zs.c revision 1.37 1 /* $NetBSD: zs.c,v 1.37 1996/04/01 17:29:44 christos Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 *
44 * @(#)zs.c 8.1 (Berkeley) 7/19/93
45 */
46
47 /*
48 * Zilog Z8530 (ZSCC) driver.
49 *
50 * Runs two tty ports (ttya and ttyb) on zs0,
51 * and runs a keyboard and mouse on zs1.
52 *
53 * This driver knows far too much about chip to usage mappings.
54 */
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/proc.h>
58 #include <sys/device.h>
59 #include <sys/file.h>
60 #include <sys/ioctl.h>
61 #include <sys/malloc.h>
62 #include <sys/tty.h>
63 #include <sys/time.h>
64 #include <sys/kernel.h>
65 #include <sys/syslog.h>
66 #include <sys/conf.h>
67
68 #include <machine/autoconf.h>
69 #include <machine/conf.h>
70 #include <machine/cpu.h>
71
72 #include <sparc/sparc/vaddrs.h>
73 #include <sparc/sparc/auxreg.h>
74
75
76 #include <machine/kbd.h>
77 #include <dev/ic/z8530reg.h>
78
79 #include <sparc/dev/zsvar.h>
80
81 #ifdef KGDB
82 #include <machine/remote-sl.h>
83 #endif
84
85 #define ZSMAJOR 12 /* XXX */
86
87 #define ZS_KBD 2 /* XXX */
88 #define ZS_MOUSE 3 /* XXX */
89
90 /* the magic number below was stolen from the Sprite source. */
91 #define PCLK (19660800/4) /* PCLK pin input clock rate */
92
93 /*
94 * Select software interrupt bit based on TTY ipl.
95 */
96 #if PIL_TTY == 1
97 # define IE_ZSSOFT IE_L1
98 #elif PIL_TTY == 4
99 # define IE_ZSSOFT IE_L4
100 #elif PIL_TTY == 6
101 # define IE_ZSSOFT IE_L6
102 #else
103 # error "no suitable software interrupt bit"
104 #endif
105
106 /*
107 * Software state per found chip. This would be called `zs_softc',
108 * but the previous driver had a rather different zs_softc....
109 */
110 struct zsinfo {
111 struct device zi_dev; /* base device */
112 volatile struct zsdevice *zi_zs;/* chip registers */
113 struct zs_chanstate zi_cs[2]; /* channel A and B software state */
114 };
115
116 /* Definition of the driver for autoconfig. */
117 static int zsmatch __P((struct device *, void *, void *));
118 static void zsattach __P((struct device *, struct device *, void *));
119
120 struct cfattach zs_ca = {
121 sizeof(struct zsinfo), zsmatch, zsattach
122 };
123
124 struct cfdriver zs_cd = {
125 NULL, "zs", DV_TTY
126 };
127
128 /* Interrupt handlers. */
129 static int zshard __P((void *));
130 static struct intrhand levelhard = { zshard };
131 static int zssoft __P((void *));
132 static struct intrhand levelsoft = { zssoft };
133
134 struct zs_chanstate *zslist;
135
136 /* Routines called from other code. */
137 static void zsiopen __P((struct tty *));
138 static void zsiclose __P((struct tty *));
139 static void zsstart __P((struct tty *));
140 static int zsparam __P((struct tty *, struct termios *));
141
142 /* Routines purely local to this driver. */
143 static int zs_getspeed __P((volatile struct zschan *));
144 #ifdef KGDB
145 static void zs_reset __P((volatile struct zschan *, int, int));
146 #endif
147 static void zs_modem __P((struct zs_chanstate *, int));
148 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
149
150 /* Console stuff. */
151 static struct tty *zs_ctty; /* console `struct tty *' */
152 static int zs_consin = -1, zs_consout = -1;
153 static void zscnputc __P((int)); /* console putc function */
154 static volatile struct zschan *zs_conschan;
155 static struct tty *zs_checkcons __P((struct zsinfo *, int, struct zs_chanstate *));
156
157 #ifdef KGDB
158 /* KGDB stuff. Must reboot to change zs_kgdbunit. */
159 extern int kgdb_dev, kgdb_rate;
160 static int zs_kgdb_savedspeed;
161 static void zs_checkkgdb __P((int, struct zs_chanstate *, struct tty *));
162 void zskgdb __P((int));
163 static int zs_kgdb_getc __P((void *));
164 static void zs_kgdb_putc __P((void *, int));
165 #endif
166
167 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
168 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
169 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
170
171 void zsabort __P((void));
172 static void zsoverrun __P((int, long *, char *));
173
174 #include "zs.h" /* XXX: */
175 static volatile struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */
176
177 /*
178 * Console keyboard L1-A processing is done in the hardware interrupt code,
179 * so we need to duplicate some of the console keyboard decode state. (We
180 * must not use the regular state as the hardware code keeps ahead of the
181 * software state: the software state tracks the most recent ring input but
182 * the hardware state tracks the most recent ZSCC input.) See also kbd.h.
183 */
184 static struct conk_state { /* console keyboard state */
185 char conk_id; /* true => ID coming up (console only) */
186 char conk_l1; /* true => L1 pressed (console only) */
187 } zsconk_state;
188
189 int zshardscope;
190 int zsshortcuts; /* number of "shortcut" software interrupts */
191
192 #ifdef SUN4
193 static u_int zs_read __P((volatile struct zschan *, u_int reg));
194 static u_int zs_write __P((volatile struct zschan *, u_int, u_int));
195
196 static u_int
197 zs_read(zc, reg)
198 volatile struct zschan *zc;
199 u_int reg;
200 {
201 u_char val;
202
203 zc->zc_csr = reg;
204 ZS_DELAY();
205 val = zc->zc_csr;
206 ZS_DELAY();
207 return val;
208 }
209
210 static u_int
211 zs_write(zc, reg, val)
212 volatile struct zschan *zc;
213 u_int reg, val;
214 {
215 zc->zc_csr = reg;
216 ZS_DELAY();
217 zc->zc_csr = val;
218 ZS_DELAY();
219 return val;
220 }
221 #endif /* SUN4 */
222
223 /*
224 * Match slave number to zs unit number, so that misconfiguration will
225 * not set up the keyboard as ttya, etc.
226 */
227 static int
228 zsmatch(parent, vcf, aux)
229 struct device *parent;
230 void *vcf, *aux;
231 {
232 struct cfdata *cf = vcf;
233 struct confargs *ca = aux;
234 struct romaux *ra = &ca->ca_ra;
235
236 if (strcmp(cf->cf_driver->cd_name, ra->ra_name))
237 return (0);
238 if ((ca->ca_bustype == BUS_MAIN && !CPU_ISSUN4) ||
239 (ca->ca_bustype == BUS_OBIO && CPU_ISSUN4M))
240 return (getpropint(ra->ra_node, "slave", -2) == cf->cf_unit);
241 ra->ra_len = NBPG;
242 return (probeget(ra->ra_vaddr, 1) != -1);
243 }
244
245 /*
246 * Attach a found zs.
247 *
248 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
249 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
250 */
251 static void
252 zsattach(parent, dev, aux)
253 struct device *parent;
254 struct device *dev;
255 void *aux;
256 {
257 register int zs = dev->dv_unit, unit;
258 register struct zsinfo *zi;
259 register struct zs_chanstate *cs;
260 register volatile struct zsdevice *addr;
261 register struct tty *tp, *ctp;
262 register struct confargs *ca = aux;
263 register struct romaux *ra = &ca->ca_ra;
264 int pri;
265 static int didintr, prevpri;
266 int ringsize;
267
268 if ((addr = zsaddr[zs]) == NULL)
269 addr = zsaddr[zs] = findzs(zs);
270 if (ca->ca_bustype==BUS_MAIN)
271 if ((void *)addr != ra->ra_vaddr)
272 panic("zsattach");
273 if (ra->ra_nintr != 1) {
274 printf(": expected 1 interrupt, got %d\n", ra->ra_nintr);
275 return;
276 }
277 pri = ra->ra_intr[0].int_pri;
278 printf(" pri %d, softpri %d\n", pri, PIL_TTY);
279 if (!didintr) {
280 didintr = 1;
281 prevpri = pri;
282 intr_establish(pri, &levelhard);
283 intr_establish(PIL_TTY, &levelsoft);
284 } else if (pri != prevpri)
285 panic("broken zs interrupt scheme");
286 zi = (struct zsinfo *)dev;
287 zi->zi_zs = addr;
288 unit = zs * 2;
289 cs = zi->zi_cs;
290 cs->cs_ttyp = tp = ttymalloc();
291
292 /* link into interrupt list with order (A,B) (B=A+1) */
293 cs[0].cs_next = &cs[1];
294 cs[1].cs_next = zslist;
295 zslist = cs;
296
297 cs->cs_unit = unit;
298 cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_A]);
299 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
300 tp->t_dev = makedev(ZSMAJOR, unit);
301 tp->t_oproc = zsstart;
302 tp->t_param = zsparam;
303 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
304 cs->cs_ttyp = tp = ctp;
305 #ifdef KGDB
306 if (ctp == NULL)
307 zs_checkkgdb(unit, cs, tp);
308 #endif
309 if (unit == ZS_KBD) {
310 /*
311 * Keyboard: tell /dev/kbd driver how to talk to us.
312 */
313 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
314 tp->t_cflag = CS8;
315 kbd_serial(tp, zsiopen, zsiclose);
316 cs->cs_conk = 1; /* do L1-A processing */
317 ringsize = 128;
318 } else
319 ringsize = 4096;
320
321 cs->cs_ringmask = ringsize - 1;
322 cs->cs_rbuf = malloc((u_long)ringsize * sizeof(*cs->cs_rbuf),
323 M_DEVBUF, M_NOWAIT);
324 unit++;
325 cs++;
326 cs->cs_ttyp = tp = ttymalloc();
327 cs->cs_unit = unit;
328 cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_B]);
329 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
330 tp->t_dev = makedev(ZSMAJOR, unit);
331 tp->t_oproc = zsstart;
332 tp->t_param = zsparam;
333 if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
334 cs->cs_ttyp = tp = ctp;
335 #ifdef KGDB
336 if (ctp == NULL)
337 zs_checkkgdb(unit, cs, tp);
338 #endif
339 if (unit == ZS_MOUSE) {
340 /*
341 * Mouse: tell /dev/mouse driver how to talk to us.
342 */
343 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
344 tp->t_cflag = CS8;
345 ms_serial(tp, zsiopen, zsiclose);
346 ringsize = 128;
347 } else
348 ringsize = 4096;
349 cs->cs_ringmask = ringsize - 1;
350 cs->cs_rbuf = malloc((u_long)ringsize * sizeof(*cs->cs_rbuf),
351 M_DEVBUF, M_NOWAIT);
352 }
353
354 #ifdef KGDB
355 /*
356 * Put a channel in a known state. Interrupts may be left disabled
357 * or enabled, as desired.
358 */
359 static void
360 zs_reset(zc, inten, speed)
361 volatile struct zschan *zc;
362 int inten, speed;
363 {
364 int tconst;
365 static u_char reg[16] = {
366 0,
367 0,
368 0,
369 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
370 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
371 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
372 0,
373 0,
374 0,
375 0,
376 ZSWR10_NRZ,
377 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
378 0,
379 0,
380 ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
381 ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
382 };
383
384 reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
385 tconst = BPS_TO_TCONST(PCLK / 16, speed);
386 reg[12] = tconst;
387 reg[13] = tconst >> 8;
388 zs_loadchannelregs(zc, reg);
389 }
390 #endif
391
392 /*
393 * Declare the given tty (which is in fact &cons) as a console input
394 * or output. This happens before the zs chip is attached; the hookup
395 * is finished later, in zs_setcons() below.
396 *
397 * This is used only for ports a and b. The console keyboard is decoded
398 * independently (we always send unit-2 input to /dev/kbd, which will
399 * direct it to /dev/console if appropriate).
400 */
401 void
402 zsconsole(tp, unit, out, fnstop)
403 register struct tty *tp;
404 register int unit;
405 int out;
406 int (**fnstop) __P((struct tty *, int));
407 {
408 int zs;
409 volatile struct zsdevice *addr;
410
411 if (unit >= ZS_KBD)
412 panic("zsconsole");
413 if (out) {
414 zs_consout = unit;
415 zs = unit >> 1;
416 if ((addr = zsaddr[zs]) == NULL)
417 addr = zsaddr[zs] = findzs(zs);
418 zs_conschan = (unit & 1) == 0 ? &addr->zs_chan[ZS_CHAN_A] :
419 &addr->zs_chan[ZS_CHAN_B];
420 v_putc = zscnputc;
421 } else
422 zs_consin = unit;
423 if(fnstop)
424 *fnstop = &zsstop;
425 zs_ctty = tp;
426 }
427
428 /*
429 * Polled console output putchar.
430 */
431 static void
432 zscnputc(c)
433 int c;
434 {
435 register volatile struct zschan *zc = zs_conschan;
436 register int s;
437
438 if (c == '\n')
439 zscnputc('\r');
440 /*
441 * Must block output interrupts (i.e., raise to >= splzs) without
442 * lowering current ipl. Need a better way.
443 */
444 s = splhigh();
445 if (CPU_ISSUN4C && s <= (12 << 8)) /* XXX */
446 (void) splzs();
447 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
448 ZS_DELAY();
449 zc->zc_data = c;
450 ZS_DELAY();
451 splx(s);
452 }
453
454 /*
455 * Set up the given unit as console input, output, both, or neither, as
456 * needed. Return console tty if it is to receive console input.
457 */
458 static struct tty *
459 zs_checkcons(zi, unit, cs)
460 struct zsinfo *zi;
461 int unit;
462 struct zs_chanstate *cs;
463 {
464 register struct tty *tp;
465 char *i, *o;
466
467 if ((tp = zs_ctty) == NULL) /* XXX */
468 return (0);
469 i = zs_consin == unit ? "input" : NULL;
470 o = zs_consout == unit ? "output" : NULL;
471 if (i == NULL && o == NULL)
472 return (0);
473
474 /* rewire the minor device (gack) */
475 tp->t_dev = makedev(major(tp->t_dev), unit);
476
477 /*
478 * Rewire input and/or output. Note that baud rate reflects
479 * input settings, not output settings, but we can do no better
480 * if the console is split across two ports.
481 *
482 * XXX split consoles don't work anyway -- this needs to be
483 * thrown away and redone
484 */
485 if (i) {
486 tp->t_param = zsparam;
487 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
488 tp->t_cflag = CS8;
489 ttsetwater(tp);
490 }
491 if (o) {
492 tp->t_oproc = zsstart;
493 }
494 printf("%s%c: console %s\n",
495 zi->zi_dev.dv_xname, (unit & 1) + 'a', i ? (o ? "i/o" : i) : o);
496 cs->cs_consio = 1;
497 cs->cs_brkabort = 1;
498 return (tp);
499 }
500
501 #ifdef KGDB
502 /*
503 * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
504 * Pick up the current speed and character size and restore the original
505 * speed.
506 */
507 static void
508 zs_checkkgdb(unit, cs, tp)
509 int unit;
510 struct zs_chanstate *cs;
511 struct tty *tp;
512 {
513
514 if (kgdb_dev == makedev(ZSMAJOR, unit)) {
515 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
516 tp->t_cflag = CS8;
517 cs->cs_kgdb = 1;
518 cs->cs_speed = zs_kgdb_savedspeed;
519 (void) zsparam(tp, &tp->t_termios);
520 }
521 }
522 #endif
523
524 /*
525 * Compute the current baud rate given a ZSCC channel.
526 */
527 static int
528 zs_getspeed(zc)
529 register volatile struct zschan *zc;
530 {
531 register int tconst;
532
533 tconst = ZS_READ(zc, 12);
534 tconst |= ZS_READ(zc, 13) << 8;
535 return (TCONST_TO_BPS(PCLK / 16, tconst));
536 }
537
538
539 /*
540 * Do an internal open.
541 */
542 static void
543 zsiopen(tp)
544 struct tty *tp;
545 {
546
547 (void) zsparam(tp, &tp->t_termios);
548 ttsetwater(tp);
549 tp->t_state = TS_ISOPEN | TS_CARR_ON;
550 }
551
552 /*
553 * Do an internal close. Eventually we should shut off the chip when both
554 * ports on it are closed.
555 */
556 static void
557 zsiclose(tp)
558 struct tty *tp;
559 {
560
561 ttylclose(tp, 0); /* ??? */
562 ttyclose(tp); /* ??? */
563 tp->t_state = 0;
564 }
565
566
567 /*
568 * Open a zs serial port. This interface may not be used to open
569 * the keyboard and mouse ports. (XXX)
570 */
571 int
572 zsopen(dev, flags, mode, p)
573 dev_t dev;
574 int flags;
575 int mode;
576 struct proc *p;
577 {
578 register struct tty *tp;
579 register struct zs_chanstate *cs;
580 struct zsinfo *zi;
581 int unit = minor(dev), zs = unit >> 1, error, s;
582
583 if (zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL ||
584 unit == ZS_KBD || unit == ZS_MOUSE)
585 return (ENXIO);
586 cs = &zi->zi_cs[unit & 1];
587 if (cs->cs_consio)
588 return (ENXIO); /* ??? */
589 tp = cs->cs_ttyp;
590 s = spltty();
591 if ((tp->t_state & TS_ISOPEN) == 0) {
592 ttychars(tp);
593 if (tp->t_ispeed == 0) {
594 tp->t_iflag = TTYDEF_IFLAG;
595 tp->t_oflag = TTYDEF_OFLAG;
596 tp->t_cflag = TTYDEF_CFLAG;
597 tp->t_lflag = TTYDEF_LFLAG;
598 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
599 }
600 (void) zsparam(tp, &tp->t_termios);
601 ttsetwater(tp);
602 } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
603 splx(s);
604 return (EBUSY);
605 }
606 error = 0;
607 for (;;) {
608 register int rr0;
609
610 /* loop, turning on the device, until carrier present */
611 zs_modem(cs, 1);
612 /* May never get status intr if carrier already on. -gwr */
613 rr0 = cs->cs_zc->zc_csr;
614 ZS_DELAY();
615 if ((rr0 & ZSRR0_DCD) || cs->cs_softcar)
616 tp->t_state |= TS_CARR_ON;
617 if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
618 tp->t_state & TS_CARR_ON)
619 break;
620 tp->t_state |= TS_WOPEN;
621 error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
622 ttopen, 0);
623 if (error) {
624 if (!(tp->t_state & TS_ISOPEN)) {
625 zs_modem(cs, 0);
626 tp->t_state &= ~TS_WOPEN;
627 ttwakeup(tp);
628 }
629 splx(s);
630 return error;
631 }
632 }
633 splx(s);
634 if (error == 0)
635 error = linesw[tp->t_line].l_open(dev, tp);
636 if (error)
637 zs_modem(cs, 0);
638 return (error);
639 }
640
641 /*
642 * Close a zs serial port.
643 */
644 int
645 zsclose(dev, flags, mode, p)
646 dev_t dev;
647 int flags;
648 int mode;
649 struct proc *p;
650 {
651 register struct zs_chanstate *cs;
652 register struct tty *tp;
653 struct zsinfo *zi;
654 int unit = minor(dev), s;
655
656 zi = zs_cd.cd_devs[unit >> 1];
657 cs = &zi->zi_cs[unit & 1];
658 tp = cs->cs_ttyp;
659 linesw[tp->t_line].l_close(tp, flags);
660 if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
661 (tp->t_state & TS_ISOPEN) == 0) {
662 zs_modem(cs, 0);
663 /* hold low for 1 second */
664 (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
665 }
666 if (cs->cs_creg[5] & ZSWR5_BREAK)
667 {
668 s = splzs();
669 cs->cs_preg[5] &= ~ZSWR5_BREAK;
670 cs->cs_creg[5] &= ~ZSWR5_BREAK;
671 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
672 splx(s);
673 }
674 ttyclose(tp);
675 #ifdef KGDB
676 /* Reset the speed if we're doing kgdb on this port */
677 if (cs->cs_kgdb) {
678 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
679 (void) zsparam(tp, &tp->t_termios);
680 }
681 #endif
682 return (0);
683 }
684
685 /*
686 * Read/write zs serial port.
687 */
688 int
689 zsread(dev, uio, flags)
690 dev_t dev;
691 struct uio *uio;
692 int flags;
693 {
694 register struct zs_chanstate *cs;
695 register struct zsinfo *zi;
696 register struct tty *tp;
697 int unit = minor(dev);
698
699 zi = zs_cd.cd_devs[unit >> 1];
700 cs = &zi->zi_cs[unit & 1];
701 tp = cs->cs_ttyp;
702
703 return (linesw[tp->t_line].l_read(tp, uio, flags));
704
705 }
706
707 int
708 zswrite(dev, uio, flags)
709 dev_t dev;
710 struct uio *uio;
711 int flags;
712 {
713 register struct zs_chanstate *cs;
714 register struct zsinfo *zi;
715 register struct tty *tp;
716 int unit = minor(dev);
717
718 zi = zs_cd.cd_devs[unit >> 1];
719 cs = &zi->zi_cs[unit & 1];
720 tp = cs->cs_ttyp;
721
722 return (linesw[tp->t_line].l_write(tp, uio, flags));
723 }
724
725 struct tty *
726 zstty(dev)
727 dev_t dev;
728 {
729 register struct zs_chanstate *cs;
730 register struct zsinfo *zi;
731 int unit = minor(dev);
732
733 zi = zs_cd.cd_devs[unit >> 1];
734 cs = &zi->zi_cs[unit & 1];
735
736 return (cs->cs_ttyp);
737
738 }
739
740 /*
741 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
742 * channels are kept in (A,B) pairs.
743 *
744 * Do just a little, then get out; set a software interrupt if more
745 * work is needed.
746 *
747 * We deliberately ignore the vectoring Zilog gives us, and match up
748 * only the number of `reset interrupt under service' operations, not
749 * the order.
750 */
751 /* ARGSUSED */
752 int
753 zshard(intrarg)
754 void *intrarg;
755 {
756 register struct zs_chanstate *a;
757 #define b (a + 1)
758 register volatile struct zschan *zc;
759 register int rr3, intflags = 0, v, i, ringmask;
760 static int zsrint(struct zs_chanstate *, volatile struct zschan *);
761 static int zsxint(struct zs_chanstate *, volatile struct zschan *);
762 static int zssint(struct zs_chanstate *, volatile struct zschan *);
763
764 for (a = zslist; a != NULL; a = b->cs_next) {
765 ringmask = a->cs_ringmask;
766 rr3 = ZS_READ(a->cs_zc, 3);
767 if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
768 intflags |= 2;
769 zc = a->cs_zc;
770 i = a->cs_rbput;
771 if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
772 a->cs_rbuf[i++ & ringmask] = v;
773 intflags |= 1;
774 }
775 if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
776 a->cs_rbuf[i++ & ringmask] = v;
777 intflags |= 1;
778 }
779 if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
780 a->cs_rbuf[i++ & ringmask] = v;
781 intflags |= 1;
782 }
783 a->cs_rbput = i;
784 }
785 if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
786 intflags |= 2;
787 zc = b->cs_zc;
788 i = b->cs_rbput;
789 if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
790 b->cs_rbuf[i++ & ringmask] = v;
791 intflags |= 1;
792 }
793 if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
794 b->cs_rbuf[i++ & ringmask] = v;
795 intflags |= 1;
796 }
797 if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
798 b->cs_rbuf[i++ & ringmask] = v;
799 intflags |= 1;
800 }
801 b->cs_rbput = i;
802 }
803 }
804 #undef b
805
806 if (intflags & 1) {
807 if (CPU_ISSUN4COR4M) {
808 /* XXX -- but this will go away when zshard moves to locore.s */
809 struct clockframe *p = intrarg;
810
811 if ((p->psr & PSR_PIL) < (PIL_TTY << 8)) {
812 zsshortcuts++;
813 (void) spltty();
814 if (zshardscope) {
815 LED_ON;
816 LED_OFF;
817 }
818 return (zssoft(intrarg));
819 }
820 }
821
822 #if defined(SUN4M)
823 if (CPU_ISSUN4M)
824 raise(0, PIL_TTY);
825 else
826 #endif
827 ienab_bis(IE_ZSSOFT);
828 }
829 return (intflags & 2);
830 }
831
832 static int
833 zsrint(cs, zc)
834 register struct zs_chanstate *cs;
835 register volatile struct zschan *zc;
836 {
837 register int c = zc->zc_data;
838
839 ZS_DELAY();
840 if (cs->cs_conk) {
841 register struct conk_state *conk = &zsconk_state;
842
843 /*
844 * Check here for console abort function, so that we
845 * can abort even when interrupts are locking up the
846 * machine.
847 */
848 if (c == KBD_RESET) {
849 conk->conk_id = 1; /* ignore next byte */
850 conk->conk_l1 = 0;
851 } else if (conk->conk_id)
852 conk->conk_id = 0; /* stop ignoring bytes */
853 else if (c == KBD_L1)
854 conk->conk_l1 = 1; /* L1 went down */
855 else if (c == (KBD_L1|KBD_UP))
856 conk->conk_l1 = 0; /* L1 went up */
857 else if (c == KBD_A && conk->conk_l1) {
858 zsabort();
859 conk->conk_l1 = 0; /* we never see the up */
860 goto clearit; /* eat the A after L1-A */
861 }
862 }
863 #ifdef KGDB
864 if (c == FRAME_START && cs->cs_kgdb &&
865 (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
866 zskgdb(cs->cs_unit);
867 goto clearit;
868 }
869 #endif
870 /* compose receive character and status */
871 c <<= 8;
872 c |= ZS_READ(zc, 1);
873
874 /* clear receive error & interrupt condition */
875 zc->zc_csr = ZSWR0_RESET_ERRORS;
876 ZS_DELAY();
877 zc->zc_csr = ZSWR0_CLR_INTR;
878 ZS_DELAY();
879
880 return (ZRING_MAKE(ZRING_RINT, c));
881
882 clearit:
883 zc->zc_csr = ZSWR0_RESET_ERRORS;
884 ZS_DELAY();
885 zc->zc_csr = ZSWR0_CLR_INTR;
886 ZS_DELAY();
887 return (0);
888 }
889
890 static int
891 zsxint(cs, zc)
892 register struct zs_chanstate *cs;
893 register volatile struct zschan *zc;
894 {
895 register int i = cs->cs_tbc;
896
897 if (i == 0) {
898 zc->zc_csr = ZSWR0_RESET_TXINT;
899 ZS_DELAY();
900 zc->zc_csr = ZSWR0_CLR_INTR;
901 ZS_DELAY();
902 return (ZRING_MAKE(ZRING_XINT, 0));
903 }
904 cs->cs_tbc = i - 1;
905 zc->zc_data = *cs->cs_tba++;
906 ZS_DELAY();
907 zc->zc_csr = ZSWR0_CLR_INTR;
908 ZS_DELAY();
909 return (0);
910 }
911
912 static int
913 zssint(cs, zc)
914 register struct zs_chanstate *cs;
915 register volatile struct zschan *zc;
916 {
917 register int rr0;
918
919 rr0 = zc->zc_csr;
920 ZS_DELAY();
921 zc->zc_csr = ZSWR0_RESET_STATUS;
922 ZS_DELAY();
923 zc->zc_csr = ZSWR0_CLR_INTR;
924 ZS_DELAY();
925 /*
926 * The chip's hardware flow control is, as noted in zsreg.h,
927 * busted---if the DCD line goes low the chip shuts off the
928 * receiver (!). If we want hardware CTS flow control but do
929 * not have it, and carrier is now on, turn HFC on; if we have
930 * HFC now but carrier has gone low, turn it off.
931 */
932 if (rr0 & ZSRR0_DCD) {
933 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
934 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
935 cs->cs_creg[3] |= ZSWR3_HFC;
936 ZS_WRITE(zc, 3, cs->cs_creg[3]);
937 }
938 } else {
939 if (cs->cs_creg[3] & ZSWR3_HFC) {
940 cs->cs_creg[3] &= ~ZSWR3_HFC;
941 ZS_WRITE(zc, 3, cs->cs_creg[3]);
942 }
943 }
944 if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
945 /*
946 * XXX This might not be necessary. Test and
947 * delete if it isn't.
948 */
949 if (CPU_ISSUN4) {
950 while (zc->zc_csr & ZSRR0_BREAK)
951 ZS_DELAY();
952 }
953 zsabort();
954 return (0);
955 }
956 return (ZRING_MAKE(ZRING_SINT, rr0));
957 }
958
959 void
960 zsabort()
961 {
962
963 #ifdef DDB
964 Debugger();
965 #else
966 printf("stopping on keyboard abort\n");
967 callrom();
968 #endif
969 }
970
971 #ifdef KGDB
972 /*
973 * KGDB framing character received: enter kernel debugger. This probably
974 * should time out after a few seconds to avoid hanging on spurious input.
975 */
976 void
977 zskgdb(unit)
978 int unit;
979 {
980
981 printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
982 kgdb_connect(1);
983 }
984 #endif
985
986 /*
987 * Print out a ring or fifo overrun error message.
988 */
989 static void
990 zsoverrun(unit, ptime, what)
991 int unit;
992 long *ptime;
993 char *what;
994 {
995
996 if (*ptime != time.tv_sec) {
997 *ptime = time.tv_sec;
998 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
999 (unit & 1) + 'a', what);
1000 }
1001 }
1002
1003 /*
1004 * ZS software interrupt. Scan all channels for deferred interrupts.
1005 */
1006 int
1007 zssoft(arg)
1008 void *arg;
1009 {
1010 register struct zs_chanstate *cs;
1011 register volatile struct zschan *zc;
1012 register struct linesw *line;
1013 register struct tty *tp;
1014 register int get, n, c, cc, unit, s, ringmask, ringsize;
1015 int retval = 0;
1016
1017 for (cs = zslist; cs != NULL; cs = cs->cs_next) {
1018 ringmask = cs->cs_ringmask;
1019 get = cs->cs_rbget;
1020 again:
1021 n = cs->cs_rbput; /* atomic */
1022 if (get == n) /* nothing more on this line */
1023 continue;
1024 retval = 1;
1025 unit = cs->cs_unit; /* set up to handle interrupts */
1026 zc = cs->cs_zc;
1027 tp = cs->cs_ttyp;
1028 line = &linesw[tp->t_line];
1029 /*
1030 * Compute the number of interrupts in the receive ring.
1031 * If the count is overlarge, we lost some events, and
1032 * must advance to the first valid one. It may get
1033 * overwritten if more data are arriving, but this is
1034 * too expensive to check and gains nothing (we already
1035 * lost out; all we can do at this point is trade one
1036 * kind of loss for another).
1037 */
1038 ringsize = ringmask + 1;
1039 n -= get;
1040 if (n > ringsize) {
1041 zsoverrun(unit, &cs->cs_rotime, "ring");
1042 get += n - ringsize;
1043 n = ringsize;
1044 }
1045 while (--n >= 0) {
1046 /* race to keep ahead of incoming interrupts */
1047 c = cs->cs_rbuf[get++ & ringmask];
1048 switch (ZRING_TYPE(c)) {
1049
1050 case ZRING_RINT:
1051 c = ZRING_VALUE(c);
1052 if (c & ZSRR1_DO)
1053 zsoverrun(unit, &cs->cs_fotime, "fifo");
1054 cc = c >> 8;
1055 if (c & ZSRR1_FE)
1056 cc |= TTY_FE;
1057 if (c & ZSRR1_PE)
1058 cc |= TTY_PE;
1059 /*
1060 * this should be done through
1061 * bstreams XXX gag choke
1062 */
1063 if (unit == ZS_KBD)
1064 kbd_rint(cc);
1065 else if (unit == ZS_MOUSE)
1066 ms_rint(cc);
1067 else
1068 line->l_rint(cc, tp);
1069 break;
1070
1071 case ZRING_XINT:
1072 /*
1073 * Transmit done: change registers and resume,
1074 * or clear BUSY.
1075 */
1076 if (cs->cs_heldchange) {
1077 s = splzs();
1078 c = zc->zc_csr;
1079 ZS_DELAY();
1080 if ((c & ZSRR0_DCD) == 0)
1081 cs->cs_preg[3] &= ~ZSWR3_HFC;
1082 bcopy((caddr_t)cs->cs_preg,
1083 (caddr_t)cs->cs_creg, 16);
1084 zs_loadchannelregs(zc, cs->cs_creg);
1085 splx(s);
1086 cs->cs_heldchange = 0;
1087 if (cs->cs_heldtbc &&
1088 (tp->t_state & TS_TTSTOP) == 0) {
1089 cs->cs_tbc = cs->cs_heldtbc - 1;
1090 zc->zc_data = *cs->cs_tba++;
1091 ZS_DELAY();
1092 goto again;
1093 }
1094 }
1095 tp->t_state &= ~TS_BUSY;
1096 if (tp->t_state & TS_FLUSH)
1097 tp->t_state &= ~TS_FLUSH;
1098 else
1099 ndflush(&tp->t_outq,
1100 cs->cs_tba - (caddr_t)tp->t_outq.c_cf);
1101 line->l_start(tp);
1102 break;
1103
1104 case ZRING_SINT:
1105 /*
1106 * Status line change. HFC bit is run in
1107 * hardware interrupt, to avoid locking
1108 * at splzs here.
1109 */
1110 c = ZRING_VALUE(c);
1111 if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
1112 cc = (c & ZSRR0_DCD) != 0;
1113 if (line->l_modem(tp, cc) == 0)
1114 zs_modem(cs, cc);
1115 }
1116 cs->cs_rr0 = c;
1117 break;
1118
1119 default:
1120 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
1121 unit >> 1, (unit & 1) + 'a', c);
1122 break;
1123 }
1124 }
1125 cs->cs_rbget = get;
1126 goto again;
1127 }
1128 return (retval);
1129 }
1130
1131 int
1132 zsioctl(dev, cmd, data, flag, p)
1133 dev_t dev;
1134 u_long cmd;
1135 caddr_t data;
1136 int flag;
1137 struct proc *p;
1138 {
1139 int unit = minor(dev);
1140 struct zsinfo *zi = zs_cd.cd_devs[unit >> 1];
1141 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1142 register struct tty *tp = cs->cs_ttyp;
1143 register int error, s;
1144
1145 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
1146 if (error >= 0)
1147 return (error);
1148 error = ttioctl(tp, cmd, data, flag, p);
1149 if (error >= 0)
1150 return (error);
1151
1152 switch (cmd) {
1153 case TIOCSBRK:
1154 s = splzs();
1155 cs->cs_preg[5] |= ZSWR5_BREAK;
1156 cs->cs_creg[5] |= ZSWR5_BREAK;
1157 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1158 splx(s);
1159 break;
1160 case TIOCCBRK:
1161 s = splzs();
1162 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1163 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1164 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1165 splx(s);
1166 break;
1167 case TIOCGFLAGS: {
1168 int bits = 0;
1169
1170 if (cs->cs_softcar)
1171 bits |= TIOCFLAG_SOFTCAR;
1172 if (cs->cs_creg[15] & ZSWR15_DCD_IE)
1173 bits |= TIOCFLAG_CLOCAL;
1174 if (cs->cs_creg[3] & ZSWR3_HFC)
1175 bits |= TIOCFLAG_CRTSCTS;
1176 *(int *)data = bits;
1177 break;
1178 }
1179 case TIOCSFLAGS: {
1180 int userbits;
1181
1182 error = suser(p->p_ucred, &p->p_acflag);
1183 if (error != 0)
1184 return (EPERM);
1185
1186 userbits = *(int *)data;
1187
1188 /*
1189 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
1190 # defaulting to software flow control.
1191 */
1192 if (userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
1193 return(EINVAL);
1194 if (userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
1195 return(ENXIO);
1196
1197 s = splzs();
1198 if ((userbits & TIOCFLAG_SOFTCAR) || cs->cs_consio) {
1199 cs->cs_softcar = 1; /* turn on softcar */
1200 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
1201 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
1202 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1203 } else if (userbits & TIOCFLAG_CLOCAL) {
1204 cs->cs_softcar = 0; /* turn off softcar */
1205 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
1206 cs->cs_creg[15] |= ZSWR15_DCD_IE;
1207 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1208 tp->t_termios.c_cflag |= CLOCAL;
1209 }
1210 if (userbits & TIOCFLAG_CRTSCTS) {
1211 cs->cs_preg[15] |= ZSWR15_CTS_IE;
1212 cs->cs_creg[15] |= ZSWR15_CTS_IE;
1213 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1214 cs->cs_preg[3] |= ZSWR3_HFC;
1215 cs->cs_creg[3] |= ZSWR3_HFC;
1216 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
1217 tp->t_termios.c_cflag |= CRTSCTS;
1218 } else {
1219 /* no mdmbuf, so we must want software flow control */
1220 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
1221 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
1222 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1223 cs->cs_preg[3] &= ~ZSWR3_HFC;
1224 cs->cs_creg[3] &= ~ZSWR3_HFC;
1225 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
1226 tp->t_termios.c_cflag &= ~CRTSCTS;
1227 }
1228 splx(s);
1229 break;
1230 }
1231 case TIOCSDTR:
1232 zs_modem(cs, 1);
1233 break;
1234 case TIOCCDTR:
1235 zs_modem(cs, 0);
1236 break;
1237 case TIOCMSET:
1238 case TIOCMBIS:
1239 case TIOCMBIC:
1240 case TIOCMGET:
1241 default:
1242 return (ENOTTY);
1243 }
1244 return (0);
1245 }
1246
1247 /*
1248 * Start or restart transmission.
1249 */
1250 static void
1251 zsstart(tp)
1252 register struct tty *tp;
1253 {
1254 register struct zs_chanstate *cs;
1255 register int s, nch;
1256 int unit = minor(tp->t_dev);
1257 struct zsinfo *zi = zs_cd.cd_devs[unit >> 1];
1258
1259 cs = &zi->zi_cs[unit & 1];
1260 s = spltty();
1261
1262 /*
1263 * If currently active or delaying, no need to do anything.
1264 */
1265 if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1266 goto out;
1267
1268 /*
1269 * If there are sleepers, and output has drained below low
1270 * water mark, awaken.
1271 */
1272 if (tp->t_outq.c_cc <= tp->t_lowat) {
1273 if (tp->t_state & TS_ASLEEP) {
1274 tp->t_state &= ~TS_ASLEEP;
1275 wakeup((caddr_t)&tp->t_outq);
1276 }
1277 selwakeup(&tp->t_wsel);
1278 }
1279
1280 nch = ndqb(&tp->t_outq, 0); /* XXX */
1281 if (nch) {
1282 register char *p = tp->t_outq.c_cf;
1283
1284 /* mark busy, enable tx done interrupts, & send first byte */
1285 tp->t_state |= TS_BUSY;
1286 (void) splzs();
1287 cs->cs_preg[1] |= ZSWR1_TIE;
1288 cs->cs_creg[1] |= ZSWR1_TIE;
1289 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1290 cs->cs_zc->zc_data = *p;
1291 ZS_DELAY();
1292 cs->cs_tba = p + 1;
1293 cs->cs_tbc = nch - 1;
1294 } else {
1295 /*
1296 * Nothing to send, turn off transmit done interrupts.
1297 * This is useful if something is doing polled output.
1298 */
1299 (void) splzs();
1300 cs->cs_preg[1] &= ~ZSWR1_TIE;
1301 cs->cs_creg[1] &= ~ZSWR1_TIE;
1302 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1303 }
1304 out:
1305 splx(s);
1306 }
1307
1308 /*
1309 * Stop output, e.g., for ^S or output flush.
1310 */
1311 int
1312 zsstop(tp, flag)
1313 register struct tty *tp;
1314 int flag;
1315 {
1316 register struct zs_chanstate *cs;
1317 register int s, unit = minor(tp->t_dev);
1318 struct zsinfo *zi = zs_cd.cd_devs[unit >> 1];
1319
1320 cs = &zi->zi_cs[unit & 1];
1321 s = splzs();
1322 if (tp->t_state & TS_BUSY) {
1323 /*
1324 * Device is transmitting; must stop it.
1325 */
1326 cs->cs_tbc = 0;
1327 if ((tp->t_state & TS_TTSTOP) == 0)
1328 tp->t_state |= TS_FLUSH;
1329 }
1330 splx(s);
1331 return 0;
1332 }
1333
1334 /*
1335 * Set ZS tty parameters from termios.
1336 *
1337 * This routine makes use of the fact that only registers
1338 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1339 */
1340 static int
1341 zsparam(tp, t)
1342 register struct tty *tp;
1343 register struct termios *t;
1344 {
1345 int unit = minor(tp->t_dev);
1346 struct zsinfo *zi = zs_cd.cd_devs[unit >> 1];
1347 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
1348 register int tmp, tmp5, cflag, s;
1349
1350 /*
1351 * Because PCLK is only run at 4.9 MHz, the fastest we
1352 * can go is 51200 baud (this corresponds to TC=1).
1353 * This is somewhat unfortunate as there is no real
1354 * reason we should not be able to handle higher rates.
1355 */
1356 tmp = t->c_ospeed;
1357 if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
1358 return (EINVAL);
1359 if (tmp == 0) {
1360 /* stty 0 => drop DTR and RTS */
1361 zs_modem(cs, 0);
1362 return (0);
1363 }
1364 tmp = BPS_TO_TCONST(PCLK / 16, tmp);
1365 if (tmp < 2)
1366 return (EINVAL);
1367
1368 cflag = t->c_cflag;
1369 tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
1370 tp->t_cflag = cflag;
1371
1372 /*
1373 * Block interrupts so that state will not
1374 * be altered until we are done setting it up.
1375 */
1376 s = splzs();
1377 cs->cs_preg[12] = tmp;
1378 cs->cs_preg[13] = tmp >> 8;
1379 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1380 switch (cflag & CSIZE) {
1381 case CS5:
1382 tmp = ZSWR3_RX_5;
1383 tmp5 = ZSWR5_TX_5;
1384 break;
1385 case CS6:
1386 tmp = ZSWR3_RX_6;
1387 tmp5 = ZSWR5_TX_6;
1388 break;
1389 case CS7:
1390 tmp = ZSWR3_RX_7;
1391 tmp5 = ZSWR5_TX_7;
1392 break;
1393 case CS8:
1394 default:
1395 tmp = ZSWR3_RX_8;
1396 tmp5 = ZSWR5_TX_8;
1397 break;
1398 }
1399
1400 /*
1401 * Output hardware flow control on the chip is horrendous: if
1402 * carrier detect drops, the receiver is disabled. Hence we
1403 * can only do this when the carrier is on.
1404 */
1405 tmp |= ZSWR3_RX_ENABLE;
1406 if (cflag & CCTS_OFLOW) {
1407 if (cs->cs_zc->zc_csr & ZSRR0_DCD)
1408 tmp |= ZSWR3_HFC;
1409 ZS_DELAY();
1410 }
1411 cs->cs_preg[3] = tmp;
1412 cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1413
1414 tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
1415 if ((cflag & PARODD) == 0)
1416 tmp |= ZSWR4_EVENP;
1417 if (cflag & PARENB)
1418 tmp |= ZSWR4_PARENB;
1419 cs->cs_preg[4] = tmp;
1420 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR;
1421 cs->cs_preg[10] = ZSWR10_NRZ;
1422 cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
1423 cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
1424 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1425
1426 /*
1427 * If nothing is being transmitted, set up new current values,
1428 * else mark them as pending.
1429 */
1430 if (cs->cs_heldchange == 0) {
1431 if (cs->cs_ttyp->t_state & TS_BUSY) {
1432 cs->cs_heldtbc = cs->cs_tbc;
1433 cs->cs_tbc = 0;
1434 cs->cs_heldchange = 1;
1435 } else {
1436 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1437 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1438 }
1439 }
1440 splx(s);
1441 return (0);
1442 }
1443
1444 /*
1445 * Raise or lower modem control (DTR/RTS) signals. If a character is
1446 * in transmission, the change is deferred.
1447 */
1448 static void
1449 zs_modem(cs, onoff)
1450 struct zs_chanstate *cs;
1451 int onoff;
1452 {
1453 int s, bis, and;
1454
1455 if (onoff) {
1456 bis = ZSWR5_DTR | ZSWR5_RTS;
1457 and = ~0;
1458 } else {
1459 bis = 0;
1460 and = ~(ZSWR5_DTR | ZSWR5_RTS);
1461 }
1462 s = splzs();
1463 cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
1464 if (cs->cs_heldchange == 0) {
1465 if (cs->cs_ttyp->t_state & TS_BUSY) {
1466 cs->cs_heldtbc = cs->cs_tbc;
1467 cs->cs_tbc = 0;
1468 cs->cs_heldchange = 1;
1469 } else {
1470 cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
1471 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1472 }
1473 }
1474 splx(s);
1475 }
1476
1477 /*
1478 * Write the given register set to the given zs channel in the proper order.
1479 * The channel must not be transmitting at the time. The receiver will
1480 * be disabled for the time it takes to write all the registers.
1481 */
1482 static void
1483 zs_loadchannelregs(zc, reg)
1484 volatile struct zschan *zc;
1485 u_char *reg;
1486 {
1487 int i;
1488
1489 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1490 ZS_DELAY();
1491 i = zc->zc_data; /* drain fifo */
1492 ZS_DELAY();
1493 i = zc->zc_data;
1494 ZS_DELAY();
1495 i = zc->zc_data;
1496 ZS_DELAY();
1497 ZS_WRITE(zc, 4, reg[4]);
1498 ZS_WRITE(zc, 10, reg[10]);
1499 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1500 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1501 ZS_WRITE(zc, 1, reg[1]);
1502 ZS_WRITE(zc, 9, reg[9]);
1503 ZS_WRITE(zc, 11, reg[11]);
1504 ZS_WRITE(zc, 12, reg[12]);
1505 ZS_WRITE(zc, 13, reg[13]);
1506 ZS_WRITE(zc, 14, reg[14]);
1507 ZS_WRITE(zc, 15, reg[15]);
1508 ZS_WRITE(zc, 3, reg[3]);
1509 ZS_WRITE(zc, 5, reg[5]);
1510 }
1511
1512 #ifdef KGDB
1513 /*
1514 * Get a character from the given kgdb channel. Called at splhigh().
1515 */
1516 static int
1517 zs_kgdb_getc(arg)
1518 void *arg;
1519 {
1520 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1521
1522 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
1523 ZS_DELAY();
1524 return (zc->zc_data);
1525 }
1526
1527 /*
1528 * Put a character to the given kgdb channel. Called at splhigh().
1529 */
1530 static void
1531 zs_kgdb_putc(arg, c)
1532 void *arg;
1533 int c;
1534 {
1535 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1536
1537 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
1538 ZS_DELAY();
1539 zc->zc_data = c;
1540 ZS_DELAY();
1541 }
1542
1543 /*
1544 * Set up for kgdb; called at boot time before configuration.
1545 * KGDB interrupts will be enabled later when zs0 is configured.
1546 */
1547 void
1548 zs_kgdb_init()
1549 {
1550 volatile struct zsdevice *addr;
1551 volatile struct zschan *zc;
1552 int unit, zs;
1553
1554 if (major(kgdb_dev) != ZSMAJOR)
1555 return;
1556 unit = minor(kgdb_dev);
1557 /*
1558 * Unit must be 0 or 1 (zs0).
1559 */
1560 if ((unsigned)unit >= ZS_KBD) {
1561 printf("zs_kgdb_init: bad minor dev %d\n", unit);
1562 return;
1563 }
1564 zs = unit >> 1;
1565 if ((addr = zsaddr[zs]) == NULL)
1566 addr = zsaddr[zs] = findzs(zs);
1567 unit &= 1;
1568 zc = unit == 0 ? &addr->zs_chan[ZS_CHAN_A] : &addr->zs_chan[ZS_CHAN_B];
1569 zs_kgdb_savedspeed = zs_getspeed(zc);
1570 printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
1571 zs, unit + 'a', kgdb_rate);
1572 zs_reset(zc, 1, kgdb_rate);
1573 kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
1574 }
1575 #endif /* KGDB */
1576