zs.c revision 1.35 1 /* $NetBSD: zs.c,v 1.35 1996/03/17 02:01:26 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 *
44 * @(#)zs.c 8.1 (Berkeley) 7/19/93
45 */
46
47 /*
48 * Zilog Z8530 (ZSCC) driver.
49 *
50 * Runs two tty ports (ttya and ttyb) on zs0,
51 * and runs a keyboard and mouse on zs1.
52 *
53 * This driver knows far too much about chip to usage mappings.
54 */
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/proc.h>
58 #include <sys/device.h>
59 #include <sys/file.h>
60 #include <sys/ioctl.h>
61 #include <sys/malloc.h>
62 #include <sys/tty.h>
63 #include <sys/time.h>
64 #include <sys/kernel.h>
65 #include <sys/syslog.h>
66
67 #include <machine/autoconf.h>
68 #include <machine/cpu.h>
69
70 #include <sparc/sparc/vaddrs.h>
71 #include <sparc/sparc/auxreg.h>
72
73
74 #include <machine/kbd.h>
75 #include <dev/ic/z8530reg.h>
76
77 #include <sparc/dev/zsvar.h>
78 #include <sparc/dev/dev_conf.h>
79
80 #ifdef KGDB
81 #include <machine/remote-sl.h>
82 #endif
83
84 #define ZSMAJOR 12 /* XXX */
85
86 #define ZS_KBD 2 /* XXX */
87 #define ZS_MOUSE 3 /* XXX */
88
89 /* the magic number below was stolen from the Sprite source. */
90 #define PCLK (19660800/4) /* PCLK pin input clock rate */
91
92 /*
93 * Select software interrupt bit based on TTY ipl.
94 */
95 #if PIL_TTY == 1
96 # define IE_ZSSOFT IE_L1
97 #elif PIL_TTY == 4
98 # define IE_ZSSOFT IE_L4
99 #elif PIL_TTY == 6
100 # define IE_ZSSOFT IE_L6
101 #else
102 # error "no suitable software interrupt bit"
103 #endif
104
105 /*
106 * Software state per found chip. This would be called `zs_softc',
107 * but the previous driver had a rather different zs_softc....
108 */
109 struct zsinfo {
110 struct device zi_dev; /* base device */
111 volatile struct zsdevice *zi_zs;/* chip registers */
112 struct zs_chanstate zi_cs[2]; /* channel A and B software state */
113 };
114
115 /* Definition of the driver for autoconfig. */
116 static int zsmatch __P((struct device *, void *, void *));
117 static void zsattach __P((struct device *, struct device *, void *));
118
119 struct cfattach zs_ca = {
120 sizeof(struct zsinfo), zsmatch, zsattach
121 };
122
123 struct cfdriver zs_cd = {
124 NULL, "zs", DV_TTY
125 };
126
127 /* Interrupt handlers. */
128 static int zshard __P((void *));
129 static struct intrhand levelhard = { zshard };
130 static int zssoft __P((void *));
131 static struct intrhand levelsoft = { zssoft };
132
133 struct zs_chanstate *zslist;
134
135 /* Routines called from other code. */
136 static void zsiopen __P((struct tty *));
137 static void zsiclose __P((struct tty *));
138 static void zsstart __P((struct tty *));
139 static int zsparam __P((struct tty *, struct termios *));
140
141 /* Routines purely local to this driver. */
142 static int zs_getspeed __P((volatile struct zschan *));
143 #ifdef KGDB
144 static void zs_reset __P((volatile struct zschan *, int, int));
145 #endif
146 static void zs_modem __P((struct zs_chanstate *, int));
147 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
148
149 /* Console stuff. */
150 static struct tty *zs_ctty; /* console `struct tty *' */
151 static int zs_consin = -1, zs_consout = -1;
152 static void zscnputc __P((int)); /* console putc function */
153 static volatile struct zschan *zs_conschan;
154 static struct tty *zs_checkcons __P((struct zsinfo *, int, struct zs_chanstate *));
155
156 #ifdef KGDB
157 /* KGDB stuff. Must reboot to change zs_kgdbunit. */
158 extern int kgdb_dev, kgdb_rate;
159 static int zs_kgdb_savedspeed;
160 static void zs_checkkgdb __P((int, struct zs_chanstate *, struct tty *));
161 void zskgdb __P((int));
162 static int zs_kgdb_getc __P((void *));
163 static void zs_kgdb_putc __P((void *, int));
164 #endif
165
166 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
167 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
168 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
169
170 void zsabort __P((void));
171 static void zsoverrun __P((int, long *, char *));
172
173 static volatile struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */
174
175 /*
176 * Console keyboard L1-A processing is done in the hardware interrupt code,
177 * so we need to duplicate some of the console keyboard decode state. (We
178 * must not use the regular state as the hardware code keeps ahead of the
179 * software state: the software state tracks the most recent ring input but
180 * the hardware state tracks the most recent ZSCC input.) See also kbd.h.
181 */
182 static struct conk_state { /* console keyboard state */
183 char conk_id; /* true => ID coming up (console only) */
184 char conk_l1; /* true => L1 pressed (console only) */
185 } zsconk_state;
186
187 int zshardscope;
188 int zsshortcuts; /* number of "shortcut" software interrupts */
189
190 #ifdef SUN4
191 static u_int zs_read __P((volatile struct zschan *, u_int reg));
192 static u_int zs_write __P((volatile struct zschan *, u_int, u_int));
193
194 static u_int
195 zs_read(zc, reg)
196 volatile struct zschan *zc;
197 u_int reg;
198 {
199 u_char val;
200
201 zc->zc_csr = reg;
202 ZS_DELAY();
203 val = zc->zc_csr;
204 ZS_DELAY();
205 return val;
206 }
207
208 static u_int
209 zs_write(zc, reg, val)
210 volatile struct zschan *zc;
211 u_int reg, val;
212 {
213 zc->zc_csr = reg;
214 ZS_DELAY();
215 zc->zc_csr = val;
216 ZS_DELAY();
217 return val;
218 }
219 #endif /* SUN4 */
220
221 /*
222 * Match slave number to zs unit number, so that misconfiguration will
223 * not set up the keyboard as ttya, etc.
224 */
225 static int
226 zsmatch(parent, vcf, aux)
227 struct device *parent;
228 void *vcf, *aux;
229 {
230 struct cfdata *cf = vcf;
231 struct confargs *ca = aux;
232 struct romaux *ra = &ca->ca_ra;
233
234 if (strcmp(cf->cf_driver->cd_name, ra->ra_name))
235 return (0);
236 if ((ca->ca_bustype == BUS_MAIN && !CPU_ISSUN4) ||
237 (ca->ca_bustype == BUS_OBIO && CPU_ISSUN4M))
238 return (getpropint(ra->ra_node, "slave", -2) == cf->cf_unit);
239 ra->ra_len = NBPG;
240 return (probeget(ra->ra_vaddr, 1) != -1);
241 }
242
243 /*
244 * Attach a found zs.
245 *
246 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
247 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
248 */
249 static void
250 zsattach(parent, dev, aux)
251 struct device *parent;
252 struct device *dev;
253 void *aux;
254 {
255 register int zs = dev->dv_unit, unit;
256 register struct zsinfo *zi;
257 register struct zs_chanstate *cs;
258 register volatile struct zsdevice *addr;
259 register struct tty *tp, *ctp;
260 register struct confargs *ca = aux;
261 register struct romaux *ra = &ca->ca_ra;
262 int pri;
263 static int didintr, prevpri;
264 int ringsize;
265
266 if ((addr = zsaddr[zs]) == NULL)
267 addr = zsaddr[zs] = findzs(zs);
268 if (ca->ca_bustype==BUS_MAIN)
269 if ((void *)addr != ra->ra_vaddr)
270 panic("zsattach");
271 if (ra->ra_nintr != 1) {
272 printf(": expected 1 interrupt, got %d\n", ra->ra_nintr);
273 return;
274 }
275 pri = ra->ra_intr[0].int_pri;
276 printf(" pri %d, softpri %d\n", pri, PIL_TTY);
277 if (!didintr) {
278 didintr = 1;
279 prevpri = pri;
280 intr_establish(pri, &levelhard);
281 intr_establish(PIL_TTY, &levelsoft);
282 } else if (pri != prevpri)
283 panic("broken zs interrupt scheme");
284 zi = (struct zsinfo *)dev;
285 zi->zi_zs = addr;
286 unit = zs * 2;
287 cs = zi->zi_cs;
288 cs->cs_ttyp = tp = ttymalloc();
289
290 /* link into interrupt list with order (A,B) (B=A+1) */
291 cs[0].cs_next = &cs[1];
292 cs[1].cs_next = zslist;
293 zslist = cs;
294
295 cs->cs_unit = unit;
296 cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_A]);
297 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
298 tp->t_dev = makedev(ZSMAJOR, unit);
299 tp->t_oproc = zsstart;
300 tp->t_param = zsparam;
301 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
302 cs->cs_ttyp = tp = ctp;
303 #ifdef KGDB
304 if (ctp == NULL)
305 zs_checkkgdb(unit, cs, tp);
306 #endif
307 if (unit == ZS_KBD) {
308 /*
309 * Keyboard: tell /dev/kbd driver how to talk to us.
310 */
311 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
312 tp->t_cflag = CS8;
313 kbd_serial(tp, zsiopen, zsiclose);
314 cs->cs_conk = 1; /* do L1-A processing */
315 ringsize = 128;
316 } else
317 ringsize = 4096;
318
319 cs->cs_ringmask = ringsize - 1;
320 cs->cs_rbuf = malloc((u_long)ringsize * sizeof(*cs->cs_rbuf),
321 M_DEVBUF, M_NOWAIT);
322 unit++;
323 cs++;
324 cs->cs_ttyp = tp = ttymalloc();
325 cs->cs_unit = unit;
326 cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_B]);
327 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
328 tp->t_dev = makedev(ZSMAJOR, unit);
329 tp->t_oproc = zsstart;
330 tp->t_param = zsparam;
331 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
332 cs->cs_ttyp = tp = ctp;
333 #ifdef KGDB
334 if (ctp == NULL)
335 zs_checkkgdb(unit, cs, tp);
336 #endif
337 if (unit == ZS_MOUSE) {
338 /*
339 * Mouse: tell /dev/mouse driver how to talk to us.
340 */
341 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
342 tp->t_cflag = CS8;
343 ms_serial(tp, zsiopen, zsiclose);
344 ringsize = 128;
345 } else
346 ringsize = 4096;
347 cs->cs_ringmask = ringsize - 1;
348 cs->cs_rbuf = malloc((u_long)ringsize * sizeof(*cs->cs_rbuf),
349 M_DEVBUF, M_NOWAIT);
350 }
351
352 #ifdef KGDB
353 /*
354 * Put a channel in a known state. Interrupts may be left disabled
355 * or enabled, as desired.
356 */
357 static void
358 zs_reset(zc, inten, speed)
359 volatile struct zschan *zc;
360 int inten, speed;
361 {
362 int tconst;
363 static u_char reg[16] = {
364 0,
365 0,
366 0,
367 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
368 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
369 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
370 0,
371 0,
372 0,
373 0,
374 ZSWR10_NRZ,
375 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
376 0,
377 0,
378 ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
379 ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
380 };
381
382 reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
383 tconst = BPS_TO_TCONST(PCLK / 16, speed);
384 reg[12] = tconst;
385 reg[13] = tconst >> 8;
386 zs_loadchannelregs(zc, reg);
387 }
388 #endif
389
390 /*
391 * Declare the given tty (which is in fact &cons) as a console input
392 * or output. This happens before the zs chip is attached; the hookup
393 * is finished later, in zs_setcons() below.
394 *
395 * This is used only for ports a and b. The console keyboard is decoded
396 * independently (we always send unit-2 input to /dev/kbd, which will
397 * direct it to /dev/console if appropriate).
398 */
399 void
400 zsconsole(tp, unit, out, fnstop)
401 register struct tty *tp;
402 register int unit;
403 int out;
404 int (**fnstop) __P((struct tty *, int));
405 {
406 int zs;
407 volatile struct zsdevice *addr;
408
409 if (unit >= ZS_KBD)
410 panic("zsconsole");
411 if (out) {
412 zs_consout = unit;
413 zs = unit >> 1;
414 if ((addr = zsaddr[zs]) == NULL)
415 addr = zsaddr[zs] = findzs(zs);
416 zs_conschan = (unit & 1) == 0 ? &addr->zs_chan[ZS_CHAN_A] :
417 &addr->zs_chan[ZS_CHAN_B];
418 v_putc = zscnputc;
419 } else
420 zs_consin = unit;
421 if(fnstop)
422 *fnstop = &zsstop;
423 zs_ctty = tp;
424 }
425
426 /*
427 * Polled console output putchar.
428 */
429 static void
430 zscnputc(c)
431 int c;
432 {
433 register volatile struct zschan *zc = zs_conschan;
434 register int s;
435
436 if (c == '\n')
437 zscnputc('\r');
438 /*
439 * Must block output interrupts (i.e., raise to >= splzs) without
440 * lowering current ipl. Need a better way.
441 */
442 s = splhigh();
443 if (CPU_ISSUN4C && s <= (12 << 8)) /* XXX */
444 (void) splzs();
445 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
446 ZS_DELAY();
447 zc->zc_data = c;
448 ZS_DELAY();
449 splx(s);
450 }
451
452 /*
453 * Set up the given unit as console input, output, both, or neither, as
454 * needed. Return console tty if it is to receive console input.
455 */
456 static struct tty *
457 zs_checkcons(zi, unit, cs)
458 struct zsinfo *zi;
459 int unit;
460 struct zs_chanstate *cs;
461 {
462 register struct tty *tp;
463 char *i, *o;
464
465 if ((tp = zs_ctty) == NULL) /* XXX */
466 return (0);
467 i = zs_consin == unit ? "input" : NULL;
468 o = zs_consout == unit ? "output" : NULL;
469 if (i == NULL && o == NULL)
470 return (0);
471
472 /* rewire the minor device (gack) */
473 tp->t_dev = makedev(major(tp->t_dev), unit);
474
475 /*
476 * Rewire input and/or output. Note that baud rate reflects
477 * input settings, not output settings, but we can do no better
478 * if the console is split across two ports.
479 *
480 * XXX split consoles don't work anyway -- this needs to be
481 * thrown away and redone
482 */
483 if (i) {
484 tp->t_param = zsparam;
485 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
486 tp->t_cflag = CS8;
487 ttsetwater(tp);
488 }
489 if (o) {
490 tp->t_oproc = zsstart;
491 }
492 printf("%s%c: console %s\n",
493 zi->zi_dev.dv_xname, (unit & 1) + 'a', i ? (o ? "i/o" : i) : o);
494 cs->cs_consio = 1;
495 cs->cs_brkabort = 1;
496 return (tp);
497 }
498
499 #ifdef KGDB
500 /*
501 * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
502 * Pick up the current speed and character size and restore the original
503 * speed.
504 */
505 static void
506 zs_checkkgdb(unit, cs, tp)
507 int unit;
508 struct zs_chanstate *cs;
509 struct tty *tp;
510 {
511
512 if (kgdb_dev == makedev(ZSMAJOR, unit)) {
513 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
514 tp->t_cflag = CS8;
515 cs->cs_kgdb = 1;
516 cs->cs_speed = zs_kgdb_savedspeed;
517 (void) zsparam(tp, &tp->t_termios);
518 }
519 }
520 #endif
521
522 /*
523 * Compute the current baud rate given a ZSCC channel.
524 */
525 static int
526 zs_getspeed(zc)
527 register volatile struct zschan *zc;
528 {
529 register int tconst;
530
531 tconst = ZS_READ(zc, 12);
532 tconst |= ZS_READ(zc, 13) << 8;
533 return (TCONST_TO_BPS(PCLK / 16, tconst));
534 }
535
536
537 /*
538 * Do an internal open.
539 */
540 static void
541 zsiopen(tp)
542 struct tty *tp;
543 {
544
545 (void) zsparam(tp, &tp->t_termios);
546 ttsetwater(tp);
547 tp->t_state = TS_ISOPEN | TS_CARR_ON;
548 }
549
550 /*
551 * Do an internal close. Eventually we should shut off the chip when both
552 * ports on it are closed.
553 */
554 static void
555 zsiclose(tp)
556 struct tty *tp;
557 {
558
559 ttylclose(tp, 0); /* ??? */
560 ttyclose(tp); /* ??? */
561 tp->t_state = 0;
562 }
563
564
565 /*
566 * Open a zs serial port. This interface may not be used to open
567 * the keyboard and mouse ports. (XXX)
568 */
569 int
570 zsopen(dev, flags, mode, p)
571 dev_t dev;
572 int flags;
573 int mode;
574 struct proc *p;
575 {
576 register struct tty *tp;
577 register struct zs_chanstate *cs;
578 struct zsinfo *zi;
579 int unit = minor(dev), zs = unit >> 1, error, s;
580
581 if (zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL ||
582 unit == ZS_KBD || unit == ZS_MOUSE)
583 return (ENXIO);
584 cs = &zi->zi_cs[unit & 1];
585 if (cs->cs_consio)
586 return (ENXIO); /* ??? */
587 tp = cs->cs_ttyp;
588 s = spltty();
589 if ((tp->t_state & TS_ISOPEN) == 0) {
590 ttychars(tp);
591 if (tp->t_ispeed == 0) {
592 tp->t_iflag = TTYDEF_IFLAG;
593 tp->t_oflag = TTYDEF_OFLAG;
594 tp->t_cflag = TTYDEF_CFLAG;
595 tp->t_lflag = TTYDEF_LFLAG;
596 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
597 }
598 (void) zsparam(tp, &tp->t_termios);
599 ttsetwater(tp);
600 } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
601 splx(s);
602 return (EBUSY);
603 }
604 error = 0;
605 for (;;) {
606 register int rr0;
607
608 /* loop, turning on the device, until carrier present */
609 zs_modem(cs, 1);
610 /* May never get status intr if carrier already on. -gwr */
611 rr0 = cs->cs_zc->zc_csr;
612 ZS_DELAY();
613 if ((rr0 & ZSRR0_DCD) || cs->cs_softcar)
614 tp->t_state |= TS_CARR_ON;
615 if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
616 tp->t_state & TS_CARR_ON)
617 break;
618 tp->t_state |= TS_WOPEN;
619 error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
620 ttopen, 0);
621 if (error) {
622 if (!(tp->t_state & TS_ISOPEN)) {
623 zs_modem(cs, 0);
624 tp->t_state &= ~TS_WOPEN;
625 ttwakeup(tp);
626 }
627 splx(s);
628 return error;
629 }
630 }
631 splx(s);
632 if (error == 0)
633 error = linesw[tp->t_line].l_open(dev, tp);
634 if (error)
635 zs_modem(cs, 0);
636 return (error);
637 }
638
639 /*
640 * Close a zs serial port.
641 */
642 int
643 zsclose(dev, flags, mode, p)
644 dev_t dev;
645 int flags;
646 int mode;
647 struct proc *p;
648 {
649 register struct zs_chanstate *cs;
650 register struct tty *tp;
651 struct zsinfo *zi;
652 int unit = minor(dev), s;
653
654 zi = zs_cd.cd_devs[unit >> 1];
655 cs = &zi->zi_cs[unit & 1];
656 tp = cs->cs_ttyp;
657 linesw[tp->t_line].l_close(tp, flags);
658 if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
659 (tp->t_state & TS_ISOPEN) == 0) {
660 zs_modem(cs, 0);
661 /* hold low for 1 second */
662 (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
663 }
664 if (cs->cs_creg[5] & ZSWR5_BREAK)
665 {
666 s = splzs();
667 cs->cs_preg[5] &= ~ZSWR5_BREAK;
668 cs->cs_creg[5] &= ~ZSWR5_BREAK;
669 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
670 splx(s);
671 }
672 ttyclose(tp);
673 #ifdef KGDB
674 /* Reset the speed if we're doing kgdb on this port */
675 if (cs->cs_kgdb) {
676 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
677 (void) zsparam(tp, &tp->t_termios);
678 }
679 #endif
680 return (0);
681 }
682
683 /*
684 * Read/write zs serial port.
685 */
686 int
687 zsread(dev, uio, flags)
688 dev_t dev;
689 struct uio *uio;
690 int flags;
691 {
692 register struct zs_chanstate *cs;
693 register struct zsinfo *zi;
694 register struct tty *tp;
695 int unit = minor(dev);
696
697 zi = zs_cd.cd_devs[unit >> 1];
698 cs = &zi->zi_cs[unit & 1];
699 tp = cs->cs_ttyp;
700
701 return (linesw[tp->t_line].l_read(tp, uio, flags));
702
703 }
704
705 int
706 zswrite(dev, uio, flags)
707 dev_t dev;
708 struct uio *uio;
709 int flags;
710 {
711 register struct zs_chanstate *cs;
712 register struct zsinfo *zi;
713 register struct tty *tp;
714 int unit = minor(dev);
715
716 zi = zs_cd.cd_devs[unit >> 1];
717 cs = &zi->zi_cs[unit & 1];
718 tp = cs->cs_ttyp;
719
720 return (linesw[tp->t_line].l_write(tp, uio, flags));
721 }
722
723 struct tty *
724 zstty(dev)
725 dev_t dev;
726 {
727 register struct zs_chanstate *cs;
728 register struct zsinfo *zi;
729 int unit = minor(dev);
730
731 zi = zs_cd.cd_devs[unit >> 1];
732 cs = &zi->zi_cs[unit & 1];
733
734 return (cs->cs_ttyp);
735
736 }
737
738 /*
739 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
740 * channels are kept in (A,B) pairs.
741 *
742 * Do just a little, then get out; set a software interrupt if more
743 * work is needed.
744 *
745 * We deliberately ignore the vectoring Zilog gives us, and match up
746 * only the number of `reset interrupt under service' operations, not
747 * the order.
748 */
749 /* ARGSUSED */
750 int
751 zshard(intrarg)
752 void *intrarg;
753 {
754 register struct zs_chanstate *a;
755 #define b (a + 1)
756 register volatile struct zschan *zc;
757 register int rr3, intflags = 0, v, i, ringmask;
758 static int zsrint(struct zs_chanstate *, volatile struct zschan *);
759 static int zsxint(struct zs_chanstate *, volatile struct zschan *);
760 static int zssint(struct zs_chanstate *, volatile struct zschan *);
761
762 for (a = zslist; a != NULL; a = b->cs_next) {
763 ringmask = a->cs_ringmask;
764 rr3 = ZS_READ(a->cs_zc, 3);
765 if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
766 intflags |= 2;
767 zc = a->cs_zc;
768 i = a->cs_rbput;
769 if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
770 a->cs_rbuf[i++ & ringmask] = v;
771 intflags |= 1;
772 }
773 if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
774 a->cs_rbuf[i++ & ringmask] = v;
775 intflags |= 1;
776 }
777 if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
778 a->cs_rbuf[i++ & ringmask] = v;
779 intflags |= 1;
780 }
781 a->cs_rbput = i;
782 }
783 if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
784 intflags |= 2;
785 zc = b->cs_zc;
786 i = b->cs_rbput;
787 if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
788 b->cs_rbuf[i++ & ringmask] = v;
789 intflags |= 1;
790 }
791 if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
792 b->cs_rbuf[i++ & ringmask] = v;
793 intflags |= 1;
794 }
795 if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
796 b->cs_rbuf[i++ & ringmask] = v;
797 intflags |= 1;
798 }
799 b->cs_rbput = i;
800 }
801 }
802 #undef b
803
804 if (intflags & 1) {
805 if (CPU_ISSUN4COR4M) {
806 /* XXX -- but this will go away when zshard moves to locore.s */
807 struct clockframe *p = intrarg;
808
809 if ((p->psr & PSR_PIL) < (PIL_TTY << 8)) {
810 zsshortcuts++;
811 (void) spltty();
812 if (zshardscope) {
813 LED_ON;
814 LED_OFF;
815 }
816 return (zssoft(intrarg));
817 }
818 }
819
820 #if defined(SUN4M)
821 if (CPU_ISSUN4M)
822 raise(0, PIL_TTY);
823 else
824 #endif
825 ienab_bis(IE_ZSSOFT);
826 }
827 return (intflags & 2);
828 }
829
830 static int
831 zsrint(cs, zc)
832 register struct zs_chanstate *cs;
833 register volatile struct zschan *zc;
834 {
835 register int c = zc->zc_data;
836
837 ZS_DELAY();
838 if (cs->cs_conk) {
839 register struct conk_state *conk = &zsconk_state;
840
841 /*
842 * Check here for console abort function, so that we
843 * can abort even when interrupts are locking up the
844 * machine.
845 */
846 if (c == KBD_RESET) {
847 conk->conk_id = 1; /* ignore next byte */
848 conk->conk_l1 = 0;
849 } else if (conk->conk_id)
850 conk->conk_id = 0; /* stop ignoring bytes */
851 else if (c == KBD_L1)
852 conk->conk_l1 = 1; /* L1 went down */
853 else if (c == (KBD_L1|KBD_UP))
854 conk->conk_l1 = 0; /* L1 went up */
855 else if (c == KBD_A && conk->conk_l1) {
856 zsabort();
857 conk->conk_l1 = 0; /* we never see the up */
858 goto clearit; /* eat the A after L1-A */
859 }
860 }
861 #ifdef KGDB
862 if (c == FRAME_START && cs->cs_kgdb &&
863 (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
864 zskgdb(cs->cs_unit);
865 goto clearit;
866 }
867 #endif
868 /* compose receive character and status */
869 c <<= 8;
870 c |= ZS_READ(zc, 1);
871
872 /* clear receive error & interrupt condition */
873 zc->zc_csr = ZSWR0_RESET_ERRORS;
874 ZS_DELAY();
875 zc->zc_csr = ZSWR0_CLR_INTR;
876 ZS_DELAY();
877
878 return (ZRING_MAKE(ZRING_RINT, c));
879
880 clearit:
881 zc->zc_csr = ZSWR0_RESET_ERRORS;
882 ZS_DELAY();
883 zc->zc_csr = ZSWR0_CLR_INTR;
884 ZS_DELAY();
885 return (0);
886 }
887
888 static int
889 zsxint(cs, zc)
890 register struct zs_chanstate *cs;
891 register volatile struct zschan *zc;
892 {
893 register int i = cs->cs_tbc;
894
895 if (i == 0) {
896 zc->zc_csr = ZSWR0_RESET_TXINT;
897 ZS_DELAY();
898 zc->zc_csr = ZSWR0_CLR_INTR;
899 ZS_DELAY();
900 return (ZRING_MAKE(ZRING_XINT, 0));
901 }
902 cs->cs_tbc = i - 1;
903 zc->zc_data = *cs->cs_tba++;
904 ZS_DELAY();
905 zc->zc_csr = ZSWR0_CLR_INTR;
906 ZS_DELAY();
907 return (0);
908 }
909
910 static int
911 zssint(cs, zc)
912 register struct zs_chanstate *cs;
913 register volatile struct zschan *zc;
914 {
915 register int rr0;
916
917 rr0 = zc->zc_csr;
918 ZS_DELAY();
919 zc->zc_csr = ZSWR0_RESET_STATUS;
920 ZS_DELAY();
921 zc->zc_csr = ZSWR0_CLR_INTR;
922 ZS_DELAY();
923 /*
924 * The chip's hardware flow control is, as noted in zsreg.h,
925 * busted---if the DCD line goes low the chip shuts off the
926 * receiver (!). If we want hardware CTS flow control but do
927 * not have it, and carrier is now on, turn HFC on; if we have
928 * HFC now but carrier has gone low, turn it off.
929 */
930 if (rr0 & ZSRR0_DCD) {
931 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
932 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
933 cs->cs_creg[3] |= ZSWR3_HFC;
934 ZS_WRITE(zc, 3, cs->cs_creg[3]);
935 }
936 } else {
937 if (cs->cs_creg[3] & ZSWR3_HFC) {
938 cs->cs_creg[3] &= ~ZSWR3_HFC;
939 ZS_WRITE(zc, 3, cs->cs_creg[3]);
940 }
941 }
942 if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
943 /*
944 * XXX This might not be necessary. Test and
945 * delete if it isn't.
946 */
947 if (CPU_ISSUN4) {
948 while (zc->zc_csr & ZSRR0_BREAK)
949 ZS_DELAY();
950 }
951 zsabort();
952 return (0);
953 }
954 return (ZRING_MAKE(ZRING_SINT, rr0));
955 }
956
957 void
958 zsabort()
959 {
960
961 #ifdef DDB
962 Debugger();
963 #else
964 printf("stopping on keyboard abort\n");
965 callrom();
966 #endif
967 }
968
969 #ifdef KGDB
970 /*
971 * KGDB framing character received: enter kernel debugger. This probably
972 * should time out after a few seconds to avoid hanging on spurious input.
973 */
974 void
975 zskgdb(unit)
976 int unit;
977 {
978
979 printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
980 kgdb_connect(1);
981 }
982 #endif
983
984 /*
985 * Print out a ring or fifo overrun error message.
986 */
987 static void
988 zsoverrun(unit, ptime, what)
989 int unit;
990 long *ptime;
991 char *what;
992 {
993
994 if (*ptime != time.tv_sec) {
995 *ptime = time.tv_sec;
996 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
997 (unit & 1) + 'a', what);
998 }
999 }
1000
1001 /*
1002 * ZS software interrupt. Scan all channels for deferred interrupts.
1003 */
1004 int
1005 zssoft(arg)
1006 void *arg;
1007 {
1008 register struct zs_chanstate *cs;
1009 register volatile struct zschan *zc;
1010 register struct linesw *line;
1011 register struct tty *tp;
1012 register int get, n, c, cc, unit, s, ringmask, ringsize;
1013 int retval = 0;
1014
1015 for (cs = zslist; cs != NULL; cs = cs->cs_next) {
1016 ringmask = cs->cs_ringmask;
1017 get = cs->cs_rbget;
1018 again:
1019 n = cs->cs_rbput; /* atomic */
1020 if (get == n) /* nothing more on this line */
1021 continue;
1022 retval = 1;
1023 unit = cs->cs_unit; /* set up to handle interrupts */
1024 zc = cs->cs_zc;
1025 tp = cs->cs_ttyp;
1026 line = &linesw[tp->t_line];
1027 /*
1028 * Compute the number of interrupts in the receive ring.
1029 * If the count is overlarge, we lost some events, and
1030 * must advance to the first valid one. It may get
1031 * overwritten if more data are arriving, but this is
1032 * too expensive to check and gains nothing (we already
1033 * lost out; all we can do at this point is trade one
1034 * kind of loss for another).
1035 */
1036 ringsize = ringmask + 1;
1037 n -= get;
1038 if (n > ringsize) {
1039 zsoverrun(unit, &cs->cs_rotime, "ring");
1040 get += n - ringsize;
1041 n = ringsize;
1042 }
1043 while (--n >= 0) {
1044 /* race to keep ahead of incoming interrupts */
1045 c = cs->cs_rbuf[get++ & ringmask];
1046 switch (ZRING_TYPE(c)) {
1047
1048 case ZRING_RINT:
1049 c = ZRING_VALUE(c);
1050 if (c & ZSRR1_DO)
1051 zsoverrun(unit, &cs->cs_fotime, "fifo");
1052 cc = c >> 8;
1053 if (c & ZSRR1_FE)
1054 cc |= TTY_FE;
1055 if (c & ZSRR1_PE)
1056 cc |= TTY_PE;
1057 /*
1058 * this should be done through
1059 * bstreams XXX gag choke
1060 */
1061 if (unit == ZS_KBD)
1062 kbd_rint(cc);
1063 else if (unit == ZS_MOUSE)
1064 ms_rint(cc);
1065 else
1066 line->l_rint(cc, tp);
1067 break;
1068
1069 case ZRING_XINT:
1070 /*
1071 * Transmit done: change registers and resume,
1072 * or clear BUSY.
1073 */
1074 if (cs->cs_heldchange) {
1075 s = splzs();
1076 c = zc->zc_csr;
1077 ZS_DELAY();
1078 if ((c & ZSRR0_DCD) == 0)
1079 cs->cs_preg[3] &= ~ZSWR3_HFC;
1080 bcopy((caddr_t)cs->cs_preg,
1081 (caddr_t)cs->cs_creg, 16);
1082 zs_loadchannelregs(zc, cs->cs_creg);
1083 splx(s);
1084 cs->cs_heldchange = 0;
1085 if (cs->cs_heldtbc &&
1086 (tp->t_state & TS_TTSTOP) == 0) {
1087 cs->cs_tbc = cs->cs_heldtbc - 1;
1088 zc->zc_data = *cs->cs_tba++;
1089 ZS_DELAY();
1090 goto again;
1091 }
1092 }
1093 tp->t_state &= ~TS_BUSY;
1094 if (tp->t_state & TS_FLUSH)
1095 tp->t_state &= ~TS_FLUSH;
1096 else
1097 ndflush(&tp->t_outq,
1098 cs->cs_tba - (caddr_t)tp->t_outq.c_cf);
1099 line->l_start(tp);
1100 break;
1101
1102 case ZRING_SINT:
1103 /*
1104 * Status line change. HFC bit is run in
1105 * hardware interrupt, to avoid locking
1106 * at splzs here.
1107 */
1108 c = ZRING_VALUE(c);
1109 if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
1110 cc = (c & ZSRR0_DCD) != 0;
1111 if (line->l_modem(tp, cc) == 0)
1112 zs_modem(cs, cc);
1113 }
1114 cs->cs_rr0 = c;
1115 break;
1116
1117 default:
1118 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
1119 unit >> 1, (unit & 1) + 'a', c);
1120 break;
1121 }
1122 }
1123 cs->cs_rbget = get;
1124 goto again;
1125 }
1126 return (retval);
1127 }
1128
1129 int
1130 zsioctl(dev, cmd, data, flag, p)
1131 dev_t dev;
1132 u_long cmd;
1133 caddr_t data;
1134 int flag;
1135 struct proc *p;
1136 {
1137 int unit = minor(dev);
1138 struct zsinfo *zi = zs_cd.cd_devs[unit >> 1];
1139 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1140 register struct tty *tp = cs->cs_ttyp;
1141 register int error, s;
1142
1143 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
1144 if (error >= 0)
1145 return (error);
1146 error = ttioctl(tp, cmd, data, flag, p);
1147 if (error >= 0)
1148 return (error);
1149
1150 switch (cmd) {
1151 case TIOCSBRK:
1152 s = splzs();
1153 cs->cs_preg[5] |= ZSWR5_BREAK;
1154 cs->cs_creg[5] |= ZSWR5_BREAK;
1155 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1156 splx(s);
1157 break;
1158 case TIOCCBRK:
1159 s = splzs();
1160 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1161 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1162 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1163 splx(s);
1164 break;
1165 case TIOCGFLAGS: {
1166 int bits = 0;
1167
1168 if (cs->cs_softcar)
1169 bits |= TIOCFLAG_SOFTCAR;
1170 if (cs->cs_creg[15] & ZSWR15_DCD_IE)
1171 bits |= TIOCFLAG_CLOCAL;
1172 if (cs->cs_creg[3] & ZSWR3_HFC)
1173 bits |= TIOCFLAG_CRTSCTS;
1174 *(int *)data = bits;
1175 break;
1176 }
1177 case TIOCSFLAGS: {
1178 int userbits;
1179
1180 error = suser(p->p_ucred, &p->p_acflag);
1181 if (error != 0)
1182 return (EPERM);
1183
1184 userbits = *(int *)data;
1185
1186 /*
1187 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
1188 # defaulting to software flow control.
1189 */
1190 if (userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
1191 return(EINVAL);
1192 if (userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
1193 return(ENXIO);
1194
1195 s = splzs();
1196 if ((userbits & TIOCFLAG_SOFTCAR) || cs->cs_consio) {
1197 cs->cs_softcar = 1; /* turn on softcar */
1198 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
1199 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
1200 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1201 } else if (userbits & TIOCFLAG_CLOCAL) {
1202 cs->cs_softcar = 0; /* turn off softcar */
1203 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
1204 cs->cs_creg[15] |= ZSWR15_DCD_IE;
1205 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1206 tp->t_termios.c_cflag |= CLOCAL;
1207 }
1208 if (userbits & TIOCFLAG_CRTSCTS) {
1209 cs->cs_preg[15] |= ZSWR15_CTS_IE;
1210 cs->cs_creg[15] |= ZSWR15_CTS_IE;
1211 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1212 cs->cs_preg[3] |= ZSWR3_HFC;
1213 cs->cs_creg[3] |= ZSWR3_HFC;
1214 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
1215 tp->t_termios.c_cflag |= CRTSCTS;
1216 } else {
1217 /* no mdmbuf, so we must want software flow control */
1218 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
1219 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
1220 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1221 cs->cs_preg[3] &= ~ZSWR3_HFC;
1222 cs->cs_creg[3] &= ~ZSWR3_HFC;
1223 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
1224 tp->t_termios.c_cflag &= ~CRTSCTS;
1225 }
1226 splx(s);
1227 break;
1228 }
1229 case TIOCSDTR:
1230 zs_modem(cs, 1);
1231 break;
1232 case TIOCCDTR:
1233 zs_modem(cs, 0);
1234 break;
1235 case TIOCMSET:
1236 case TIOCMBIS:
1237 case TIOCMBIC:
1238 case TIOCMGET:
1239 default:
1240 return (ENOTTY);
1241 }
1242 return (0);
1243 }
1244
1245 /*
1246 * Start or restart transmission.
1247 */
1248 static void
1249 zsstart(tp)
1250 register struct tty *tp;
1251 {
1252 register struct zs_chanstate *cs;
1253 register int s, nch;
1254 int unit = minor(tp->t_dev);
1255 struct zsinfo *zi = zs_cd.cd_devs[unit >> 1];
1256
1257 cs = &zi->zi_cs[unit & 1];
1258 s = spltty();
1259
1260 /*
1261 * If currently active or delaying, no need to do anything.
1262 */
1263 if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1264 goto out;
1265
1266 /*
1267 * If there are sleepers, and output has drained below low
1268 * water mark, awaken.
1269 */
1270 if (tp->t_outq.c_cc <= tp->t_lowat) {
1271 if (tp->t_state & TS_ASLEEP) {
1272 tp->t_state &= ~TS_ASLEEP;
1273 wakeup((caddr_t)&tp->t_outq);
1274 }
1275 selwakeup(&tp->t_wsel);
1276 }
1277
1278 nch = ndqb(&tp->t_outq, 0); /* XXX */
1279 if (nch) {
1280 register char *p = tp->t_outq.c_cf;
1281
1282 /* mark busy, enable tx done interrupts, & send first byte */
1283 tp->t_state |= TS_BUSY;
1284 (void) splzs();
1285 cs->cs_preg[1] |= ZSWR1_TIE;
1286 cs->cs_creg[1] |= ZSWR1_TIE;
1287 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1288 cs->cs_zc->zc_data = *p;
1289 ZS_DELAY();
1290 cs->cs_tba = p + 1;
1291 cs->cs_tbc = nch - 1;
1292 } else {
1293 /*
1294 * Nothing to send, turn off transmit done interrupts.
1295 * This is useful if something is doing polled output.
1296 */
1297 (void) splzs();
1298 cs->cs_preg[1] &= ~ZSWR1_TIE;
1299 cs->cs_creg[1] &= ~ZSWR1_TIE;
1300 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1301 }
1302 out:
1303 splx(s);
1304 }
1305
1306 /*
1307 * Stop output, e.g., for ^S or output flush.
1308 */
1309 int
1310 zsstop(tp, flag)
1311 register struct tty *tp;
1312 int flag;
1313 {
1314 register struct zs_chanstate *cs;
1315 register int s, unit = minor(tp->t_dev);
1316 struct zsinfo *zi = zs_cd.cd_devs[unit >> 1];
1317
1318 cs = &zi->zi_cs[unit & 1];
1319 s = splzs();
1320 if (tp->t_state & TS_BUSY) {
1321 /*
1322 * Device is transmitting; must stop it.
1323 */
1324 cs->cs_tbc = 0;
1325 if ((tp->t_state & TS_TTSTOP) == 0)
1326 tp->t_state |= TS_FLUSH;
1327 }
1328 splx(s);
1329 return 0;
1330 }
1331
1332 /*
1333 * Set ZS tty parameters from termios.
1334 *
1335 * This routine makes use of the fact that only registers
1336 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1337 */
1338 static int
1339 zsparam(tp, t)
1340 register struct tty *tp;
1341 register struct termios *t;
1342 {
1343 int unit = minor(tp->t_dev);
1344 struct zsinfo *zi = zs_cd.cd_devs[unit >> 1];
1345 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1346 register int tmp, tmp5, cflag, s;
1347
1348 /*
1349 * Because PCLK is only run at 4.9 MHz, the fastest we
1350 * can go is 51200 baud (this corresponds to TC=1).
1351 * This is somewhat unfortunate as there is no real
1352 * reason we should not be able to handle higher rates.
1353 */
1354 tmp = t->c_ospeed;
1355 if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
1356 return (EINVAL);
1357 if (tmp == 0) {
1358 /* stty 0 => drop DTR and RTS */
1359 zs_modem(cs, 0);
1360 return (0);
1361 }
1362 tmp = BPS_TO_TCONST(PCLK / 16, tmp);
1363 if (tmp < 2)
1364 return (EINVAL);
1365
1366 cflag = t->c_cflag;
1367 tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
1368 tp->t_cflag = cflag;
1369
1370 /*
1371 * Block interrupts so that state will not
1372 * be altered until we are done setting it up.
1373 */
1374 s = splzs();
1375 cs->cs_preg[12] = tmp;
1376 cs->cs_preg[13] = tmp >> 8;
1377 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1378 switch (cflag & CSIZE) {
1379 case CS5:
1380 tmp = ZSWR3_RX_5;
1381 tmp5 = ZSWR5_TX_5;
1382 break;
1383 case CS6:
1384 tmp = ZSWR3_RX_6;
1385 tmp5 = ZSWR5_TX_6;
1386 break;
1387 case CS7:
1388 tmp = ZSWR3_RX_7;
1389 tmp5 = ZSWR5_TX_7;
1390 break;
1391 case CS8:
1392 default:
1393 tmp = ZSWR3_RX_8;
1394 tmp5 = ZSWR5_TX_8;
1395 break;
1396 }
1397
1398 /*
1399 * Output hardware flow control on the chip is horrendous: if
1400 * carrier detect drops, the receiver is disabled. Hence we
1401 * can only do this when the carrier is on.
1402 */
1403 tmp |= ZSWR3_RX_ENABLE;
1404 if (cflag & CCTS_OFLOW) {
1405 if (cs->cs_zc->zc_csr & ZSRR0_DCD)
1406 tmp |= ZSWR3_HFC;
1407 ZS_DELAY();
1408 }
1409 cs->cs_preg[3] = tmp;
1410 cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1411
1412 tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
1413 if ((cflag & PARODD) == 0)
1414 tmp |= ZSWR4_EVENP;
1415 if (cflag & PARENB)
1416 tmp |= ZSWR4_PARENB;
1417 cs->cs_preg[4] = tmp;
1418 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR;
1419 cs->cs_preg[10] = ZSWR10_NRZ;
1420 cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
1421 cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
1422 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1423
1424 /*
1425 * If nothing is being transmitted, set up new current values,
1426 * else mark them as pending.
1427 */
1428 if (cs->cs_heldchange == 0) {
1429 if (cs->cs_ttyp->t_state & TS_BUSY) {
1430 cs->cs_heldtbc = cs->cs_tbc;
1431 cs->cs_tbc = 0;
1432 cs->cs_heldchange = 1;
1433 } else {
1434 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1435 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1436 }
1437 }
1438 splx(s);
1439 return (0);
1440 }
1441
1442 /*
1443 * Raise or lower modem control (DTR/RTS) signals. If a character is
1444 * in transmission, the change is deferred.
1445 */
1446 static void
1447 zs_modem(cs, onoff)
1448 struct zs_chanstate *cs;
1449 int onoff;
1450 {
1451 int s, bis, and;
1452
1453 if (onoff) {
1454 bis = ZSWR5_DTR | ZSWR5_RTS;
1455 and = ~0;
1456 } else {
1457 bis = 0;
1458 and = ~(ZSWR5_DTR | ZSWR5_RTS);
1459 }
1460 s = splzs();
1461 cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
1462 if (cs->cs_heldchange == 0) {
1463 if (cs->cs_ttyp->t_state & TS_BUSY) {
1464 cs->cs_heldtbc = cs->cs_tbc;
1465 cs->cs_tbc = 0;
1466 cs->cs_heldchange = 1;
1467 } else {
1468 cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
1469 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1470 }
1471 }
1472 splx(s);
1473 }
1474
1475 /*
1476 * Write the given register set to the given zs channel in the proper order.
1477 * The channel must not be transmitting at the time. The receiver will
1478 * be disabled for the time it takes to write all the registers.
1479 */
1480 static void
1481 zs_loadchannelregs(zc, reg)
1482 volatile struct zschan *zc;
1483 u_char *reg;
1484 {
1485 int i;
1486
1487 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1488 ZS_DELAY();
1489 i = zc->zc_data; /* drain fifo */
1490 ZS_DELAY();
1491 i = zc->zc_data;
1492 ZS_DELAY();
1493 i = zc->zc_data;
1494 ZS_DELAY();
1495 ZS_WRITE(zc, 4, reg[4]);
1496 ZS_WRITE(zc, 10, reg[10]);
1497 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1498 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1499 ZS_WRITE(zc, 1, reg[1]);
1500 ZS_WRITE(zc, 9, reg[9]);
1501 ZS_WRITE(zc, 11, reg[11]);
1502 ZS_WRITE(zc, 12, reg[12]);
1503 ZS_WRITE(zc, 13, reg[13]);
1504 ZS_WRITE(zc, 14, reg[14]);
1505 ZS_WRITE(zc, 15, reg[15]);
1506 ZS_WRITE(zc, 3, reg[3]);
1507 ZS_WRITE(zc, 5, reg[5]);
1508 }
1509
1510 #ifdef KGDB
1511 /*
1512 * Get a character from the given kgdb channel. Called at splhigh().
1513 */
1514 static int
1515 zs_kgdb_getc(arg)
1516 void *arg;
1517 {
1518 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1519
1520 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
1521 ZS_DELAY();
1522 return (zc->zc_data);
1523 }
1524
1525 /*
1526 * Put a character to the given kgdb channel. Called at splhigh().
1527 */
1528 static void
1529 zs_kgdb_putc(arg, c)
1530 void *arg;
1531 int c;
1532 {
1533 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1534
1535 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
1536 ZS_DELAY();
1537 zc->zc_data = c;
1538 ZS_DELAY();
1539 }
1540
1541 /*
1542 * Set up for kgdb; called at boot time before configuration.
1543 * KGDB interrupts will be enabled later when zs0 is configured.
1544 */
1545 void
1546 zs_kgdb_init()
1547 {
1548 volatile struct zsdevice *addr;
1549 volatile struct zschan *zc;
1550 int unit, zs;
1551
1552 if (major(kgdb_dev) != ZSMAJOR)
1553 return;
1554 unit = minor(kgdb_dev);
1555 /*
1556 * Unit must be 0 or 1 (zs0).
1557 */
1558 if ((unsigned)unit >= ZS_KBD) {
1559 printf("zs_kgdb_init: bad minor dev %d\n", unit);
1560 return;
1561 }
1562 zs = unit >> 1;
1563 if ((addr = zsaddr[zs]) == NULL)
1564 addr = zsaddr[zs] = findzs(zs);
1565 unit &= 1;
1566 zc = unit == 0 ? &addr->zs_chan[ZS_CHAN_A] : &addr->zs_chan[ZS_CHAN_B];
1567 zs_kgdb_savedspeed = zs_getspeed(zc);
1568 printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
1569 zs, unit + 'a', kgdb_rate);
1570 zs_reset(zc, 1, kgdb_rate);
1571 kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
1572 }
1573 #endif /* KGDB */
1574