = 1;
    495 		cs->cs_speed = zs_kgdb_savedspeed;
    496 		(void) zsparam(tp, &tp->t_termios);
    497 	}
    498 }
    499 #endif
    500 
    501 /*
    502  * Compute the current baud rate given a ZSCC channel.
    503  */
    504 static int
    505 zs_getspeed(zc)
    506 	register volatile struct zschan *zc;
    507 {
    508 	register int tconst;
    509 
    510 	tconst = ZS_READ(zc, 12);
    511 	tconst |= ZS_READ(zc, 13) << 8;
    512 	return (TCONST_TO_BPS(PCLK / 16, tconst));
    513 }
    514 
    515 
    516 /*
    517  * Do an internal open.
    518  */
    519 static void
    520 zsiopen(tp)
    521 	struct tty *tp;
    522 {
    523 
    524 	(void) zsparam(tp, &tp->t_termios);
    525 	ttsetwater(tp);
    526 	tp->t_state = TS_ISOPEN | TS_CARR_ON;
    527 }
    528 
    529 /*
    530  * Do an internal close.  Eventually we should shut off the chip when both
    531  * ports on it are closed.
    532  */
    533 static void
    534 zsiclose(tp)
    535 	struct tty *tp;
    536 {
    537 
    538 	ttylclose(tp, 0);	/* ??? */
    539 	ttyclose(tp);		/* ??? */
    540 	tp->t_state = 0;
    541 }
    542 
    543 
    544 /*
    545  * Open a zs serial port.  This interface may not be used to open
    546  * the keyboard and mouse ports. (XXX)
    547  */
    548 int
    549 zsopen(dev, flags, mode, p)
    550 	dev_t dev;
    551 	int flags;
    552 	int mode;
    553 	struct proc *p;
    554 {
    555 	register struct tty *tp;
    556 	register struct zs_chanstate *cs;
    557 	struct zsinfo *zi;
    558 	int unit = minor(dev), zs = unit >> 1, error, s;
    559 
    560 	if (zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL ||
    561 	    unit == ZS_KBD || unit == ZS_MOUSE)
    562 		return (ENXIO);
    563 	cs = &zi->zi_cs[unit & 1];
    564 	if (cs->cs_consio)
    565 		return (ENXIO);		/* ??? */
    566 	tp = cs->cs_ttyp;
    567 	s = spltty();
    568 	if ((tp->t_state & TS_ISOPEN) == 0) {
    569 		ttychars(tp);
    570 		if (tp->t_ispeed == 0) {
    571 			tp->t_iflag = TTYDEF_IFLAG;
    572 			tp->t_oflag = TTYDEF_OFLAG;
    573 			tp->t_cflag = TTYDEF_CFLAG;
    574 			tp->t_lflag = TTYDEF_LFLAG;
    575 			tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
    576 		}
    577 		(void) zsparam(tp, &tp->t_termios);
    578 		ttsetwater(tp);
    579 	} else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
    580 		splx(s);
    581 		return (EBUSY);
    582 	}
    583 	error = 0;
    584 	for (;;) {
    585 		register int rr0;
    586 
    587 		/* loop, turning on the device, until carrier present */
    588 		zs_modem(cs, 1);
    589 		/* May never get status intr if carrier already on. -gwr */
    590 		rr0 = cs->cs_zc->zc_csr;
    591 		ZS_DELAY();
    592 		if ((rr0 & ZSRR0_DCD) || cs->cs_softcar)
    593 			tp->t_state |= TS_CARR_ON;
    594 		if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
    595 		    tp->t_state & TS_CARR_ON)
    596 			break;
    597 		tp->t_state |= TS_WOPEN;
    598 		if (error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
    599 		    ttopen, 0)) {
    600 			if (!(tp->t_state & TS_ISOPEN)) {
    601 				zs_modem(cs, 0);
    602 				tp->t_state &= ~TS_WOPEN;
    603 				ttwakeup(tp);
    604 			}
    605 			splx(s);
    606 			return error;
    607 		}
    608 	}
    609 	splx(s);
    610 	if (error == 0)
    611 		error = linesw[tp->t_line].l_open(dev, tp);
    612 	if (error)
    613 		zs_modem(cs, 0);
    614 	return (error);
    615 }
    616 
    617 /*
    618  * Close a zs serial port.
    619  */
    620 int
    621 zsclose(dev, flags, mode, p)
    622 	dev_t dev;
    623 	int flags;
    624 	int mode;
    625 	struct proc *p;
    626 {
    627 	register struct zs_chanstate *cs;
    628 	register struct tty *tp;
    629 	struct zsinfo *zi;
    630 	int unit = minor(dev), s;
    631 
    632 	zi = zscd.cd_devs[unit >> 1];
    633 	cs = &zi->zi_cs[unit & 1];
    634 	tp = cs->cs_ttyp;
    635 	linesw[tp->t_line].l_close(tp, flags);
    636 	if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
    637 	    (tp->t_state & TS_ISOPEN) == 0) {
    638 		zs_modem(cs, 0);
    639 		/* hold low for 1 second */
    640 		(void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
    641 	}
    642 	if (cs->cs_creg[5] & ZSWR5_BREAK)
    643 	{
    644 		s = splzs();
    645 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
    646 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
    647 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    648 		splx(s);
    649 	}
    650 	ttyclose(tp);
    651 #ifdef KGDB
    652 	/* Reset the speed if we're doing kgdb on this port */
    653 	if (cs->cs_kgdb) {
    654 		tp->t_ispeed = tp->t_ospeed = kgdb_rate;
    655 		(void) zsparam(tp, &tp->t_termios);
    656 	}
    657 #endif
    658 	return (0);
    659 }
    660 
    661 /*
    662  * Read/write zs serial port.
    663  */
    664 int
    665 zsread(dev, uio, flags)
    666 	dev_t dev;
    667 	struct uio *uio;
    668 	int flags;
    669 {
    670 	register struct zs_chanstate *cs;
    671 	register struct zsinfo *zi;
    672 	register struct tty *tp;
    673 	int unit = minor(dev);
    674 
    675 	zi = zscd.cd_devs[unit >> 1];
    676 	cs = &zi->zi_cs[unit & 1];
    677 	tp = cs->cs_ttyp;
    678 
    679 	return (linesw[tp->t_line].l_read(tp, uio, flags));
    680 
    681 }
    682 
    683 int
    684 zswrite(dev, uio, flags)
    685 	dev_t dev;
    686 	struct uio *uio;
    687 	int flags;
    688 {
    689 	register struct zs_chanstate *cs;
    690 	register struct zsinfo *zi;
    691 	register struct tty *tp;
    692 	int unit = minor(dev);
    693 
    694 	zi = zscd.cd_devs[unit >> 1];
    695 	cs = &zi->zi_cs[unit & 1];
    696 	tp = cs->cs_ttyp;
    697 
    698 	return (linesw[tp->t_line].l_write(tp, uio, flags));
    699 }
    700 
    701 struct tty *
    702 zstty(dev)
    703 	dev_t dev;
    704 {
    705 	register struct zs_chanstate *cs;
    706 	register struct zsinfo *zi;
    707 	int unit = minor(dev);
    708 
    709 	zi = zscd.cd_devs[unit >> 1];
    710 	cs = &zi->zi_cs[unit & 1];
    711 
    712 	return (cs->cs_ttyp);
    713 
    714 }
    715 
    716 /*
    717  * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
    718  * channels are kept in (A,B) pairs.
    719  *
    720  * Do just a little, then get out; set a software interrupt if more
    721  * work is needed.
    722  *
    723  * We deliberately ignore the vectoring Zilog gives us, and match up
    724  * only the number of `reset interrupt under service' operations, not
    725  * the order.
    726  */
    727 /* ARGSUSED */
    728 int
    729 zshard(intrarg)
    730 	void *intrarg;
    731 {
    732 	register struct zs_chanstate *a;
    733 #define	b (a + 1)
    734 	register volatile struct zschan *zc;
    735 	register int rr3, intflags = 0, v, i, ringmask;
    736 	static int zsrint(struct zs_chanstate *, volatile struct zschan *);
    737 	static int zsxint(struct zs_chanstate *, volatile struct zschan *);
    738 	static int zssint(struct zs_chanstate *, volatile struct zschan *);
    739 
    740 	for (a = zslist; a != NULL; a = b->cs_next) {
    741 		ringmask = a->cs_ringmask;
    742 		rr3 = ZS_READ(a->cs_zc, 3);
    743 		if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
    744 			intflags |= 2;
    745 			zc = a->cs_zc;
    746 			i = a->cs_rbput;
    747 			if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
    748 				a->cs_rbuf[i++ & ringmask] = v;
    749 				intflags |= 1;
    750 			}
    751 			if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
    752 				a->cs_rbuf[i++ & ringmask] = v;
    753 				intflags |= 1;
    754 			}
    755 			if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
    756 				a->cs_rbuf[i++ & ringmask] = v;
    757 				intflags |= 1;
    758 			}
    759 			a->cs_rbput = i;
    760 		}
    761 		if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
    762 			intflags |= 2;
    763 			zc = b->cs_zc;
    764 			i = b->cs_rbput;
    765 			if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
    766 				b->cs_rbuf[i++ & ringmask] = v;
    767 				intflags |= 1;
    768 			}
    769 			if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
    770 				b->cs_rbuf[i++ & ringmask] = v;
    771 				intflags |= 1;
    772 			}
    773 			if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
    774 				b->cs_rbuf[i++ & ringmask] = v;
    775 				intflags |= 1;
    776 			}
    777 			b->cs_rbput = i;
    778 		}
    779 	}
    780 #undef b
    781 
    782 	if (intflags & 1) {
    783 		if (CPU_ISSUN4COR4M) {
    784 			/* XXX -- but this will go away when zshard moves to locore.s */
    785 			struct clockframe *p = intrarg;
    786 
    787 			if ((p->psr & PSR_PIL) < (PIL_TTY << 8)) {
    788 				zsshortcuts++;
    789 				(void) spltty();
    790 				if (zshardscope) {
    791 					LED_ON;
    792 					LED_OFF;
    793 				}
    794 				return (zssoft(intrarg));
    795 			}
    796 		}
    797 
    798 #if defined(SUN4M)
    799 		if (CPU_ISSUN4M)
    800 			raise(0, PIL_TTY);
    801 		else
    802 #endif
    803 			ienab_bis(IE_ZSSOFT);
    804 	}
    805 	return (intflags & 2);
    806 }
    807 
    808 static int
    809 zsrint(cs, zc)
    810 	register struct zs_chanstate *cs;
    811 	register volatile struct zschan *zc;
    812 {
    813 	register int c = zc->zc_data;
    814 
    815 	ZS_DELAY();
    816 	if (cs->cs_conk) {
    817 		register struct conk_state *conk = &zsconk_state;
    818 
    819 		/*
    820 		 * Check here for console abort function, so that we
    821 		 * can abort even when interrupts are locking up the
    822 		 * machine.
    823 		 */
    824 		if (c == KBD_RESET) {
    825 			conk->conk_id = 1;	/* ignore next byte */
    826 			conk->conk_l1 = 0;
    827 		} else if (conk->conk_id)
    828 			conk->conk_id = 0;	/* stop ignoring bytes */
    829 		else if (c == KBD_L1)
    830 			conk->conk_l1 = 1;	/* L1 went down */
    831 		else if (c == (KBD_L1|KBD_UP))
    832 			conk->conk_l1 = 0;	/* L1 went up */
    833 		else if (c == KBD_A && conk->conk_l1) {
    834 			zsabort();
    835 			conk->conk_l1 = 0;	/* we never see the up */
    836 			goto clearit;		/* eat the A after L1-A */
    837 		}
    838 	}
    839 #ifdef KGDB
    840 	if (c == FRAME_START && cs->cs_kgdb &&
    841 	    (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
    842 		zskgdb(cs->cs_unit);
    843 		goto clearit;
    844 	}
    845 #endif
    846 	/* compose receive character and status */
    847 	c <<= 8;
    848 	c |= ZS_READ(zc, 1);
    849 
    850 	/* clear receive error & interrupt condition */
    851 	zc->zc_csr = ZSWR0_RESET_ERRORS;
    852 	ZS_DELAY();
    853 	zc->zc_csr = ZSWR0_CLR_INTR;
    854 	ZS_DELAY();
    855 
    856 	return (ZRING_MAKE(ZRING_RINT, c));
    857 
    858 clearit:
    859 	zc->zc_csr = ZSWR0_RESET_ERRORS;
    860 	ZS_DELAY();
    861 	zc->zc_csr = ZSWR0_CLR_INTR;
    862 	ZS_DELAY();
    863 	return (0);
    864 }
    865 
    866 static int
    867 zsxint(cs, zc)
    868 	register struct zs_chanstate *cs;
    869 	register volatile struct zschan *zc;
    870 {
    871 	register int i = cs->cs_tbc;
    872 
    873 	if (i == 0) {
    874 		zc->zc_csr = ZSWR0_RESET_TXINT;
    875 		ZS_DELAY();
    876 		zc->zc_csr = ZSWR0_CLR_INTR;
    877 		ZS_DELAY();
    878 		return (ZRING_MAKE(ZRING_XINT, 0));
    879 	}
    880 	cs->cs_tbc = i - 1;
    881 	zc->zc_data = *cs->cs_tba++;
    882 	ZS_DELAY();
    883 	zc->zc_csr = ZSWR0_CLR_INTR;
    884 	ZS_DELAY();
    885 	return (0);
    886 }
    887 
    888 static int
    889 zssint(cs, zc)
    890 	register struct zs_chanstate *cs;
    891 	register volatile struct zschan *zc;
    892 {
    893 	register int rr0;
    894 
    895 	rr0 = zc->zc_csr;
    896 	ZS_DELAY();
    897 	zc->zc_csr = ZSWR0_RESET_STATUS;
    898 	ZS_DELAY();
    899 	zc->zc_csr = ZSWR0_CLR_INTR;
    900 	ZS_DELAY();
    901 	/*
    902 	 * The chip's hardware flow control is, as noted in zsreg.h,
    903 	 * busted---if the DCD line goes low the chip shuts off the
    904 	 * receiver (!).  If we want hardware CTS flow control but do
    905 	 * not have it, and carrier is now on, turn HFC on; if we have
    906 	 * HFC now but carrier has gone low, turn it off.
    907 	 */
    908 	if (rr0 & ZSRR0_DCD) {
    909 		if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
    910 		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
    911 			cs->cs_creg[3] |= ZSWR3_HFC;
    912 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    913 		}
    914 	} else {
    915 		if (cs->cs_creg[3] & ZSWR3_HFC) {
    916 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    917 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    918 		}
    919 	}
    920 	if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
    921 		/*
    922 		 * XXX This might not be necessary. Test and
    923 		 * delete if it isn't.
    924 		 */
    925 		if (CPU_ISSUN4) {
    926 			while (zc->zc_csr & ZSRR0_BREAK)
    927 				ZS_DELAY();
    928 		}
    929 		zsabort();
    930 		return (0);
    931 	}
    932 	return (ZRING_MAKE(ZRING_SINT, rr0));
    933 }
    934 
    935 zsabort()
    936 {
    937 
    938 #ifdef DDB
    939 	Debugger();
    940 #else
    941 	printf("stopping on keyboard abort\n");
    942 	callrom();
    943 #endif
    944 }
    945 
    946 #ifdef KGDB
    947 /*
    948  * KGDB framing character received: enter kernel debugger.  This probably
    949  * should time out after a few seconds to avoid hanging on spurious input.
    950  */
    951 zskgdb(unit)
    952 	int unit;
    953 {
    954 
    955 	printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
    956 	kgdb_connect(1);
    957 }
    958 #endif
    959 
    960 /*
    961  * Print out a ring or fifo overrun error message.
    962  */
    963 static void
    964 zsoverrun(unit, ptime, what)
    965 	int unit;
    966 	long *ptime;
    967 	char *what;
    968 {
    969 
    970 	if (*ptime != time.tv_sec) {
    971 		*ptime = time.tv_sec;
    972 		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
    973 		    (unit & 1) + 'a', what);
    974 	}
    975 }
    976 
    977 /*
    978  * ZS software interrupt.  Scan all channels for deferred interrupts.
    979  */
    980 int
    981 zssoft(arg)
    982 	void *arg;
    983 {
    984 	register struct zs_chanstate *cs;
    985 	register volatile struct zschan *zc;
    986 	register struct linesw *line;
    987 	register struct tty *tp;
    988 	register int get, n, c, cc, unit, s, ringmask, ringsize;
    989 	int	retval = 0;
    990 
    991 	for (cs = zslist; cs != NULL; cs = cs->cs_next) {
    992 		ringmask = cs->cs_ringmask;
    993 		get = cs->cs_rbget;
    994 again:
    995 		n = cs->cs_rbput;	/* atomic */
    996 		if (get == n)		/* nothing more on this line */
    997 			continue;
    998 		retval = 1;
    999 		unit = cs->cs_unit;	/* set up to handle interrupts */
   1000 		zc = cs->cs_zc;
   1001 		tp = cs->cs_ttyp;
   1002 		line = &linesw[tp->t_line];
   1003 		/*
   1004 		 * Compute the number of interrupts in the receive ring.
   1005 		 * If the count is overlarge, we lost some events, and
   1006 		 * must advance to the first valid one.  It may get
   1007 		 * overwritten if more data are arriving, but this is
   1008 		 * too expensive to check and gains nothing (we already
   1009 		 * lost out; all we can do at this point is trade one
   1010 		 * kind of loss for another).
   1011 		 */
   1012 		ringsize = ringmask + 1;
   1013 		n -= get;
   1014 		if (n > ringsize) {
   1015 			zsoverrun(unit, &cs->cs_rotime, "ring");
   1016 			get += n - ringsize;
   1017 			n = ringsize;
   1018 		}
   1019 		while (--n >= 0) {
   1020 			/* race to keep ahead of incoming interrupts */
   1021 			c = cs->cs_rbuf[get++ & ringmask];
   1022 			switch (ZRING_TYPE(c)) {
   1023 
   1024 			case ZRING_RINT:
   1025 				c = ZRING_VALUE(c);
   1026 				if (c & ZSRR1_DO)
   1027 					zsoverrun(unit, &cs->cs_fotime, "fifo");
   1028 				cc = c >> 8;
   1029 				if (c & ZSRR1_FE)
   1030 					cc |= TTY_FE;
   1031 				if (c & ZSRR1_PE)
   1032 					cc |= TTY_PE;
   1033 				/*
   1034 				 * this should be done through
   1035 				 * bstreams	XXX gag choke
   1036 				 */
   1037 				if (unit == ZS_KBD)
   1038 					kbd_rint(cc);
   1039 				else if (unit == ZS_MOUSE)
   1040 					ms_rint(cc);
   1041 				else
   1042 					line->l_rint(cc, tp);
   1043 				break;
   1044 
   1045 			case ZRING_XINT:
   1046 				/*
   1047 				 * Transmit done: change registers and resume,
   1048 				 * or clear BUSY.
   1049 				 */
   1050 				if (cs->cs_heldchange) {
   1051 					s = splzs();
   1052 					c = zc->zc_csr;
   1053 					ZS_DELAY();
   1054 					if ((c & ZSRR0_DCD) == 0)
   1055 						cs->cs_preg[3] &= ~ZSWR3_HFC;
   1056 					bcopy((caddr_t)cs->cs_preg,
   1057 					    (caddr_t)cs->cs_creg, 16);
   1058 					zs_loadchannelregs(zc, cs->cs_creg);
   1059 					splx(s);
   1060 					cs->cs_heldchange = 0;
   1061 					if (cs->cs_heldtbc &&
   1062 					    (tp->t_state & TS_TTSTOP) == 0) {
   1063 						cs->cs_tbc = cs->cs_heldtbc - 1;
   1064 						zc->zc_data = *cs->cs_tba++;
   1065 						ZS_DELAY();
   1066 						goto again;
   1067 					}
   1068 				}
   1069 				tp->t_state &= ~TS_BUSY;
   1070 				if (tp->t_state & TS_FLUSH)
   1071 					tp->t_state &= ~TS_FLUSH;
   1072 				else
   1073 					ndflush(&tp->t_outq,
   1074 					 cs->cs_tba - (caddr_t)tp->t_outq.c_cf);
   1075 				line->l_start(tp);
   1076 				break;
   1077 
   1078 			case ZRING_SINT:
   1079 				/*
   1080 				 * Status line change.  HFC bit is run in
   1081 				 * hardware interrupt, to avoid locking
   1082 				 * at splzs here.
   1083 				 */
   1084 				c = ZRING_VALUE(c);
   1085 				if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
   1086 					cc = (c & ZSRR0_DCD) != 0;
   1087 					if (line->l_modem(tp, cc) == 0)
   1088 						zs_modem(cs, cc);
   1089 				}
   1090 				cs->cs_rr0 = c;
   1091 				break;
   1092 
   1093 			default:
   1094 				log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
   1095 				    unit >> 1, (unit & 1) + 'a', c);
   1096 				break;
   1097 			}
   1098 		}
   1099 		cs->cs_rbget = get;
   1100 		goto again;
   1101 	}
   1102 	return (retval);
   1103 }
   1104 
   1105 int
   1106 zsioctl(dev, cmd, data, flag, p)
   1107 	dev_t dev;
   1108 	u_long cmd;
   1109 	caddr_t data;
   1110 	int flag;
   1111 	struct proc *p;
   1112 {
   1113 	int unit = minor(dev);
   1114 	struct zsinfo *zi = zscd.cd_devs[unit >> 1];
   1115 	register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
   1116 	register struct tty *tp = cs->cs_ttyp;
   1117 	register int error, s;
   1118 
   1119 	error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
   1120 	if (error >= 0)
   1121 		return (error);
   1122 	error = ttioctl(tp, cmd, data, flag, p);
   1123 	if (error >= 0)
   1124 		return (error);
   1125 
   1126 	switch (cmd) {
   1127 	case TIOCSBRK:
   1128 		s = splzs();
   1129 		cs->cs_preg[5] |= ZSWR5_BREAK;
   1130 		cs->cs_creg[5] |= ZSWR5_BREAK;
   1131 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
   1132 		splx(s);
   1133 		break;
   1134 	case TIOCCBRK:
   1135 		s = splzs();
   1136 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
   1137 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
   1138 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
   1139 		splx(s);
   1140 		break;
   1141 	case TIOCGFLAGS: {
   1142 		int bits = 0;
   1143 
   1144 		if (cs->cs_softcar)
   1145 			bits |= TIOCFLAG_SOFTCAR;
   1146 		if (cs->cs_creg[15] & ZSWR15_DCD_IE)
   1147 			bits |= TIOCFLAG_CLOCAL;
   1148 		if (cs->cs_creg[3] & ZSWR3_HFC)
   1149 			bits |= TIOCFLAG_CRTSCTS;
   1150 		*(int *)data = bits;
   1151 		break;
   1152 	}
   1153 	case TIOCSFLAGS: {
   1154 		int userbits, driverbits = 0;
   1155 
   1156 		error = suser(p->p_ucred, &p->p_acflag);
   1157 		if (error != 0)
   1158 			return (EPERM);
   1159 
   1160 		userbits = *(int *)data;
   1161 
   1162 		/*
   1163 		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
   1164 		 # defaulting to software flow control.
   1165 		 */
   1166 		if (userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
   1167 			return(EINVAL);
   1168 		if (userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
   1169 			return(ENXIO);
   1170 
   1171 		s = splzs();
   1172 		if ((userbits & TIOCFLAG_SOFTCAR) || cs->cs_consio) {
   1173 			cs->cs_softcar = 1;	/* turn on softcar */
   1174 			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
   1175 			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
   1176 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
   1177 		} else if (userbits & TIOCFLAG_CLOCAL) {
   1178 			cs->cs_softcar = 0; 	/* turn off softcar */
   1179 			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
   1180 			cs->cs_creg[15] |= ZSWR15_DCD_IE;
   1181 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
   1182 			tp->t_termios.c_cflag |= CLOCAL;
   1183 		}
   1184 		if (userbits & TIOCFLAG_CRTSCTS) {
   1185 			cs->cs_preg[15] |= ZSWR15_CTS_IE;
   1186 			cs->cs_creg[15] |= ZSWR15_CTS_IE;
   1187 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
   1188 			cs->cs_preg[3] |= ZSWR3_HFC;
   1189 			cs->cs_creg[3] |= ZSWR3_HFC;
   1190 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
   1191 			tp->t_termios.c_cflag |= CRTSCTS;
   1192 		} else {
   1193 			/* no mdmbuf, so we must want software flow control */
   1194 			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
   1195 			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
   1196 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
   1197 			cs->cs_preg[3] &= ~ZSWR3_HFC;
   1198 			cs->cs_creg[3] &= ~ZSWR3_HFC;
   1199 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
   1200 			tp->t_termios.c_cflag &= ~CRTSCTS;
   1201 		}
   1202 		splx(s);
   1203 		break;
   1204 	}
   1205 	case TIOCSDTR:
   1206 		zs_modem(cs, 1);
   1207 		break;
   1208 	case TIOCCDTR:
   1209 		zs_modem(cs, 0);
   1210 		break;
   1211 	case TIOCMSET:
   1212 	case TIOCMBIS:
   1213 	case TIOCMBIC:
   1214 	case TIOCMGET:
   1215 	default:
   1216 		return (ENOTTY);
   1217 	}
   1218 	return (0);
   1219 }
   1220 
   1221 /*
   1222  * Start or restart transmission.
   1223  */
   1224 static void
   1225 zsstart(tp)
   1226 	register struct tty *tp;
   1227 {
   1228 	register struct zs_chanstate *cs;
   1229 	register int s, nch;
   1230 	int unit = minor(tp->t_dev);
   1231 	struct zsinfo *zi = zscd.cd_devs[unit >> 1];
   1232 
   1233 	cs = &zi->zi_cs[unit & 1];
   1234 	s = spltty();
   1235 
   1236 	/*
   1237 	 * If currently active or delaying, no need to do anything.
   1238 	 */
   1239 	if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
   1240 		goto out;
   1241 
   1242 	/*
   1243 	 * If there are sleepers, and output has drained below low
   1244 	 * water mark, awaken.
   1245 	 */
   1246 	if (tp->t_outq.c_cc <= tp->t_lowat) {
   1247 		if (tp->t_state & TS_ASLEEP) {
   1248 			tp->t_state &= ~TS_ASLEEP;
   1249 			wakeup((caddr_t)&tp->t_outq);
   1250 		}
   1251 		selwakeup(&tp->t_wsel);
   1252 	}
   1253 
   1254 	nch = ndqb(&tp->t_outq, 0);	/* XXX */
   1255 	if (nch) {
   1256 		register char *p = tp->t_outq.c_cf;
   1257 
   1258 		/* mark busy, enable tx done interrupts, & send first byte */
   1259 		tp->t_state |= TS_BUSY;
   1260 		(void) splzs();
   1261 		cs->cs_preg[1] |= ZSWR1_TIE;
   1262 		cs->cs_creg[1] |= ZSWR1_TIE;
   1263 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
   1264 		cs->cs_zc->zc_data = *p;
   1265 		ZS_DELAY();
   1266 		cs->cs_tba = p + 1;
   1267 		cs->cs_tbc = nch - 1;
   1268 	} else {
   1269 		/*
   1270 		 * Nothing to send, turn off transmit done interrupts.
   1271 		 * This is useful if something is doing polled output.
   1272 		 */
   1273 		(void) splzs();
   1274 		cs->cs_preg[1] &= ~ZSWR1_TIE;
   1275 		cs->cs_creg[1] &= ~ZSWR1_TIE;
   1276 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
   1277 	}
   1278 out:
   1279 	splx(s);
   1280 }
   1281 
   1282 /*
   1283  * Stop output, e.g., for ^S or output flush.
   1284  */
   1285 void
   1286 zsstop(tp, flag)
   1287 	register struct tty *tp;
   1288 	int flag;
   1289 {
   1290 	register struct zs_chanstate *cs;
   1291 	register int s, unit = minor(tp->t_dev);
   1292 	struct zsinfo *zi = zscd.cd_devs[unit >> 1];
   1293 
   1294 	cs = &zi->zi_cs[unit & 1];
   1295 	s = splzs();
   1296 	if (tp->t_state & TS_BUSY) {
   1297 		/*
   1298 		 * Device is transmitting; must stop it.
   1299 		 */
   1300 		cs->cs_tbc = 0;
   1301 		if ((tp->t_state & TS_TTSTOP) == 0)
   1302 			tp->t_state |= TS_FLUSH;
   1303 	}
   1304 	splx(s);
   1305 }
   1306 
   1307 /*
   1308  * Set ZS tty parameters from termios.
   1309  *
   1310  * This routine makes use of the fact that only registers
   1311  * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
   1312  */
   1313 static int
   1314 zsparam(tp, t)
   1315 	register struct tty *tp;
   1316 	register struct termios *t;
   1317 {
   1318 	int unit = minor(tp->t_dev);
   1319 	struct zsinfo *zi = zscd.cd_devs[unit >> 1];
   1320 	register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
   1321 	register int tmp, tmp5, cflag, s;
   1322 
   1323 	/*
   1324 	 * Because PCLK is only run at 4.9 MHz, the fastest we
   1325 	 * can go is 51200 baud (this corresponds to TC=1).
   1326 	 * This is somewhat unfortunate as there is no real
   1327 	 * reason we should not be able to handle higher rates.
   1328 	 */
   1329 	tmp = t->c_ospeed;
   1330 	if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
   1331 		return (EINVAL);
   1332 	if (tmp == 0) {
   1333 		/* stty 0 => drop DTR and RTS */
   1334 		zs_modem(cs, 0);
   1335 		return (0);
   1336 	}
   1337 	tmp = BPS_TO_TCONST(PCLK / 16, tmp);
   1338 	if (tmp < 2)
   1339 		return (EINVAL);
   1340 
   1341 	cflag = t->c_cflag;
   1342 	tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
   1343 	tp->t_cflag = cflag;
   1344 
   1345 	/*
   1346 	 * Block interrupts so that state will not
   1347 	 * be altered until we are done setting it up.
   1348 	 */
   1349 	s = splzs();
   1350 	cs->cs_preg[12] = tmp;
   1351 	cs->cs_preg[13] = tmp >> 8;
   1352 	cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
   1353 	switch (cflag & CSIZE) {
   1354 	case CS5:
   1355 		tmp = ZSWR3_RX_5;
   1356 		tmp5 = ZSWR5_TX_5;
   1357 		break;
   1358 	case CS6:
   1359 		tmp = ZSWR3_RX_6;
   1360 		tmp5 = ZSWR5_TX_6;
   1361 		break;
   1362 	case CS7:
   1363 		tmp = ZSWR3_RX_7;
   1364 		tmp5 = ZSWR5_TX_7;
   1365 		break;
   1366 	case CS8:
   1367 	default:
   1368 		tmp = ZSWR3_RX_8;
   1369 		tmp5 = ZSWR5_TX_8;
   1370 		break;
   1371 	}
   1372 
   1373 	/*
   1374 	 * Output hardware flow control on the chip is horrendous: if
   1375 	 * carrier detect drops, the receiver is disabled.  Hence we
   1376 	 * can only do this when the carrier is on.
   1377 	 */
   1378 	tmp |= ZSWR3_RX_ENABLE;
   1379 	if (cflag & CCTS_OFLOW) {
   1380 		if (cs->cs_zc->zc_csr & ZSRR0_DCD)
   1381 			tmp |= ZSWR3_HFC;
   1382 		ZS_DELAY();
   1383 	}
   1384 	cs->cs_preg[3] = tmp;
   1385 	cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
   1386 
   1387 	tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
   1388 	if ((cflag & PARODD) == 0)
   1389 		tmp |= ZSWR4_EVENP;
   1390 	if (cflag & PARENB)
   1391 		tmp |= ZSWR4_PARENB;
   1392 	cs->cs_preg[4] = tmp;
   1393 	cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR;
   1394 	cs->cs_preg[10] = ZSWR10_NRZ;
   1395 	cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
   1396 	cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
   1397 	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
   1398 
   1399 	/*
   1400 	 * If nothing is being transmitted, set up new current values,
   1401 	 * else mark them as pending.
   1402 	 */
   1403 	if (cs->cs_heldchange == 0) {
   1404 		if (cs->cs_ttyp->t_state & TS_BUSY) {
   1405 			cs->cs_heldtbc = cs->cs_tbc;
   1406 			cs->cs_tbc = 0;
   1407 			cs->cs_heldchange = 1;
   1408 		} else {
   1409 			bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
   1410 			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
   1411 		}
   1412 	}
   1413 	splx(s);
   1414 	return (0);
   1415 }
   1416 
   1417 /*
   1418  * Raise or lower modem control (DTR/RTS) signals.  If a character is
   1419  * in transmission, the change is deferred.
   1420  */
   1421 static void
   1422 zs_modem(cs, onoff)
   1423 	struct zs_chanstate *cs;
   1424 	int onoff;
   1425 {
   1426 	int s, bis, and;
   1427 
   1428 	if (onoff) {
   1429 		bis = ZSWR5_DTR | ZSWR5_RTS;
   1430 		and = ~0;
   1431 	} else {
   1432 		bis = 0;
   1433 		and = ~(ZSWR5_DTR | ZSWR5_RTS);
   1434 	}
   1435 	s = splzs();
   1436 	cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
   1437 	if (cs->cs_heldchange == 0) {
   1438 		if (cs->cs_ttyp->t_state & TS_BUSY) {
   1439 			cs->cs_heldtbc = cs->cs_tbc;
   1440 			cs->cs_tbc = 0;
   1441 			cs->cs_heldchange = 1;
   1442 		} else {
   1443 			cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
   1444 			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
   1445 		}
   1446 	}
   1447 	splx(s);
   1448 }
   1449 
   1450 /*
   1451  * Write the given register set to the given zs channel in the proper order.
   1452  * The channel must not be transmitting at the time.  The receiver will
   1453  * be disabled for the time it takes to write all the registers.
   1454  */
   1455 static void
   1456 zs_loadchannelregs(zc, reg)
   1457 	volatile struct zschan *zc;
   1458 	u_char *reg;
   1459 {
   1460 	int i;
   1461 
   1462 	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
   1463 	ZS_DELAY();
   1464 	i = zc->zc_data;		/* drain fifo */
   1465 	ZS_DELAY();
   1466 	i = zc->zc_data;
   1467 	ZS_DELAY();
   1468 	i = zc->zc_data;
   1469 	ZS_DELAY();
   1470 	ZS_WRITE(zc, 4, reg[4]);
   1471 	ZS_WRITE(zc, 10, reg[10]);
   1472 	ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
   1473 	ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
   1474 	ZS_WRITE(zc, 1, reg[1]);
   1475 	ZS_WRITE(zc, 9, reg[9]);
   1476 	ZS_WRITE(zc, 11, reg[11]);
   1477 	ZS_WRITE(zc, 12, reg[12]);
   1478 	ZS_WRITE(zc, 13, reg[13]);
   1479 	ZS_WRITE(zc, 14, reg[14]);
   1480 	ZS_WRITE(zc, 15, reg[15]);
   1481 	ZS_WRITE(zc, 3, reg[3]);
   1482 	ZS_WRITE(zc, 5, reg[5]);
   1483 }
   1484 
   1485 #ifdef KGDB
   1486 /*
   1487  * Get a character from the given kgdb channel.  Called at splhigh().
   1488  */
   1489 static int
   1490 zs_kgdb_getc(arg)
   1491 	void *arg;
   1492 {
   1493 	register volatile struct zschan *zc = (volatile struct zschan *)arg;
   1494 
   1495 	while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
   1496 		ZS_DELAY();
   1497 	return (zc->zc_data);
   1498 }
   1499 
   1500 /*
   1501  * Put a character to the given kgdb channel.  Called at splhigh().
   1502  */
   1503 static void
   1504 zs_kgdb_putc(arg, c)
   1505 	void *arg;
   1506 	int c;
   1507 {
   1508 	register volatile struct zschan *zc = (volatile struct zschan *)arg;
   1509 
   1510 	while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
   1511 		ZS_DELAY();
   1512 	zc->zc_data = c;
   1513 	ZS_DELAY();
   1514 }
   1515 
   1516 /*
   1517  * Set up for kgdb; called at boot time before configuration.
   1518  * KGDB interrupts will be enabled later when zs0 is configured.
   1519  */
   1520 void
   1521 zs_kgdb_init()
   1522 {
   1523 	volatile struct zsdevice *addr;
   1524 	volatile struct zschan *zc;
   1525 	int unit, zs;
   1526 
   1527 	if (major(kgdb_dev) != ZSMAJOR)
   1528 		return;
   1529 	unit = minor(kgdb_dev);
   1530 	/*
   1531 	 * Unit must be 0 or 1 (zs0).
   1532 	 */
   1533 	if ((unsigned)unit >= ZS_KBD) {
   1534 		printf("zs_kgdb_init: bad minor dev %d\n", unit);
   1535 		return;
   1536 	}
   1537 	zs = unit >> 1;
   1538 	if ((addr = zsaddr[zs]) == NULL)
   1539 		addr = zsaddr[zs] = findzs(zs);
   1540 	unit &= 1;
   1541 	zc = unit == 0 ? &addr->zs_chan[ZS_CHAN_A] : &addr->zs_chan[ZS_CHAN_B];
   1542 	zs_kgdb_savedspeed = zs_getspeed(zc);
   1543 	printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
   1544 	    zs, unit + 'a', kgdb_rate);
   1545 	zs_reset(zc, 1, kgdb_rate);
   1546 	kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
   1547 }
   1548 #endif /* KGDB */
   1549