Home | History | Annotate | Line # | Download | only in dev
zs.c revision 1.37.4.1
      1 /*	$NetBSD: zs.c,v 1.37.4.1 1996/06/02 09:07:55 mrg Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This software was developed by the Computer Systems Engineering group
      8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  * contributed to Berkeley.
     10  *
     11  * All advertising materials mentioning features or use of this software
     12  * must display the following acknowledgement:
     13  *	This product includes software developed by the University of
     14  *	California, Lawrence Berkeley Laboratory.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  * 1. Redistributions of source code must retain the above copyright
     20  *    notice, this list of conditions and the following disclaimer.
     21  * 2. Redistributions in binary form must reproduce the above copyright
     22  *    notice, this list of conditions and the following disclaimer in the
     23  *    documentation and/or other materials provided with the distribution.
     24  * 3. All advertising materials mentioning features or use of this software
     25  *    must display the following acknowledgement:
     26  *	This product includes software developed by the University of
     27  *	California, Berkeley and its contributors.
     28  * 4. Neither the name of the University nor the names of its contributors
     29  *    may be used to endorse or promote products derived from this software
     30  *    without specific prior written permission.
     31  *
     32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     42  * SUCH DAMAGE.
     43  *
     44  *	@(#)zs.c	8.1 (Berkeley) 7/19/93
     45  */
     46 
     47 /*
     48  * Zilog Z8530 (ZSCC) driver.
     49  *
     50  * Runs two tty ports (ttya and ttyb) on zs0,
     51  * and runs a keyboard and mouse on zs1.
     52  *
     53  * This driver knows far too much about chip to usage mappings.
     54  */
     55 #include <sys/param.h>
     56 #include <sys/systm.h>
     57 #include <sys/proc.h>
     58 #include <sys/device.h>
     59 #include <sys/file.h>
     60 #include <sys/ioctl.h>
     61 #include <sys/malloc.h>
     62 #include <sys/tty.h>
     63 #include <sys/time.h>
     64 #include <sys/kernel.h>
     65 #include <sys/syslog.h>
     66 #include <sys/conf.h>
     67 
     68 #include <machine/autoconf.h>
     69 #include <machine/conf.h>
     70 #include <machine/cpu.h>
     71 
     72 #include <sparc/sparc/vaddrs.h>
     73 #include <sparc/sparc/auxreg.h>
     74 
     75 
     76 #include <machine/kbd.h>
     77 #include <dev/ic/z8530reg.h>
     78 
     79 #include <sparc/dev/zsvar.h>
     80 
     81 #ifdef KGDB
     82 #include <machine/remote-sl.h>
     83 #endif
     84 
     85 #define	ZSMAJOR	12		/* XXX */
     86 
     87 #define	ZS_KBD		2	/* XXX */
     88 #define	ZS_MOUSE	3	/* XXX */
     89 
     90 /* the magic number below was stolen from the Sprite source. */
     91 #define PCLK	(19660800/4)	/* PCLK pin input clock rate */
     92 
     93 /*
     94  * Select software interrupt bit based on TTY ipl.
     95  */
     96 #if PIL_TTY == 1
     97 # define IE_ZSSOFT IE_L1
     98 #elif PIL_TTY == 4
     99 # define IE_ZSSOFT IE_L4
    100 #elif PIL_TTY == 6
    101 # define IE_ZSSOFT IE_L6
    102 #else
    103 # error "no suitable software interrupt bit"
    104 #endif
    105 
    106 /*
    107  * Software state per found chip.  This would be called `zs_softc',
    108  * but the previous driver had a rather different zs_softc....
    109  */
    110 struct zsinfo {
    111 	struct	device zi_dev;		/* base device */
    112 	volatile struct zsdevice *zi_zs;/* chip registers */
    113 	struct	zs_chanstate zi_cs[2];	/* channel A and B software state */
    114 };
    115 
    116 /* Definition of the driver for autoconfig. */
    117 static int	zsmatch __P((struct device *, void *, void *));
    118 static void	zsattach __P((struct device *, struct device *, void *));
    119 
    120 struct cfattach zs_ca = {
    121 	sizeof(struct zsinfo), zsmatch, zsattach
    122 };
    123 
    124 struct cfdriver zs_cd = {
    125 	NULL, "zs", DV_TTY
    126 };
    127 
    128 /* Interrupt handlers. */
    129 static int	zshard __P((void *));
    130 static struct intrhand levelhard = { zshard };
    131 static int	zssoft __P((void *));
    132 static struct intrhand levelsoft = { zssoft };
    133 
    134 struct zs_chanstate *zslist;
    135 
    136 /* Routines called from other code. */
    137 static void	zsiopen __P((struct tty *));
    138 static void	zsiclose __P((struct tty *));
    139 static void	zsstart __P((struct tty *));
    140 static int	zsparam __P((struct tty *, struct termios *));
    141 
    142 /* Routines purely local to this driver. */
    143 static int	zs_getspeed __P((volatile struct zschan *));
    144 #ifdef KGDB
    145 static void	zs_reset __P((volatile struct zschan *, int, int));
    146 #endif
    147 static void	zs_modem __P((struct zs_chanstate *, int));
    148 static void	zs_loadchannelregs __P((volatile struct zschan *, u_char *));
    149 
    150 /* Console stuff. */
    151 static struct tty *zs_ctty;	/* console `struct tty *' */
    152 static int zs_consin = -1, zs_consout = -1;
    153 static void zscnputc __P((int));	/* console putc function */
    154 static volatile struct zschan *zs_conschan;
    155 static struct tty *zs_checkcons __P((struct zsinfo *, int, struct zs_chanstate *));
    156 
    157 #ifdef KGDB
    158 /* KGDB stuff.  Must reboot to change zs_kgdbunit. */
    159 extern int kgdb_dev, kgdb_rate;
    160 static int zs_kgdb_savedspeed;
    161 static void zs_checkkgdb __P((int, struct zs_chanstate *, struct tty *));
    162 void zskgdb __P((int));
    163 static int zs_kgdb_getc __P((void *));
    164 static void zs_kgdb_putc __P((void *, int));
    165 #endif
    166 
    167 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
    168 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
    169 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
    170 
    171 void zsabort __P((void));
    172 static void zsoverrun __P((int, long *, char *));
    173 
    174 #include "zs.h"	/* XXX: */
    175 static volatile struct zsdevice *zsaddr[NZS];	/* XXX, but saves work */
    176 
    177 /*
    178  * Console keyboard L1-A processing is done in the hardware interrupt code,
    179  * so we need to duplicate some of the console keyboard decode state.  (We
    180  * must not use the regular state as the hardware code keeps ahead of the
    181  * software state: the software state tracks the most recent ring input but
    182  * the hardware state tracks the most recent ZSCC input.)  See also kbd.h.
    183  */
    184 static struct conk_state {	/* console keyboard state */
    185 	char	conk_id;	/* true => ID coming up (console only) */
    186 	char	conk_l1;	/* true => L1 pressed (console only) */
    187 } zsconk_state;
    188 
    189 int zshardscope;
    190 int zsshortcuts;		/* number of "shortcut" software interrupts */
    191 
    192 #ifdef SUN4
    193 static u_int zs_read __P((volatile struct zschan *, u_int reg));
    194 static u_int zs_write __P((volatile struct zschan *, u_int, u_int));
    195 
    196 static u_int
    197 zs_read(zc, reg)
    198 	volatile struct zschan *zc;
    199 	u_int reg;
    200 {
    201 	u_char val;
    202 
    203 	zc->zc_csr = reg;
    204 	ZS_DELAY();
    205 	val = zc->zc_csr;
    206 	ZS_DELAY();
    207 	return val;
    208 }
    209 
    210 static u_int
    211 zs_write(zc, reg, val)
    212 	volatile struct zschan *zc;
    213 	u_int reg, val;
    214 {
    215 	zc->zc_csr = reg;
    216 	ZS_DELAY();
    217 	zc->zc_csr = val;
    218 	ZS_DELAY();
    219 	return val;
    220 }
    221 #endif /* SUN4 */
    222 
    223 /*
    224  * Match slave number to zs unit number, so that misconfiguration will
    225  * not set up the keyboard as ttya, etc.
    226  */
    227 static int
    228 zsmatch(parent, vcf, aux)
    229 	struct device *parent;
    230 	void *vcf, *aux;
    231 {
    232 	struct cfdata *cf = vcf;
    233 	struct confargs *ca = aux;
    234 	struct romaux *ra = &ca->ca_ra;
    235 
    236 	if (strcmp(cf->cf_driver->cd_name, ra->ra_name))
    237 		return (0);
    238 	if ((ca->ca_bustype == BUS_MAIN && !CPU_ISSUN4) ||
    239 	    (ca->ca_bustype == BUS_OBIO && CPU_ISSUN4M))
    240 		return (getpropint(ra->ra_node, "slave", -2) == cf->cf_unit);
    241 	ra->ra_len = NBPG;
    242 	return (probeget(ra->ra_vaddr, 1) != -1);
    243 }
    244 
    245 /*
    246  * Attach a found zs.
    247  *
    248  * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
    249  * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
    250  */
    251 static void
    252 zsattach(parent, dev, aux)
    253 	struct device *parent;
    254 	struct device *dev;
    255 	void *aux;
    256 {
    257 	register int zs = dev->dv_unit, unit;
    258 	register struct zsinfo *zi;
    259 	register struct zs_chanstate *cs;
    260 	register volatile struct zsdevice *addr;
    261 	register struct tty *tp, *ctp;
    262 	register struct confargs *ca = aux;
    263 	register struct romaux *ra = &ca->ca_ra;
    264 	int pri;
    265 	static int didintr, prevpri;
    266 	int ringsize;
    267 
    268 	if ((addr = zsaddr[zs]) == NULL)
    269 		addr = zsaddr[zs] = findzs(zs);
    270 	if (ca->ca_bustype==BUS_MAIN)
    271 		if ((void *)addr != ra->ra_vaddr)
    272 			panic("zsattach");
    273 	if (ra->ra_nintr != 1) {
    274 		printf(": expected 1 interrupt, got %d\n", ra->ra_nintr);
    275 		return;
    276 	}
    277 	pri = ra->ra_intr[0].int_pri;
    278 	printf(" pri %d, softpri %d\n", pri, PIL_TTY);
    279 	if (!didintr) {
    280 		didintr = 1;
    281 		prevpri = pri;
    282 		intr_establish(pri, &levelhard);
    283 		intr_establish(PIL_TTY, &levelsoft);
    284 	} else if (pri != prevpri)
    285 		panic("broken zs interrupt scheme");
    286 	zi = (struct zsinfo *)dev;
    287 	zi->zi_zs = addr;
    288 	unit = zs * 2;
    289 	cs = zi->zi_cs;
    290 
    291 	/* link into interrupt list with order (A,B) (B=A+1) */
    292 	cs[0].cs_next = &cs[1];
    293 	cs[1].cs_next = zslist;
    294 	zslist = cs;
    295 
    296 	cs->cs_unit = unit;
    297 	cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_A]);
    298 	cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
    299 	if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
    300 		tp = ctp;
    301 	else {
    302 		tp = ttymalloc();
    303 		tp->t_dev = makedev(ZSMAJOR, unit);
    304 		tp->t_oproc = zsstart;
    305 		tp->t_param = zsparam;
    306 #ifdef KGDB
    307 		zs_checkkgdb(unit, cs, tp);
    308 #endif
    309 	}
    310 	cs->cs_ttyp = tp;
    311 	if (unit == ZS_KBD) {
    312 		/*
    313 		 * Keyboard: tell /dev/kbd driver how to talk to us.
    314 		 */
    315 		tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
    316 		tp->t_cflag = CS8;
    317 		kbd_serial(tp, zsiopen, zsiclose);
    318 		cs->cs_conk = 1;		/* do L1-A processing */
    319 		ringsize = 128;
    320 	} else {
    321 		if (tp != ctp)
    322 			tty_attach(tp);
    323 		ringsize = 4096;
    324 	}
    325 
    326 	cs->cs_ringmask = ringsize - 1;
    327 	cs->cs_rbuf = malloc((u_long)ringsize * sizeof(*cs->cs_rbuf),
    328 			      M_DEVBUF, M_NOWAIT);
    329 	unit++;
    330 	cs++;
    331 	cs->cs_unit = unit;
    332 	cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_B]);
    333 	cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
    334 	if ((ctp = zs_checkcons(zi, unit, cs)) != NULL)
    335 		tp = ctp;
    336 	else {
    337 		tp = ttymalloc();
    338 		tp->t_dev = makedev(ZSMAJOR, unit);
    339 		tp->t_oproc = zsstart;
    340 		tp->t_param = zsparam;
    341 #ifdef KGDB
    342 		zs_checkkgdb(unit, cs, tp);
    343 #endif
    344 	}
    345 	cs->cs_ttyp = tp;
    346 	if (unit == ZS_MOUSE) {
    347 		/*
    348 		 * Mouse: tell /dev/mouse driver how to talk to us.
    349 		 */
    350 		tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
    351 		tp->t_cflag = CS8;
    352 		ms_serial(tp, zsiopen, zsiclose);
    353 		ringsize = 128;
    354 	} else {
    355 		if (tp != ctp)
    356 			tty_attach(tp);
    357 		ringsize = 4096;
    358 	}
    359 	cs->cs_ringmask = ringsize - 1;
    360 	cs->cs_rbuf = malloc((u_long)ringsize * sizeof(*cs->cs_rbuf),
    361 			      M_DEVBUF, M_NOWAIT);
    362 }
    363 
    364 #ifdef KGDB
    365 /*
    366  * Put a channel in a known state.  Interrupts may be left disabled
    367  * or enabled, as desired.
    368  */
    369 static void
    370 zs_reset(zc, inten, speed)
    371 	volatile struct zschan *zc;
    372 	int inten, speed;
    373 {
    374 	int tconst;
    375 	static u_char reg[16] = {
    376 		0,
    377 		0,
    378 		0,
    379 		ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
    380 		ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
    381 		ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
    382 		0,
    383 		0,
    384 		0,
    385 		0,
    386 		ZSWR10_NRZ,
    387 		ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
    388 		0,
    389 		0,
    390 		ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
    391 		ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
    392 	};
    393 
    394 	reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
    395 	tconst = BPS_TO_TCONST(PCLK / 16, speed);
    396 	reg[12] = tconst;
    397 	reg[13] = tconst >> 8;
    398 	zs_loadchannelregs(zc, reg);
    399 }
    400 #endif
    401 
    402 /*
    403  * Declare the given tty (which is in fact &cons) as a console input
    404  * or output.  This happens before the zs chip is attached; the hookup
    405  * is finished later, in zs_setcons() below.
    406  *
    407  * This is used only for ports a and b.  The console keyboard is decoded
    408  * independently (we always send unit-2 input to /dev/kbd, which will
    409  * direct it to /dev/console if appropriate).
    410  */
    411 void
    412 zsconsole(tp, unit, out, fnstop)
    413 	register struct tty *tp;
    414 	register int unit;
    415 	int out;
    416 	int (**fnstop) __P((struct tty *, int));
    417 {
    418 	int zs;
    419 	volatile struct zsdevice *addr;
    420 
    421 	if (unit >= ZS_KBD)
    422 		panic("zsconsole");
    423 	if (out) {
    424 		zs_consout = unit;
    425 		zs = unit >> 1;
    426 		if ((addr = zsaddr[zs]) == NULL)
    427 			addr = zsaddr[zs] = findzs(zs);
    428 		zs_conschan = (unit & 1) == 0 ? &addr->zs_chan[ZS_CHAN_A] :
    429 		    &addr->zs_chan[ZS_CHAN_B];
    430 		v_putc = zscnputc;
    431 	} else
    432 		zs_consin = unit;
    433 	if(fnstop)
    434 		*fnstop = &zsstop;
    435 	zs_ctty = tp;
    436 }
    437 
    438 /*
    439  * Polled console output putchar.
    440  */
    441 static void
    442 zscnputc(c)
    443 	int c;
    444 {
    445 	register volatile struct zschan *zc = zs_conschan;
    446 	register int s;
    447 
    448 	if (c == '\n')
    449 		zscnputc('\r');
    450 	/*
    451 	 * Must block output interrupts (i.e., raise to >= splzs) without
    452 	 * lowering current ipl.  Need a better way.
    453 	 */
    454 	s = splhigh();
    455 	if (CPU_ISSUN4C && s <= (12 << 8)) /* XXX */
    456 		(void) splzs();
    457 	while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
    458 		ZS_DELAY();
    459 	zc->zc_data = c;
    460 	ZS_DELAY();
    461 	splx(s);
    462 }
    463 
    464 /*
    465  * Set up the given unit as console input, output, both, or neither, as
    466  * needed.  Return console tty if it is to receive console input.
    467  */
    468 static struct tty *
    469 zs_checkcons(zi, unit, cs)
    470 	struct zsinfo *zi;
    471 	int unit;
    472 	struct zs_chanstate *cs;
    473 {
    474 	register struct tty *tp;
    475 	char *i, *o;
    476 
    477 	if ((tp = zs_ctty) == NULL) /* XXX */
    478 		return (0);
    479 	i = zs_consin == unit ? "input" : NULL;
    480 	o = zs_consout == unit ? "output" : NULL;
    481 	if (i == NULL && o == NULL)
    482 		return (0);
    483 
    484 	/* rewire the minor device (gack) */
    485 	tp->t_dev = makedev(major(tp->t_dev), unit);
    486 
    487 	/*
    488 	 * Rewire input and/or output.  Note that baud rate reflects
    489 	 * input settings, not output settings, but we can do no better
    490 	 * if the console is split across two ports.
    491 	 *
    492 	 * XXX	split consoles don't work anyway -- this needs to be
    493 	 *	thrown away and redone
    494 	 */
    495 	if (i) {
    496 		tp->t_param = zsparam;
    497 		tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
    498 		tp->t_cflag = CS8;
    499 		ttsetwater(tp);
    500 	}
    501 	if (o) {
    502 		tp->t_oproc = zsstart;
    503 	}
    504 	printf("%s%c: console %s\n",
    505 	    zi->zi_dev.dv_xname, (unit & 1) + 'a', i ? (o ? "i/o" : i) : o);
    506 	cs->cs_consio = 1;
    507 	cs->cs_brkabort = 1;
    508 	return (tp);
    509 }
    510 
    511 #ifdef KGDB
    512 /*
    513  * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
    514  * Pick up the current speed and character size and restore the original
    515  * speed.
    516  */
    517 static void
    518 zs_checkkgdb(unit, cs, tp)
    519 	int unit;
    520 	struct zs_chanstate *cs;
    521 	struct tty *tp;
    522 {
    523 
    524 	if (kgdb_dev == makedev(ZSMAJOR, unit)) {
    525 		tp->t_ispeed = tp->t_ospeed = kgdb_rate;
    526 		tp->t_cflag = CS8;
    527 		cs->cs_kgdb = 1;
    528 		cs->cs_speed = zs_kgdb_savedspeed;
    529 		(void) zsparam(tp, &tp->t_termios);
    530 	}
    531 }
    532 #endif
    533 
    534 /*
    535  * Compute the current baud rate given a ZSCC channel.
    536  */
    537 static int
    538 zs_getspeed(zc)
    539 	register volatile struct zschan *zc;
    540 {
    541 	register int tconst;
    542 
    543 	tconst = ZS_READ(zc, 12);
    544 	tconst |= ZS_READ(zc, 13) << 8;
    545 	return (TCONST_TO_BPS(PCLK / 16, tconst));
    546 }
    547 
    548 
    549 /*
    550  * Do an internal open.
    551  */
    552 static void
    553 zsiopen(tp)
    554 	struct tty *tp;
    555 {
    556 
    557 	(void) zsparam(tp, &tp->t_termios);
    558 	ttsetwater(tp);
    559 	tp->t_state = TS_ISOPEN | TS_CARR_ON;
    560 }
    561 
    562 /*
    563  * Do an internal close.  Eventually we should shut off the chip when both
    564  * ports on it are closed.
    565  */
    566 static void
    567 zsiclose(tp)
    568 	struct tty *tp;
    569 {
    570 
    571 	ttylclose(tp, 0);	/* ??? */
    572 	ttyclose(tp);		/* ??? */
    573 	tp->t_state = 0;
    574 }
    575 
    576 
    577 /*
    578  * Open a zs serial port.  This interface may not be used to open
    579  * the keyboard and mouse ports. (XXX)
    580  */
    581 int
    582 zsopen(dev, flags, mode, p)
    583 	dev_t dev;
    584 	int flags;
    585 	int mode;
    586 	struct proc *p;
    587 {
    588 	register struct tty *tp;
    589 	register struct zs_chanstate *cs;
    590 	struct zsinfo *zi;
    591 	int unit = minor(dev), zs = unit >> 1, error, s;
    592 
    593 	if (zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL ||
    594 	    unit == ZS_KBD || unit == ZS_MOUSE)
    595 		return (ENXIO);
    596 	cs = &zi->zi_cs[unit & 1];
    597 	if (cs->cs_consio)
    598 		return (ENXIO);		/* ??? */
    599 	tp = cs->cs_ttyp;
    600 	s = spltty();
    601 	if ((tp->t_state & TS_ISOPEN) == 0) {
    602 		ttychars(tp);
    603 		if (tp->t_ispeed == 0) {
    604 			tp->t_iflag = TTYDEF_IFLAG;
    605 			tp->t_oflag = TTYDEF_OFLAG;
    606 			tp->t_cflag = TTYDEF_CFLAG;
    607 			tp->t_lflag = TTYDEF_LFLAG;
    608 			tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
    609 		}
    610 		(void) zsparam(tp, &tp->t_termios);
    611 		ttsetwater(tp);
    612 	} else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
    613 		splx(s);
    614 		return (EBUSY);
    615 	}
    616 	error = 0;
    617 	for (;;) {
    618 		register int rr0;
    619 
    620 		/* loop, turning on the device, until carrier present */
    621 		zs_modem(cs, 1);
    622 		/* May never get status intr if carrier already on. -gwr */
    623 		rr0 = cs->cs_zc->zc_csr;
    624 		ZS_DELAY();
    625 		if ((rr0 & ZSRR0_DCD) || cs->cs_softcar)
    626 			tp->t_state |= TS_CARR_ON;
    627 		if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
    628 		    tp->t_state & TS_CARR_ON)
    629 			break;
    630 		tp->t_state |= TS_WOPEN;
    631 		error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
    632 				 ttopen, 0);
    633 		if (error) {
    634 			if (!(tp->t_state & TS_ISOPEN)) {
    635 				zs_modem(cs, 0);
    636 				tp->t_state &= ~TS_WOPEN;
    637 				ttwakeup(tp);
    638 			}
    639 			splx(s);
    640 			return error;
    641 		}
    642 	}
    643 	splx(s);
    644 	if (error == 0)
    645 		error = linesw[tp->t_line].l_open(dev, tp);
    646 	if (error)
    647 		zs_modem(cs, 0);
    648 	return (error);
    649 }
    650 
    651 /*
    652  * Close a zs serial port.
    653  */
    654 int
    655 zsclose(dev, flags, mode, p)
    656 	dev_t dev;
    657 	int flags;
    658 	int mode;
    659 	struct proc *p;
    660 {
    661 	register struct zs_chanstate *cs;
    662 	register struct tty *tp;
    663 	struct zsinfo *zi;
    664 	int unit = minor(dev), s;
    665 
    666 	zi = zs_cd.cd_devs[unit >> 1];
    667 	cs = &zi->zi_cs[unit & 1];
    668 	tp = cs->cs_ttyp;
    669 	linesw[tp->t_line].l_close(tp, flags);
    670 	if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
    671 	    (tp->t_state & TS_ISOPEN) == 0) {
    672 		zs_modem(cs, 0);
    673 		/* hold low for 1 second */
    674 		(void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
    675 	}
    676 	if (cs->cs_creg[5] & ZSWR5_BREAK)
    677 	{
    678 		s = splzs();
    679 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
    680 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
    681 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    682 		splx(s);
    683 	}
    684 	ttyclose(tp);
    685 #ifdef KGDB
    686 	/* Reset the speed if we're doing kgdb on this port */
    687 	if (cs->cs_kgdb) {
    688 		tp->t_ispeed = tp->t_ospeed = kgdb_rate;
    689 		(void) zsparam(tp, &tp->t_termios);
    690 	}
    691 #endif
    692 	return (0);
    693 }
    694 
    695 /*
    696  * Read/write zs serial port.
    697  */
    698 int
    699 zsread(dev, uio, flags)
    700 	dev_t dev;
    701 	struct uio *uio;
    702 	int flags;
    703 {
    704 	register struct zs_chanstate *cs;
    705 	register struct zsinfo *zi;
    706 	register struct tty *tp;
    707 	int unit = minor(dev);
    708 
    709 	zi = zs_cd.cd_devs[unit >> 1];
    710 	cs = &zi->zi_cs[unit & 1];
    711 	tp = cs->cs_ttyp;
    712 
    713 	return (linesw[tp->t_line].l_read(tp, uio, flags));
    714 
    715 }
    716 
    717 int
    718 zswrite(dev, uio, flags)
    719 	dev_t dev;
    720 	struct uio *uio;
    721 	int flags;
    722 {
    723 	register struct zs_chanstate *cs;
    724 	register struct zsinfo *zi;
    725 	register struct tty *tp;
    726 	int unit = minor(dev);
    727 
    728 	zi = zs_cd.cd_devs[unit >> 1];
    729 	cs = &zi->zi_cs[unit & 1];
    730 	tp = cs->cs_ttyp;
    731 
    732 	return (linesw[tp->t_line].l_write(tp, uio, flags));
    733 }
    734 
    735 struct tty *
    736 zstty(dev)
    737 	dev_t dev;
    738 {
    739 	register struct zs_chanstate *cs;
    740 	register struct zsinfo *zi;
    741 	int unit = minor(dev);
    742 
    743 	zi = zs_cd.cd_devs[unit >> 1];
    744 	cs = &zi->zi_cs[unit & 1];
    745 
    746 	return (cs->cs_ttyp);
    747 
    748 }
    749 
    750 /*
    751  * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
    752  * channels are kept in (A,B) pairs.
    753  *
    754  * Do just a little, then get out; set a software interrupt if more
    755  * work is needed.
    756  *
    757  * We deliberately ignore the vectoring Zilog gives us, and match up
    758  * only the number of `reset interrupt under service' operations, not
    759  * the order.
    760  */
    761 /* ARGSUSED */
    762 int
    763 zshard(intrarg)
    764 	void *intrarg;
    765 {
    766 	register struct zs_chanstate *a;
    767 #define	b (a + 1)
    768 	register volatile struct zschan *zc;
    769 	register int rr3, intflags = 0, v, i, ringmask;
    770 	static int zsrint(struct zs_chanstate *, volatile struct zschan *);
    771 	static int zsxint(struct zs_chanstate *, volatile struct zschan *);
    772 	static int zssint(struct zs_chanstate *, volatile struct zschan *);
    773 
    774 	for (a = zslist; a != NULL; a = b->cs_next) {
    775 		ringmask = a->cs_ringmask;
    776 		rr3 = ZS_READ(a->cs_zc, 3);
    777 		if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
    778 			intflags |= 2;
    779 			zc = a->cs_zc;
    780 			i = a->cs_rbput;
    781 			if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
    782 				a->cs_rbuf[i++ & ringmask] = v;
    783 				intflags |= 1;
    784 			}
    785 			if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
    786 				a->cs_rbuf[i++ & ringmask] = v;
    787 				intflags |= 1;
    788 			}
    789 			if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
    790 				a->cs_rbuf[i++ & ringmask] = v;
    791 				intflags |= 1;
    792 			}
    793 			a->cs_rbput = i;
    794 		}
    795 		if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
    796 			intflags |= 2;
    797 			zc = b->cs_zc;
    798 			i = b->cs_rbput;
    799 			if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
    800 				b->cs_rbuf[i++ & ringmask] = v;
    801 				intflags |= 1;
    802 			}
    803 			if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
    804 				b->cs_rbuf[i++ & ringmask] = v;
    805 				intflags |= 1;
    806 			}
    807 			if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
    808 				b->cs_rbuf[i++ & ringmask] = v;
    809 				intflags |= 1;
    810 			}
    811 			b->cs_rbput = i;
    812 		}
    813 	}
    814 #undef b
    815 
    816 	if (intflags & 1) {
    817 		if (CPU_ISSUN4COR4M) {
    818 			/* XXX -- but this will go away when zshard moves to locore.s */
    819 			struct clockframe *p = intrarg;
    820 
    821 			if ((p->psr & PSR_PIL) < (PIL_TTY << 8)) {
    822 				zsshortcuts++;
    823 				(void) spltty();
    824 				if (zshardscope) {
    825 					LED_ON;
    826 					LED_OFF;
    827 				}
    828 				return (zssoft(intrarg));
    829 			}
    830 		}
    831 
    832 #if defined(SUN4M)
    833 		if (CPU_ISSUN4M)
    834 			raise(0, PIL_TTY);
    835 		else
    836 #endif
    837 			ienab_bis(IE_ZSSOFT);
    838 	}
    839 	return (intflags & 2);
    840 }
    841 
    842 static int
    843 zsrint(cs, zc)
    844 	register struct zs_chanstate *cs;
    845 	register volatile struct zschan *zc;
    846 {
    847 	register int c = zc->zc_data;
    848 
    849 	ZS_DELAY();
    850 	if (cs->cs_conk) {
    851 		register struct conk_state *conk = &zsconk_state;
    852 
    853 		/*
    854 		 * Check here for console abort function, so that we
    855 		 * can abort even when interrupts are locking up the
    856 		 * machine.
    857 		 */
    858 		if (c == KBD_RESET) {
    859 			conk->conk_id = 1;	/* ignore next byte */
    860 			conk->conk_l1 = 0;
    861 		} else if (conk->conk_id)
    862 			conk->conk_id = 0;	/* stop ignoring bytes */
    863 		else if (c == KBD_L1)
    864 			conk->conk_l1 = 1;	/* L1 went down */
    865 		else if (c == (KBD_L1|KBD_UP))
    866 			conk->conk_l1 = 0;	/* L1 went up */
    867 		else if (c == KBD_A && conk->conk_l1) {
    868 			zsabort();
    869 			conk->conk_l1 = 0;	/* we never see the up */
    870 			goto clearit;		/* eat the A after L1-A */
    871 		}
    872 	}
    873 #ifdef KGDB
    874 	if (c == FRAME_START && cs->cs_kgdb &&
    875 	    (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
    876 		zskgdb(cs->cs_unit);
    877 		goto clearit;
    878 	}
    879 #endif
    880 	/* compose receive character and status */
    881 	c <<= 8;
    882 	c |= ZS_READ(zc, 1);
    883 
    884 	/* clear receive error & interrupt condition */
    885 	zc->zc_csr = ZSWR0_RESET_ERRORS;
    886 	ZS_DELAY();
    887 	zc->zc_csr = ZSWR0_CLR_INTR;
    888 	ZS_DELAY();
    889 
    890 	return (ZRING_MAKE(ZRING_RINT, c));
    891 
    892 clearit:
    893 	zc->zc_csr = ZSWR0_RESET_ERRORS;
    894 	ZS_DELAY();
    895 	zc->zc_csr = ZSWR0_CLR_INTR;
    896 	ZS_DELAY();
    897 	return (0);
    898 }
    899 
    900 static int
    901 zsxint(cs, zc)
    902 	register struct zs_chanstate *cs;
    903 	register volatile struct zschan *zc;
    904 {
    905 	register int i = cs->cs_tbc;
    906 
    907 	if (i == 0) {
    908 		zc->zc_csr = ZSWR0_RESET_TXINT;
    909 		ZS_DELAY();
    910 		zc->zc_csr = ZSWR0_CLR_INTR;
    911 		ZS_DELAY();
    912 		return (ZRING_MAKE(ZRING_XINT, 0));
    913 	}
    914 	cs->cs_tbc = i - 1;
    915 	zc->zc_data = *cs->cs_tba++;
    916 	ZS_DELAY();
    917 	zc->zc_csr = ZSWR0_CLR_INTR;
    918 	ZS_DELAY();
    919 	return (0);
    920 }
    921 
    922 static int
    923 zssint(cs, zc)
    924 	register struct zs_chanstate *cs;
    925 	register volatile struct zschan *zc;
    926 {
    927 	register int rr0;
    928 
    929 	rr0 = zc->zc_csr;
    930 	ZS_DELAY();
    931 	zc->zc_csr = ZSWR0_RESET_STATUS;
    932 	ZS_DELAY();
    933 	zc->zc_csr = ZSWR0_CLR_INTR;
    934 	ZS_DELAY();
    935 	/*
    936 	 * The chip's hardware flow control is, as noted in zsreg.h,
    937 	 * busted---if the DCD line goes low the chip shuts off the
    938 	 * receiver (!).  If we want hardware CTS flow control but do
    939 	 * not have it, and carrier is now on, turn HFC on; if we have
    940 	 * HFC now but carrier has gone low, turn it off.
    941 	 */
    942 	if (rr0 & ZSRR0_DCD) {
    943 		if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
    944 		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
    945 			cs->cs_creg[3] |= ZSWR3_HFC;
    946 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    947 		}
    948 	} else {
    949 		if (cs->cs_creg[3] & ZSWR3_HFC) {
    950 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    951 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    952 		}
    953 	}
    954 	if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
    955 		/*
    956 		 * XXX This might not be necessary. Test and
    957 		 * delete if it isn't.
    958 		 */
    959 		if (CPU_ISSUN4) {
    960 			while (zc->zc_csr & ZSRR0_BREAK)
    961 				ZS_DELAY();
    962 		}
    963 		zsabort();
    964 		return (0);
    965 	}
    966 	return (ZRING_MAKE(ZRING_SINT, rr0));
    967 }
    968 
    969 void
    970 zsabort()
    971 {
    972 
    973 #ifdef DDB
    974 	Debugger();
    975 #else
    976 	printf("stopping on keyboard abort\n");
    977 	callrom();
    978 #endif
    979 }
    980 
    981 #ifdef KGDB
    982 /*
    983  * KGDB framing character received: enter kernel debugger.  This probably
    984  * should time out after a few seconds to avoid hanging on spurious input.
    985  */
    986 void
    987 zskgdb(unit)
    988 	int unit;
    989 {
    990 
    991 	printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
    992 	kgdb_connect(1);
    993 }
    994 #endif
    995 
    996 /*
    997  * Print out a ring or fifo overrun error message.
    998  */
    999 static void
   1000 zsoverrun(unit, ptime, what)
   1001 	int unit;
   1002 	long *ptime;
   1003 	char *what;
   1004 {
   1005 
   1006 	if (*ptime != time.tv_sec) {
   1007 		*ptime = time.tv_sec;
   1008 		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
   1009 		    (unit & 1) + 'a', what);
   1010 	}
   1011 }
   1012 
   1013 /*
   1014  * ZS software interrupt.  Scan all channels for deferred interrupts.
   1015  */
   1016 int
   1017 zssoft(arg)
   1018 	void *arg;
   1019 {
   1020 	register struct zs_chanstate *cs;
   1021 	register volatile struct zschan *zc;
   1022 	register struct linesw *line;
   1023 	register struct tty *tp;
   1024 	register int get, n, c, cc, unit, s, ringmask, ringsize;
   1025 	int	retval = 0;
   1026 
   1027 	for (cs = zslist; cs != NULL; cs = cs->cs_next) {
   1028 		ringmask = cs->cs_ringmask;
   1029 		get = cs->cs_rbget;
   1030 again:
   1031 		n = cs->cs_rbput;	/* atomic */
   1032 		if (get == n)		/* nothing more on this line */
   1033 			continue;
   1034 		retval = 1;
   1035 		unit = cs->cs_unit;	/* set up to handle interrupts */
   1036 		zc = cs->cs_zc;
   1037 		tp = cs->cs_ttyp;
   1038 		line = &linesw[tp->t_line];
   1039 		/*
   1040 		 * Compute the number of interrupts in the receive ring.
   1041 		 * If the count is overlarge, we lost some events, and
   1042 		 * must advance to the first valid one.  It may get
   1043 		 * overwritten if more data are arriving, but this is
   1044 		 * too expensive to check and gains nothing (we already
   1045 		 * lost out; all we can do at this point is trade one
   1046 		 * kind of loss for another).
   1047 		 */
   1048 		ringsize = ringmask + 1;
   1049 		n -= get;
   1050 		if (n > ringsize) {
   1051 			zsoverrun(unit, &cs->cs_rotime, "ring");
   1052 			get += n - ringsize;
   1053 			n = ringsize;
   1054 		}
   1055 		while (--n >= 0) {
   1056 			/* race to keep ahead of incoming interrupts */
   1057 			c = cs->cs_rbuf[get++ & ringmask];
   1058 			switch (ZRING_TYPE(c)) {
   1059 
   1060 			case ZRING_RINT:
   1061 				c = ZRING_VALUE(c);
   1062 				if (c & ZSRR1_DO)
   1063 					zsoverrun(unit, &cs->cs_fotime, "fifo");
   1064 				cc = c >> 8;
   1065 				if (c & ZSRR1_FE)
   1066 					cc |= TTY_FE;
   1067 				if (c & ZSRR1_PE)
   1068 					cc |= TTY_PE;
   1069 				/*
   1070 				 * this should be done through
   1071 				 * bstreams	XXX gag choke
   1072 				 */
   1073 				if (unit == ZS_KBD)
   1074 					kbd_rint(cc);
   1075 				else if (unit == ZS_MOUSE)
   1076 					ms_rint(cc);
   1077 				else
   1078 					line->l_rint(cc, tp);
   1079 				break;
   1080 
   1081 			case ZRING_XINT:
   1082 				/*
   1083 				 * Transmit done: change registers and resume,
   1084 				 * or clear BUSY.
   1085 				 */
   1086 				if (cs->cs_heldchange) {
   1087 					s = splzs();
   1088 					c = zc->zc_csr;
   1089 					ZS_DELAY();
   1090 					if ((c & ZSRR0_DCD) == 0)
   1091 						cs->cs_preg[3] &= ~ZSWR3_HFC;
   1092 					bcopy((caddr_t)cs->cs_preg,
   1093 					    (caddr_t)cs->cs_creg, 16);
   1094 					zs_loadchannelregs(zc, cs->cs_creg);
   1095 					splx(s);
   1096 					cs->cs_heldchange = 0;
   1097 					if (cs->cs_heldtbc &&
   1098 					    (tp->t_state & TS_TTSTOP) == 0) {
   1099 						cs->cs_tbc = cs->cs_heldtbc - 1;
   1100 						zc->zc_data = *cs->cs_tba++;
   1101 						ZS_DELAY();
   1102 						goto again;
   1103 					}
   1104 				}
   1105 				tp->t_state &= ~TS_BUSY;
   1106 				if (tp->t_state & TS_FLUSH)
   1107 					tp->t_state &= ~TS_FLUSH;
   1108 				else
   1109 					ndflush(&tp->t_outq,
   1110 					 cs->cs_tba - (caddr_t)tp->t_outq.c_cf);
   1111 				line->l_start(tp);
   1112 				break;
   1113 
   1114 			case ZRING_SINT:
   1115 				/*
   1116 				 * Status line change.  HFC bit is run in
   1117 				 * hardware interrupt, to avoid locking
   1118 				 * at splzs here.
   1119 				 */
   1120 				c = ZRING_VALUE(c);
   1121 				if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
   1122 					cc = (c & ZSRR0_DCD) != 0;
   1123 					if (line->l_modem(tp, cc) == 0)
   1124 						zs_modem(cs, cc);
   1125 				}
   1126 				cs->cs_rr0 = c;
   1127 				break;
   1128 
   1129 			default:
   1130 				log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
   1131 				    unit >> 1, (unit & 1) + 'a', c);
   1132 				break;
   1133 			}
   1134 		}
   1135 		cs->cs_rbget = get;
   1136 		goto again;
   1137 	}
   1138 	return (retval);
   1139 }
   1140 
   1141 int
   1142 zsioctl(dev, cmd, data, flag, p)
   1143 	dev_t dev;
   1144 	u_long cmd;
   1145 	caddr_t data;
   1146 	int flag;
   1147 	struct proc *p;
   1148 {
   1149 	int unit = minor(dev);
   1150 	struct zsinfo *zi = zs_cd.cd_devs[unit >> 1];
   1151 	register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
   1152 	register struct tty *tp = cs->cs_ttyp;
   1153 	register int error, s;
   1154 
   1155 	error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
   1156 	if (error >= 0)
   1157 		return (error);
   1158 	error = ttioctl(tp, cmd, data, flag, p);
   1159 	if (error >= 0)
   1160 		return (error);
   1161 
   1162 	switch (cmd) {
   1163 	case TIOCSBRK:
   1164 		s = splzs();
   1165 		cs->cs_preg[5] |= ZSWR5_BREAK;
   1166 		cs->cs_creg[5] |= ZSWR5_BREAK;
   1167 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
   1168 		splx(s);
   1169 		break;
   1170 	case TIOCCBRK:
   1171 		s = splzs();
   1172 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
   1173 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
   1174 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
   1175 		splx(s);
   1176 		break;
   1177 	case TIOCGFLAGS: {
   1178 		int bits = 0;
   1179 
   1180 		if (cs->cs_softcar)
   1181 			bits |= TIOCFLAG_SOFTCAR;
   1182 		if (cs->cs_creg[15] & ZSWR15_DCD_IE)
   1183 			bits |= TIOCFLAG_CLOCAL;
   1184 		if (cs->cs_creg[3] & ZSWR3_HFC)
   1185 			bits |= TIOCFLAG_CRTSCTS;
   1186 		*(int *)data = bits;
   1187 		break;
   1188 	}
   1189 	case TIOCSFLAGS: {
   1190 		int userbits;
   1191 
   1192 		error = suser(p->p_ucred, &p->p_acflag);
   1193 		if (error != 0)
   1194 			return (EPERM);
   1195 
   1196 		userbits = *(int *)data;
   1197 
   1198 		/*
   1199 		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
   1200 		 # defaulting to software flow control.
   1201 		 */
   1202 		if (userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
   1203 			return(EINVAL);
   1204 		if (userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
   1205 			return(ENXIO);
   1206 
   1207 		s = splzs();
   1208 		if ((userbits & TIOCFLAG_SOFTCAR) || cs->cs_consio) {
   1209 			cs->cs_softcar = 1;	/* turn on softcar */
   1210 			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
   1211 			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
   1212 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
   1213 		} else if (userbits & TIOCFLAG_CLOCAL) {
   1214 			cs->cs_softcar = 0; 	/* turn off softcar */
   1215 			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
   1216 			cs->cs_creg[15] |= ZSWR15_DCD_IE;
   1217 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
   1218 			tp->t_termios.c_cflag |= CLOCAL;
   1219 		}
   1220 		if (userbits & TIOCFLAG_CRTSCTS) {
   1221 			cs->cs_preg[15] |= ZSWR15_CTS_IE;
   1222 			cs->cs_creg[15] |= ZSWR15_CTS_IE;
   1223 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
   1224 			cs->cs_preg[3] |= ZSWR3_HFC;
   1225 			cs->cs_creg[3] |= ZSWR3_HFC;
   1226 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
   1227 			tp->t_termios.c_cflag |= CRTSCTS;
   1228 		} else {
   1229 			/* no mdmbuf, so we must want software flow control */
   1230 			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
   1231 			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
   1232 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
   1233 			cs->cs_preg[3] &= ~ZSWR3_HFC;
   1234 			cs->cs_creg[3] &= ~ZSWR3_HFC;
   1235 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
   1236 			tp->t_termios.c_cflag &= ~CRTSCTS;
   1237 		}
   1238 		splx(s);
   1239 		break;
   1240 	}
   1241 	case TIOCSDTR:
   1242 		zs_modem(cs, 1);
   1243 		break;
   1244 	case TIOCCDTR:
   1245 		zs_modem(cs, 0);
   1246 		break;
   1247 	case TIOCMSET:
   1248 	case TIOCMBIS:
   1249 	case TIOCMBIC:
   1250 	case TIOCMGET:
   1251 	default:
   1252 		return (ENOTTY);
   1253 	}
   1254 	return (0);
   1255 }
   1256 
   1257 /*
   1258  * Start or restart transmission.
   1259  */
   1260 static void
   1261 zsstart(tp)
   1262 	register struct tty *tp;
   1263 {
   1264 	register struct zs_chanstate *cs;
   1265 	register int s, nch;
   1266 	int unit = minor(tp->t_dev);
   1267 	struct zsinfo *zi = zs_cd.cd_devs[unit >> 1];
   1268 
   1269 	cs = &zi->zi_cs[unit & 1];
   1270 	s = spltty();
   1271 
   1272 	/*
   1273 	 * If currently active or delaying, no need to do anything.
   1274 	 */
   1275 	if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
   1276 		goto out;
   1277 
   1278 	/*
   1279 	 * If there are sleepers, and output has drained below low
   1280 	 * water mark, awaken.
   1281 	 */
   1282 	if (tp->t_outq.c_cc <= tp->t_lowat) {
   1283 		if (tp->t_state & TS_ASLEEP) {
   1284 			tp->t_state &= ~TS_ASLEEP;
   1285 			wakeup((caddr_t)&tp->t_outq);
   1286 		}
   1287 		selwakeup(&tp->t_wsel);
   1288 	}
   1289 
   1290 	nch = ndqb(&tp->t_outq, 0);	/* XXX */
   1291 	if (nch) {
   1292 		register char *p = tp->t_outq.c_cf;
   1293 
   1294 		/* mark busy, enable tx done interrupts, & send first byte */
   1295 		tp->t_state |= TS_BUSY;
   1296 		(void) splzs();
   1297 		cs->cs_preg[1] |= ZSWR1_TIE;
   1298 		cs->cs_creg[1] |= ZSWR1_TIE;
   1299 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
   1300 		cs->cs_zc->zc_data = *p;
   1301 		ZS_DELAY();
   1302 		cs->cs_tba = p + 1;
   1303 		cs->cs_tbc = nch - 1;
   1304 	} else {
   1305 		/*
   1306 		 * Nothing to send, turn off transmit done interrupts.
   1307 		 * This is useful if something is doing polled output.
   1308 		 */
   1309 		(void) splzs();
   1310 		cs->cs_preg[1] &= ~ZSWR1_TIE;
   1311 		cs->cs_creg[1] &= ~ZSWR1_TIE;
   1312 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
   1313 	}
   1314 out:
   1315 	splx(s);
   1316 }
   1317 
   1318 /*
   1319  * Stop output, e.g., for ^S or output flush.
   1320  */
   1321 int
   1322 zsstop(tp, flag)
   1323 	register struct tty *tp;
   1324 	int flag;
   1325 {
   1326 	register struct zs_chanstate *cs;
   1327 	register int s, unit = minor(tp->t_dev);
   1328 	struct zsinfo *zi = zs_cd.cd_devs[unit >> 1];
   1329 
   1330 	cs = &zi->zi_cs[unit & 1];
   1331 	s = splzs();
   1332 	if (tp->t_state & TS_BUSY) {
   1333 		/*
   1334 		 * Device is transmitting; must stop it.
   1335 		 */
   1336 		cs->cs_tbc = 0;
   1337 		if ((tp->t_state & TS_TTSTOP) == 0)
   1338 			tp->t_state |= TS_FLUSH;
   1339 	}
   1340 	splx(s);
   1341 	return 0;
   1342 }
   1343 
   1344 /*
   1345  * Set ZS tty parameters from termios.
   1346  *
   1347  * This routine makes use of the fact that only registers
   1348  * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
   1349  */
   1350 static int
   1351 zsparam(tp, t)
   1352 	register struct tty *tp;
   1353 	register struct termios *t;
   1354 {
   1355 	int unit = minor(tp->t_dev);
   1356 	struct zsinfo *zi = zs_cd.cd_devs[unit >> 1];
   1357 	register struct zs_chanstate *cs = &zi->zi_cs[unit & 1];
   1358 	register int tmp, tmp5, cflag, s;
   1359 
   1360 	/*
   1361 	 * Because PCLK is only run at 4.9 MHz, the fastest we
   1362 	 * can go is 51200 baud (this corresponds to TC=1).
   1363 	 * This is somewhat unfortunate as there is no real
   1364 	 * reason we should not be able to handle higher rates.
   1365 	 */
   1366 	tmp = t->c_ospeed;
   1367 	if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
   1368 		return (EINVAL);
   1369 	if (tmp == 0) {
   1370 		/* stty 0 => drop DTR and RTS */
   1371 		zs_modem(cs, 0);
   1372 		return (0);
   1373 	}
   1374 	tmp = BPS_TO_TCONST(PCLK / 16, tmp);
   1375 	if (tmp < 2)
   1376 		return (EINVAL);
   1377 
   1378 	cflag = t->c_cflag;
   1379 	tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
   1380 	tp->t_cflag = cflag;
   1381 
   1382 	/*
   1383 	 * Block interrupts so that state will not
   1384 	 * be altered until we are done setting it up.
   1385 	 */
   1386 	s = splzs();
   1387 	cs->cs_preg[12] = tmp;
   1388 	cs->cs_preg[13] = tmp >> 8;
   1389 	cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
   1390 	switch (cflag & CSIZE) {
   1391 	case CS5:
   1392 		tmp = ZSWR3_RX_5;
   1393 		tmp5 = ZSWR5_TX_5;
   1394 		break;
   1395 	case CS6:
   1396 		tmp = ZSWR3_RX_6;
   1397 		tmp5 = ZSWR5_TX_6;
   1398 		break;
   1399 	case CS7:
   1400 		tmp = ZSWR3_RX_7;
   1401 		tmp5 = ZSWR5_TX_7;
   1402 		break;
   1403 	case CS8:
   1404 	default:
   1405 		tmp = ZSWR3_RX_8;
   1406 		tmp5 = ZSWR5_TX_8;
   1407 		break;
   1408 	}
   1409 
   1410 	/*
   1411 	 * Output hardware flow control on the chip is horrendous: if
   1412 	 * carrier detect drops, the receiver is disabled.  Hence we
   1413 	 * can only do this when the carrier is on.
   1414 	 */
   1415 	tmp |= ZSWR3_RX_ENABLE;
   1416 	if (cflag & CCTS_OFLOW) {
   1417 		if (cs->cs_zc->zc_csr & ZSRR0_DCD)
   1418 			tmp |= ZSWR3_HFC;
   1419 		ZS_DELAY();
   1420 	}
   1421 	cs->cs_preg[3] = tmp;
   1422 	cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
   1423 
   1424 	tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
   1425 	if ((cflag & PARODD) == 0)
   1426 		tmp |= ZSWR4_EVENP;
   1427 	if (cflag & PARENB)
   1428 		tmp |= ZSWR4_PARENB;
   1429 	cs->cs_preg[4] = tmp;
   1430 	cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR;
   1431 	cs->cs_preg[10] = ZSWR10_NRZ;
   1432 	cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
   1433 	cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
   1434 	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
   1435 
   1436 	/*
   1437 	 * If nothing is being transmitted, set up new current values,
   1438 	 * else mark them as pending.
   1439 	 */
   1440 	if (cs->cs_heldchange == 0) {
   1441 		if (cs->cs_ttyp->t_state & TS_BUSY) {
   1442 			cs->cs_heldtbc = cs->cs_tbc;
   1443 			cs->cs_tbc = 0;
   1444 			cs->cs_heldchange = 1;
   1445 		} else {
   1446 			bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
   1447 			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
   1448 		}
   1449 	}
   1450 	splx(s);
   1451 	return (0);
   1452 }
   1453 
   1454 /*
   1455  * Raise or lower modem control (DTR/RTS) signals.  If a character is
   1456  * in transmission, the change is deferred.
   1457  */
   1458 static void
   1459 zs_modem(cs, onoff)
   1460 	struct zs_chanstate *cs;
   1461 	int onoff;
   1462 {
   1463 	int s, bis, and;
   1464 
   1465 	if (onoff) {
   1466 		bis = ZSWR5_DTR | ZSWR5_RTS;
   1467 		and = ~0;
   1468 	} else {
   1469 		bis = 0;
   1470 		and = ~(ZSWR5_DTR | ZSWR5_RTS);
   1471 	}
   1472 	s = splzs();
   1473 	cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
   1474 	if (cs->cs_heldchange == 0) {
   1475 		if (cs->cs_ttyp->t_state & TS_BUSY) {
   1476 			cs->cs_heldtbc = cs->cs_tbc;
   1477 			cs->cs_tbc = 0;
   1478 			cs->cs_heldchange = 1;
   1479 		} else {
   1480 			cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
   1481 			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
   1482 		}
   1483 	}
   1484 	splx(s);
   1485 }
   1486 
   1487 /*
   1488  * Write the given register set to the given zs channel in the proper order.
   1489  * The channel must not be transmitting at the time.  The receiver will
   1490  * be disabled for the time it takes to write all the registers.
   1491  */
   1492 static void
   1493 zs_loadchannelregs(zc, reg)
   1494 	volatile struct zschan *zc;
   1495 	u_char *reg;
   1496 {
   1497 	int i;
   1498 
   1499 	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
   1500 	ZS_DELAY();
   1501 	i = zc->zc_data;		/* drain fifo */
   1502 	ZS_DELAY();
   1503 	i = zc->zc_data;
   1504 	ZS_DELAY();
   1505 	i = zc->zc_data;
   1506 	ZS_DELAY();
   1507 	ZS_WRITE(zc, 4, reg[4]);
   1508 	ZS_WRITE(zc, 10, reg[10]);
   1509 	ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
   1510 	ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
   1511 	ZS_WRITE(zc, 1, reg[1]);
   1512 	ZS_WRITE(zc, 9, reg[9]);
   1513 	ZS_WRITE(zc, 11, reg[11]);
   1514 	ZS_WRITE(zc, 12, reg[12]);
   1515 	ZS_WRITE(zc, 13, reg[13]);
   1516 	ZS_WRITE(zc, 14, reg[14]);
   1517 	ZS_WRITE(zc, 15, reg[15]);
   1518 	ZS_WRITE(zc, 3, reg[3]);
   1519 	ZS_WRITE(zc, 5, reg[5]);
   1520 }
   1521 
   1522 #ifdef KGDB
   1523 /*
   1524  * Get a character from the given kgdb channel.  Called at splhigh().
   1525  */
   1526 static int
   1527 zs_kgdb_getc(arg)
   1528 	void *arg;
   1529 {
   1530 	register volatile struct zschan *zc = (volatile struct zschan *)arg;
   1531 
   1532 	while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
   1533 		ZS_DELAY();
   1534 	return (zc->zc_data);
   1535 }
   1536 
   1537 /*
   1538  * Put a character to the given kgdb channel.  Called at splhigh().
   1539  */
   1540 static void
   1541 zs_kgdb_putc(arg, c)
   1542 	void *arg;
   1543 	int c;
   1544 {
   1545 	register volatile struct zschan *zc = (volatile struct zschan *)arg;
   1546 
   1547 	while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
   1548 		ZS_DELAY();
   1549 	zc->zc_data = c;
   1550 	ZS_DELAY();
   1551 }
   1552 
   1553 /*
   1554  * Set up for kgdb; called at boot time before configuration.
   1555  * KGDB interrupts will be enabled later when zs0 is configured.
   1556  */
   1557 void
   1558 zs_kgdb_init()
   1559 {
   1560 	volatile struct zsdevice *addr;
   1561 	volatile struct zschan *zc;
   1562 	int unit, zs;
   1563 
   1564 	if (major(kgdb_dev) != ZSMAJOR)
   1565 		return;
   1566 	unit = minor(kgdb_dev);
   1567 	/*
   1568 	 * Unit must be 0 or 1 (zs0).
   1569 	 */
   1570 	if ((unsigned)unit >= ZS_KBD) {
   1571 		printf("zs_kgdb_init: bad minor dev %d\n", unit);
   1572 		return;
   1573 	}
   1574 	zs = unit >> 1;
   1575 	if ((addr = zsaddr[zs]) == NULL)
   1576 		addr = zsaddr[zs] = findzs(zs);
   1577 	unit &= 1;
   1578 	zc = unit == 0 ? &addr->zs_chan[ZS_CHAN_A] : &addr->zs_chan[ZS_CHAN_B];
   1579 	zs_kgdb_savedspeed = zs_getspeed(zc);
   1580 	printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
   1581 	    zs, unit + 'a', kgdb_rate);
   1582 	zs_reset(zc, 1, kgdb_rate);
   1583 	kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
   1584 }
   1585 #endif /* KGDB */
   1586