zs.c revision 1.38 1 /* $NetBSD: zs.c,v 1.38 1996/05/28 14:06:28 mrg Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 *
44 * @(#)zs.c 8.1 (Berkeley) 7/19/93
45 */
46
47 /*
48 * Zilog Z8530 (ZSCC) driver.
49 *
50 * Runs two tty ports (ttya and ttyb) on zs0,
51 * and runs a keyboard and mouse on zs1, and
52 * possibly two more tty ports (ttyc and ttyd) on zs2.
53 *
54 * This driver knows far too much about chip to usage mappings.
55 */
56 #include "zs.h"
57
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/proc.h>
61 #include <sys/device.h>
62 #include <sys/file.h>
63 #include <sys/ioctl.h>
64 #include <sys/malloc.h>
65 #include <sys/tty.h>
66 #include <sys/time.h>
67 #include <sys/kernel.h>
68 #include <sys/syslog.h>
69 #include <sys/conf.h>
70
71 #include <machine/autoconf.h>
72 #include <machine/conf.h>
73 #include <machine/cpu.h>
74 #include <machine/kbd.h>
75
76 #include <sparc/sparc/vaddrs.h>
77 #include <sparc/sparc/auxreg.h>
78 #include <sparc/dev/zsreg.h>
79 #include <dev/ic/z8530reg.h>
80 #include <sparc/dev/zsvar.h>
81
82 #ifdef KGDB
83 #include <machine/remote-sl.h>
84 #endif
85
86 #define ZSMAJOR 12 /* XXX */
87
88 #define ZS_KBD 2 /* XXX */
89 #define ZS_MOUSE 3 /* XXX */
90
91 /* the magic number below was stolen from the Sprite source. */
92 #define PCLK (19660800/4) /* PCLK pin input clock rate */
93
94 /*
95 * Select software interrupt bit based on TTY ipl.
96 */
97 #if PIL_TTY == 1
98 # define IE_ZSSOFT IE_L1
99 #elif PIL_TTY == 4
100 # define IE_ZSSOFT IE_L4
101 #elif PIL_TTY == 6
102 # define IE_ZSSOFT IE_L6
103 #else
104 # error "no suitable software interrupt bit"
105 #endif
106
107 /*
108 * Software state per found chip.
109 */
110 struct zs_softc {
111 struct device sc_dev; /* base device */
112 volatile struct zsdevice *sc_zs; /* chip registers */
113 struct evcnt sc_intrcnt;
114 struct zs_chanstate sc_cs[2]; /* chan A/B software state */
115 };
116
117 /* Definition of the driver for autoconfig. */
118 static int zsmatch __P((struct device *, void *, void *));
119 static void zsattach __P((struct device *, struct device *, void *));
120
121 struct cfattach zs_ca = {
122 sizeof(struct zs_softc), zsmatch, zsattach
123 };
124
125 struct cfdriver zs_cd = {
126 NULL, "zs", DV_TTY
127 };
128
129 /* Interrupt handlers. */
130 static int zshard __P((void *));
131 static struct intrhand levelhard = { zshard };
132 static int zssoft __P((void *));
133 static struct intrhand levelsoft = { zssoft };
134
135 struct zs_chanstate *zslist;
136
137 /* Routines called from other code. */
138 static void zsiopen __P((struct tty *));
139 static void zsiclose __P((struct tty *));
140 static void zsstart __P((struct tty *));
141 static int zsparam __P((struct tty *, struct termios *));
142
143 /* Routines purely local to this driver. */
144 static int zs_getspeed __P((volatile struct zschan *));
145 #ifdef KGDB
146 static void zs_reset __P((volatile struct zschan *, int, int));
147 #endif
148 static void zs_modem __P((struct zs_chanstate *, int));
149 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
150
151 /* Console stuff. */
152 static struct tty *zs_ctty; /* console `struct tty *' */
153 static int zs_consin = -1, zs_consout = -1;
154 static void zscnputc __P((int)); /* console putc function */
155 static volatile struct zschan *zs_conschan;
156 static struct tty *zs_checkcons __P((struct zs_softc *, int,
157 struct zs_chanstate *));
158
159 #ifdef KGDB
160 /* KGDB stuff. Must reboot to change zs_kgdbunit. */
161 extern int kgdb_dev, kgdb_rate;
162 static int zs_kgdb_savedspeed;
163 static void zs_checkkgdb __P((int, struct zs_chanstate *, struct tty *));
164 void zskgdb __P((int));
165 static int zs_kgdb_getc __P((void *));
166 static void zs_kgdb_putc __P((void *, int));
167 #endif
168
169 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
170 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
171 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
172
173 void zsabort __P((void));
174 static void zsoverrun __P((int, long *, char *));
175
176 static volatile struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */
177
178 /*
179 * Console keyboard L1-A processing is done in the hardware interrupt code,
180 * so we need to duplicate some of the console keyboard decode state. (We
181 * must not use the regular state as the hardware code keeps ahead of the
182 * software state: the software state tracks the most recent ring input but
183 * the hardware state tracks the most recent ZSCC input.) See also kbd.h.
184 */
185 static struct conk_state { /* console keyboard state */
186 char conk_id; /* true => ID coming up (console only) */
187 char conk_l1; /* true => L1 pressed (console only) */
188 } zsconk_state;
189
190 int zshardscope;
191 int zsshortcuts; /* number of "shortcut" software interrupts */
192
193 #ifdef SUN4
194 static u_int zs_read __P((volatile struct zschan *, u_int reg));
195 static u_int zs_write __P((volatile struct zschan *, u_int, u_int));
196
197 static u_int
198 zs_read(zc, reg)
199 volatile struct zschan *zc;
200 u_int reg;
201 {
202 u_char val;
203
204 zc->zc_csr = reg;
205 ZS_DELAY();
206 val = zc->zc_csr;
207 ZS_DELAY();
208 return val;
209 }
210
211 static u_int
212 zs_write(zc, reg, val)
213 volatile struct zschan *zc;
214 u_int reg, val;
215 {
216 zc->zc_csr = reg;
217 ZS_DELAY();
218 zc->zc_csr = val;
219 ZS_DELAY();
220 return val;
221 }
222 #endif /* SUN4 */
223
224 /*
225 * Match slave number to zs unit number, so that misconfiguration will
226 * not set up the keyboard as ttya, etc.
227 */
228 static int
229 zsmatch(parent, vcf, aux)
230 struct device *parent;
231 void *vcf, *aux;
232 {
233 struct cfdata *cf = vcf;
234 struct confargs *ca = aux;
235 struct romaux *ra = &ca->ca_ra;
236
237 if (strcmp(cf->cf_driver->cd_name, ra->ra_name))
238 return (0);
239 if ((ca->ca_bustype == BUS_MAIN && !CPU_ISSUN4) ||
240 (ca->ca_bustype == BUS_OBIO && CPU_ISSUN4M))
241 return (getpropint(ra->ra_node, "slave", -2) == cf->cf_unit);
242 ra->ra_len = NBPG;
243 return (probeget(ra->ra_vaddr, 1) != -1);
244 }
245
246 /*
247 * Attach a found zs.
248 *
249 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
250 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
251 */
252 static void
253 zsattach(parent, dev, aux)
254 struct device *parent;
255 struct device *dev;
256 void *aux;
257 {
258 register int zs = dev->dv_unit, unit;
259 register struct zs_softc *sc;
260 register struct zs_chanstate *cs;
261 register volatile struct zsdevice *addr;
262 register struct tty *tp, *ctp;
263 register struct confargs *ca = aux;
264 register struct romaux *ra = &ca->ca_ra;
265 int pri;
266 static int didintr, prevpri;
267 int ringsize;
268
269 if ((addr = zsaddr[zs]) == NULL)
270 addr = zsaddr[zs] = (volatile struct zsdevice *)findzs(zs);
271 if (ca->ca_bustype==BUS_MAIN)
272 if ((void *)addr != ra->ra_vaddr)
273 panic("zsattach");
274 if (ra->ra_nintr != 1) {
275 printf(": expected 1 interrupt, got %d\n", ra->ra_nintr);
276 return;
277 }
278 pri = ra->ra_intr[0].int_pri;
279 printf(" pri %d, softpri %d\n", pri, PIL_TTY);
280 if (!didintr) {
281 didintr = 1;
282 prevpri = pri;
283 intr_establish(pri, &levelhard);
284 intr_establish(PIL_TTY, &levelsoft);
285 } else if (pri != prevpri)
286 panic("broken zs interrupt scheme");
287 sc = (struct zs_softc *)dev;
288 evcnt_attach(&sc->sc_dev, "intr", &sc->sc_intrcnt);
289 sc->sc_zs = addr;
290 unit = zs * 2;
291 cs = sc->sc_cs;
292 cs->cs_ttyp = tp = ttymalloc();
293
294 /* link into interrupt list with order (A,B) (B=A+1) */
295 cs[0].cs_next = &cs[1];
296 cs[0].cs_sc = sc;
297 cs[1].cs_next = zslist;
298 cs[1].cs_sc = sc;
299 zslist = cs;
300
301 cs->cs_unit = unit;
302 cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_A]);
303 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
304 tp->t_dev = makedev(ZSMAJOR, unit);
305 if ((ctp = zs_checkcons(cs, unit, cs)) != NULL)
306 cs->cs_ttyp = tp = ctp;
307 else {
308 tp = ttymalloc();
309 tp->t_dev = makedev(ZSMAJOR, unit);
310 tp->t_oproc = zsstart;
311 tp->t_param = zsparam;
312 }
313 cs->cs_ttyp = tp;
314 #ifdef KGDB
315 if (ctp == NULL)
316 zs_checkkgdb(unit, cs, tp);
317 #endif
318 if (unit == ZS_KBD) {
319 /*
320 * Keyboard: tell /dev/kbd driver how to talk to us.
321 */
322 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
323 tp->t_cflag = CS8;
324 kbd_serial(tp, zsiopen, zsiclose);
325 cs->cs_conk = 1; /* do L1-A processing */
326 ringsize = 128;
327 } else {
328 if (tp != ctp)
329 tty_attach(tp);
330 ringsize = 4096;
331 }
332
333 unit++;
334 cs++;
335 cs->cs_ttyp = tp = ttymalloc();
336 cs->cs_unit = unit;
337 cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_B]);
338 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
339 if ((ctp = zs_checkcons(sc, unit, cs)) != NULL)
340 tp = ctp;
341 else {
342 tp = ttymalloc();
343 tp->t_dev = makedev(ZSMAJOR, unit);
344 tp->t_oproc = zsstart;
345 tp->t_param = zsparam;
346 }
347 cs->cs_ttyp = tp;
348 #ifdef KGDB
349 if (ctp == NULL)
350 zs_checkkgdb(unit, cs, tp);
351 #endif
352 if (unit == ZS_MOUSE) {
353 /*
354 * Mouse: tell /dev/mouse driver how to talk to us.
355 */
356 tp->t_ispeed = tp->t_ospeed = B1200;
357 tp->t_cflag = CS8;
358 ms_serial(tp, zsiopen, zsiclose);
359 ringsize = 128;
360 } else {
361 if (tp != ctp)
362 tty_attach(tp);
363 ringsize = 4096;
364 }
365 cs->cs_ringmask = ringsize - 1;
366 cs->cs_rbuf = malloc((u_long)ringsize * sizeof(*cs->cs_rbuf),
367 M_DEVBUF, M_NOWAIT);
368 }
369
370 #ifdef KGDB
371 /*
372 * Put a channel in a known state. Interrupts may be left disabled
373 * or enabled, as desired.
374 */
375 static void
376 zs_reset(zc, inten, speed)
377 volatile struct zschan *zc;
378 int inten, speed;
379 {
380 int tconst;
381 static u_char reg[16] = {
382 0,
383 0,
384 0,
385 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
386 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
387 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
388 0,
389 0,
390 0,
391 0,
392 ZSWR10_NRZ,
393 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
394 0,
395 0,
396 ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
397 ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
398 };
399
400 reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
401 tconst = BPS_TO_TCONST(PCLK / 16, speed);
402 reg[12] = tconst;
403 reg[13] = tconst >> 8;
404 zs_loadchannelregs(zc, reg);
405 }
406 #endif
407
408 /*
409 * Declare the given tty (which is in fact &cons) as a console input
410 * or output. This happens before the zs chip is attached; the hookup
411 * is finished later, in zs_setcons() below.
412 *
413 * This is used only for ports a and b. The console keyboard is decoded
414 * independently (we always send unit-2 input to /dev/kbd, which will
415 * direct it to /dev/console if appropriate).
416 */
417 void
418 zsconsole(tp, unit, out, fnstop)
419 register struct tty *tp;
420 register int unit;
421 int out;
422 int (**fnstop) __P((struct tty *, int));
423 {
424 int zs;
425 volatile struct zsdevice *addr;
426
427 if (unit >= ZS_KBD)
428 panic("zsconsole");
429 if (out) {
430 zs_consout = unit;
431 zs = unit >> 1;
432 if ((addr = zsaddr[zs]) == NULL)
433 addr = zsaddr[zs] = (volatile struct zsdevice *)findzs(zs);
434 zs_conschan = (unit & 1) == 0 ? &addr->zs_chan[ZS_CHAN_A] :
435 &addr->zs_chan[ZS_CHAN_B];
436 v_putc = zscnputc;
437 } else
438 zs_consin = unit;
439 if(fnstop)
440 *fnstop = &zsstop;
441 zs_ctty = tp;
442 }
443
444 /*
445 * Polled console output putchar.
446 */
447 static void
448 zscnputc(c)
449 int c;
450 {
451 register volatile struct zschan *zc = zs_conschan;
452 register int s;
453
454 if (c == '\n')
455 zscnputc('\r');
456 /*
457 * Must block output interrupts (i.e., raise to >= splzs) without
458 * lowering current ipl. Need a better way.
459 */
460 s = splhigh();
461 if (CPU_ISSUN4C && s <= (12 << 8)) /* XXX */
462 (void) splzs();
463 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
464 ZS_DELAY();
465 zc->zc_data = c;
466 ZS_DELAY();
467 splx(s);
468 }
469
470 /*
471 * Set up the given unit as console input, output, both, or neither, as
472 * needed. Return console tty if it is to receive console input.
473 */
474 static struct tty *
475 zs_checkcons(sc, unit, cs)
476 struct zs_softc *sc;
477 int unit;
478 struct zs_chanstate *cs;
479 {
480 register struct tty *tp;
481 char *i, *o;
482
483 if ((tp = zs_ctty) == NULL) /* XXX */
484 return (0);
485 i = zs_consin == unit ? "input" : NULL;
486 o = zs_consout == unit ? "output" : NULL;
487 if (i == NULL && o == NULL)
488 return (0);
489
490 /* rewire the minor device (gack) */
491 tp->t_dev = makedev(major(tp->t_dev), unit);
492
493 /*
494 * Rewire input and/or output. Note that baud rate reflects
495 * input settings, not output settings, but we can do no better
496 * if the console is split across two ports.
497 *
498 * XXX split consoles don't work anyway -- this needs to be
499 * thrown away and redone
500 */
501 if (i) {
502 tp->t_param = zsparam;
503 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
504 tp->t_cflag = CS8;
505 ttsetwater(tp);
506 }
507 if (o) {
508 tp->t_oproc = zsstart;
509 }
510 printf("%s%c: console %s\n",
511 sc->sc_dev.dv_xname, (unit & 1) + 'a', i ? (o ? "i/o" : i) : o);
512 cs->cs_consio = 1;
513 cs->cs_brkabort = 1;
514 return (tp);
515 }
516
517 #ifdef KGDB
518 /*
519 * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
520 * Pick up the current speed and character size and restore the original
521 * speed.
522 */
523 static void
524 zs_checkkgdb(unit, cs, tp)
525 int unit;
526 struct zs_chanstate *cs;
527 struct tty *tp;
528 {
529
530 if (kgdb_dev == makedev(ZSMAJOR, unit)) {
531 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
532 tp->t_cflag = CS8;
533 cs->cs_kgdb = 1;
534 cs->cs_speed = zs_kgdb_savedspeed;
535 (void) zsparam(tp, &tp->t_termios);
536 }
537 }
538 #endif
539
540 /*
541 * Compute the current baud rate given a ZSCC channel.
542 */
543 static int
544 zs_getspeed(zc)
545 register volatile struct zschan *zc;
546 {
547 register int tconst;
548
549 tconst = ZS_READ(zc, 12);
550 tconst |= ZS_READ(zc, 13) << 8;
551 return (TCONST_TO_BPS(PCLK / 16, tconst));
552 }
553
554
555 /*
556 * Do an internal open.
557 */
558 static void
559 zsiopen(tp)
560 struct tty *tp;
561 {
562
563 (void) zsparam(tp, &tp->t_termios);
564 ttsetwater(tp);
565 tp->t_state = TS_ISOPEN | TS_CARR_ON;
566 }
567
568 /*
569 * Do an internal close. Eventually we should shut off the chip when both
570 * ports on it are closed.
571 */
572 static void
573 zsiclose(tp)
574 struct tty *tp;
575 {
576
577 ttylclose(tp, 0); /* ??? */
578 ttyclose(tp); /* ??? */
579 tp->t_state = 0;
580 }
581
582
583 /*
584 * Open a zs serial port. This interface may not be used to open
585 * the keyboard and mouse ports. (XXX)
586 */
587 int
588 zsopen(dev, flags, mode, p)
589 dev_t dev;
590 int flags;
591 int mode;
592 struct proc *p;
593 {
594 register struct tty *tp;
595 register struct zs_chanstate *cs;
596 struct zs_softc *sc;
597 int unit = minor(dev), zs = unit >> 1, error, s;
598
599 if (zs >= zs_cd.cd_ndevs || (sc = zs_cd.cd_devs[zs]) == NULL ||
600 unit == ZS_KBD || unit == ZS_MOUSE)
601 return (ENXIO);
602 cs = &sc->sc_cs[unit & 1];
603 if (cs->cs_consio)
604 return (ENXIO); /* ??? */
605 tp = cs->cs_ttyp;
606 s = spltty();
607 if ((tp->t_state & TS_ISOPEN) == 0) {
608 ttychars(tp);
609 if (tp->t_ispeed == 0) {
610 tp->t_iflag = TTYDEF_IFLAG;
611 tp->t_oflag = TTYDEF_OFLAG;
612 tp->t_cflag = TTYDEF_CFLAG;
613 tp->t_lflag = TTYDEF_LFLAG;
614 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
615 }
616 (void) zsparam(tp, &tp->t_termios);
617 ttsetwater(tp);
618 } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
619 splx(s);
620 return (EBUSY);
621 }
622 error = 0;
623 for (;;) {
624 register int rr0;
625
626 /* loop, turning on the device, until carrier present */
627 zs_modem(cs, 1);
628 /* May never get status intr if carrier already on. -gwr */
629 rr0 = cs->cs_zc->zc_csr;
630 ZS_DELAY();
631 if ((rr0 & ZSRR0_DCD) || cs->cs_softcar)
632 tp->t_state |= TS_CARR_ON;
633 if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
634 tp->t_state & TS_CARR_ON)
635 break;
636 tp->t_state |= TS_WOPEN;
637 error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
638 ttopen, 0);
639 if (error) {
640 if (!(tp->t_state & TS_ISOPEN)) {
641 zs_modem(cs, 0);
642 tp->t_state &= ~TS_WOPEN;
643 ttwakeup(tp);
644 }
645 splx(s);
646 return error;
647 }
648 }
649 splx(s);
650 if (error == 0)
651 error = linesw[tp->t_line].l_open(dev, tp);
652 if (error)
653 zs_modem(cs, 0);
654 return (error);
655 }
656
657 /*
658 * Close a zs serial port.
659 */
660 int
661 zsclose(dev, flags, mode, p)
662 dev_t dev;
663 int flags;
664 int mode;
665 struct proc *p;
666 {
667 register struct zs_chanstate *cs;
668 register struct tty *tp;
669 struct zs_softc *sc;
670 int unit = minor(dev), s;
671
672 sc = zs_cd.cd_devs[unit >> 1];
673 cs = &sc->sc_cs[unit & 1];
674 tp = cs->cs_ttyp;
675 linesw[tp->t_line].l_close(tp, flags);
676 if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
677 (tp->t_state & TS_ISOPEN) == 0) {
678 zs_modem(cs, 0);
679 /* hold low for 1 second */
680 (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
681 }
682 if (cs->cs_creg[5] & ZSWR5_BREAK)
683 {
684 s = splzs();
685 cs->cs_preg[5] &= ~ZSWR5_BREAK;
686 cs->cs_creg[5] &= ~ZSWR5_BREAK;
687 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
688 splx(s);
689 }
690 ttyclose(tp);
691 #ifdef KGDB
692 /* Reset the speed if we're doing kgdb on this port */
693 if (cs->cs_kgdb) {
694 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
695 (void) zsparam(tp, &tp->t_termios);
696 }
697 #endif
698 return (0);
699 }
700
701 /*
702 * Read/write zs serial port.
703 */
704 int
705 zsread(dev, uio, flags)
706 dev_t dev;
707 struct uio *uio;
708 int flags;
709 {
710 register struct zs_chanstate *cs;
711 register struct zs_softc *sc;
712 register struct tty *tp;
713 int unit = minor(dev);
714
715 sc = zs_cd.cd_devs[unit >> 1];
716 cs = &sc->sc_cs[unit & 1];
717 tp = cs->cs_ttyp;
718
719 return (linesw[tp->t_line].l_read(tp, uio, flags));
720
721 }
722
723 int
724 zswrite(dev, uio, flags)
725 dev_t dev;
726 struct uio *uio;
727 int flags;
728 {
729 register struct zs_chanstate *cs;
730 register struct zs_softc *sc;
731 register struct tty *tp;
732 int unit = minor(dev);
733
734 sc = zs_cd.cd_devs[unit >> 1];
735 cs = &sc->sc_cs[unit & 1];
736 tp = cs->cs_ttyp;
737
738 return (linesw[tp->t_line].l_write(tp, uio, flags));
739 }
740
741 struct tty *
742 zstty(dev)
743 dev_t dev;
744 {
745 register struct zs_chanstate *cs;
746 register struct zs_softc *sc;
747 int unit = minor(dev);
748
749 sc = zs_cd.cd_devs[unit >> 1];
750 cs = &sc->sc_cs[unit & 1];
751
752 return (cs->cs_ttyp);
753 }
754
755 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
756 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
757 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
758
759 /*
760 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
761 * channels are kept in (A,B) pairs.
762 *
763 * Do just a little, then get out; set a software interrupt if more
764 * work is needed.
765 *
766 * We deliberately ignore the vectoring Zilog gives us, and match up
767 * only the number of `reset interrupt under service' operations, not
768 * the order.
769 */
770 /* ARGSUSED */
771 int
772 zshard(intrarg)
773 void *intrarg;
774 {
775 register struct zs_chanstate *a;
776 #define b (a + 1)
777 register volatile struct zschan *zc;
778 register int rr3, intflags = 0, v, i, ringmask;
779
780 #define ZSHARD_NEED_SOFTINTR 1
781 #define ZSHARD_WAS_SERVICED 2
782 #define ZSHARD_CHIP_GOTINTR 4
783
784 for (a = zslist; a != NULL; a = b->cs_next) {
785 ringmask = a->cs_ringmask;
786 rr3 = ZS_READ(a->cs_zc, 3);
787 if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
788 intflags |= (ZSHARD_CHIP_GOTINTR|ZSHARD_WAS_SERVICED);
789 zc = a->cs_zc;
790 i = a->cs_rbput;
791 if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
792 a->cs_rbuf[i++ & ringmask] = v;
793 intflags |= ZSHARD_NEED_SOFTINTR;
794 }
795 if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
796 a->cs_rbuf[i++ & ringmask] = v;
797 intflags |= ZSHARD_NEED_SOFTINTR;
798 }
799 if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
800 a->cs_rbuf[i++ & ringmask] = v;
801 intflags |= ZSHARD_NEED_SOFTINTR;
802 }
803 a->cs_rbput = i;
804 }
805 if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
806 intflags |= (ZSHARD_CHIP_GOTINTR|ZSHARD_WAS_SERVICED);
807 zc = b->cs_zc;
808 i = b->cs_rbput;
809 if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
810 b->cs_rbuf[i++ & ringmask] = v;
811 intflags |= ZSHARD_NEED_SOFTINTR;
812 }
813 if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
814 b->cs_rbuf[i++ & ringmask] = v;
815 intflags |= ZSHARD_NEED_SOFTINTR;
816 }
817 if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
818 b->cs_rbuf[i++ & ringmask] = v;
819 intflags |= ZSHARD_NEED_SOFTINTR;
820 }
821 b->cs_rbput = i;
822 }
823 if (intflags & ZSHARD_CHIP_GOTINTR) {
824 a->cs_sc->sc_intrcnt.ev_count++;
825 intflags &= ~ZSHARD_CHIP_GOTINTR;
826 }
827 }
828 #undef b
829
830 if (intflags & ZSHARD_NEED_SOFTINTR) {
831 if (CPU_ISSUN4COR4M) {
832 /* XXX -- but this will go away when zshard moves to locore.s */
833 struct clockframe *p = intrarg;
834
835 if ((p->psr & PSR_PIL) < (PIL_TTY << 8)) {
836 zsshortcuts++;
837 (void) spltty();
838 if (zshardscope) {
839 LED_ON;
840 LED_OFF;
841 }
842 return (zssoft(intrarg));
843 }
844 }
845
846 if (CPU_ISSUN4M)
847 raise(0, PIL_TTY);
848 else
849 ienab_bis(IE_ZSSOFT);
850 }
851 return (intflags & ZSHARD_WAS_SERVICED);
852 }
853
854 static int
855 zsrint(cs, zc)
856 register struct zs_chanstate *cs;
857 register volatile struct zschan *zc;
858 {
859 register u_int c = zc->zc_data;
860
861 ZS_DELAY();
862 if (cs->cs_conk) {
863 register struct conk_state *conk = &zsconk_state;
864
865 /*
866 * Check here for console abort function, so that we
867 * can abort even when interrupts are locking up the
868 * machine.
869 */
870 if (c == KBD_RESET) {
871 conk->conk_id = 1; /* ignore next byte */
872 conk->conk_l1 = 0;
873 } else if (conk->conk_id)
874 conk->conk_id = 0; /* stop ignoring bytes */
875 else if (c == KBD_L1)
876 conk->conk_l1 = 1; /* L1 went down */
877 else if (c == (KBD_L1|KBD_UP))
878 conk->conk_l1 = 0; /* L1 went up */
879 else if (c == KBD_A && conk->conk_l1) {
880 zsabort();
881 conk->conk_l1 = 0; /* we never see the up */
882 goto clearit; /* eat the A after L1-A */
883 }
884 }
885 #ifdef KGDB
886 if (c == FRAME_START && cs->cs_kgdb &&
887 (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
888 zskgdb(cs->cs_unit);
889 goto clearit;
890 }
891 #endif
892 /* compose receive character and status */
893 c <<= 8;
894 c |= ZS_READ(zc, 1);
895
896 /* clear receive error & interrupt condition */
897 zc->zc_csr = ZSWR0_RESET_ERRORS;
898 ZS_DELAY();
899 zc->zc_csr = ZSWR0_CLR_INTR;
900 ZS_DELAY();
901
902 return (ZRING_MAKE(ZRING_RINT, c));
903
904 clearit:
905 zc->zc_csr = ZSWR0_RESET_ERRORS;
906 ZS_DELAY();
907 zc->zc_csr = ZSWR0_CLR_INTR;
908 ZS_DELAY();
909 return (0);
910 }
911
912 static int
913 zsxint(cs, zc)
914 register struct zs_chanstate *cs;
915 register volatile struct zschan *zc;
916 {
917 register int i = cs->cs_tbc;
918
919 if (i == 0) {
920 zc->zc_csr = ZSWR0_RESET_TXINT;
921 ZS_DELAY();
922 zc->zc_csr = ZSWR0_CLR_INTR;
923 ZS_DELAY();
924 return (ZRING_MAKE(ZRING_XINT, 0));
925 }
926 cs->cs_tbc = i - 1;
927 zc->zc_data = *cs->cs_tba++;
928 ZS_DELAY();
929 zc->zc_csr = ZSWR0_CLR_INTR;
930 ZS_DELAY();
931 return (0);
932 }
933
934 static int
935 zssint(cs, zc)
936 register struct zs_chanstate *cs;
937 register volatile struct zschan *zc;
938 {
939 register u_int rr0;
940
941 rr0 = zc->zc_csr;
942 ZS_DELAY();
943 zc->zc_csr = ZSWR0_RESET_STATUS;
944 ZS_DELAY();
945 zc->zc_csr = ZSWR0_CLR_INTR;
946 ZS_DELAY();
947 /*
948 * The chip's hardware flow control is, as noted in zsreg.h,
949 * busted---if the DCD line goes low the chip shuts off the
950 * receiver (!). If we want hardware CTS flow control but do
951 * not have it, and carrier is now on, turn HFC on; if we have
952 * HFC now but carrier has gone low, turn it off.
953 */
954 if (rr0 & ZSRR0_DCD) {
955 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
956 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
957 cs->cs_creg[3] |= ZSWR3_HFC;
958 ZS_WRITE(zc, 3, cs->cs_creg[3]);
959 }
960 } else {
961 if (cs->cs_creg[3] & ZSWR3_HFC) {
962 cs->cs_creg[3] &= ~ZSWR3_HFC;
963 ZS_WRITE(zc, 3, cs->cs_creg[3]);
964 }
965 }
966 if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
967 /*
968 * XXX This might not be necessary. Test and
969 * delete if it isn't.
970 */
971 if (CPU_ISSUN4) {
972 while (zc->zc_csr & ZSRR0_BREAK)
973 ZS_DELAY();
974 }
975 zsabort();
976 return (0);
977 }
978 return (ZRING_MAKE(ZRING_SINT, rr0));
979 }
980
981 void
982 zsabort()
983 {
984
985 #ifdef DDB
986 Debugger();
987 #else
988 printf("stopping on keyboard abort\n");
989 callrom();
990 #endif
991 }
992
993 #ifdef KGDB
994 /*
995 * KGDB framing character received: enter kernel debugger. This probably
996 * should time out after a few seconds to avoid hanging on spurious input.
997 */
998 void
999 zskgdb(unit)
1000 int unit;
1001 {
1002
1003 printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
1004 kgdb_connect(1);
1005 }
1006 #endif
1007
1008 /*
1009 * Print out a ring or fifo overrun error message.
1010 */
1011 static void
1012 zsoverrun(unit, ptime, what)
1013 int unit;
1014 long *ptime;
1015 char *what;
1016 {
1017
1018 if (*ptime != time.tv_sec) {
1019 *ptime = time.tv_sec;
1020 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
1021 (unit & 1) + 'a', what);
1022 }
1023 }
1024
1025 /*
1026 * ZS software interrupt. Scan all channels for deferred interrupts.
1027 */
1028 int
1029 zssoft(arg)
1030 void *arg;
1031 {
1032 register struct zs_chanstate *cs;
1033 register volatile struct zschan *zc;
1034 register struct linesw *line;
1035 register struct tty *tp;
1036 register int get, n, c, cc, unit, s, ringmask, ringsize;
1037 int retval = 0;
1038
1039 for (cs = zslist; cs != NULL; cs = cs->cs_next) {
1040 ringmask = cs->cs_ringmask;
1041 get = cs->cs_rbget;
1042 again:
1043 n = cs->cs_rbput; /* atomic */
1044 if (get == n) /* nothing more on this line */
1045 continue;
1046 retval = 1;
1047 unit = cs->cs_unit; /* set up to handle interrupts */
1048 zc = cs->cs_zc;
1049 tp = cs->cs_ttyp;
1050 line = &linesw[tp->t_line];
1051 /*
1052 * Compute the number of interrupts in the receive ring.
1053 * If the count is overlarge, we lost some events, and
1054 * must advance to the first valid one. It may get
1055 * overwritten if more data are arriving, but this is
1056 * too expensive to check and gains nothing (we already
1057 * lost out; all we can do at this point is trade one
1058 * kind of loss for another).
1059 */
1060 ringsize = ringmask + 1;
1061 n -= get;
1062 if (n > ringsize) {
1063 zsoverrun(unit, &cs->cs_rotime, "ring");
1064 get += n - ringsize;
1065 n = ringsize;
1066 }
1067 while (--n >= 0) {
1068 /* race to keep ahead of incoming interrupts */
1069 c = cs->cs_rbuf[get++ & ringmask];
1070 switch (ZRING_TYPE(c)) {
1071
1072 case ZRING_RINT:
1073 c = ZRING_VALUE(c);
1074 if (c & ZSRR1_DO)
1075 zsoverrun(unit, &cs->cs_fotime, "fifo");
1076 cc = c >> 8;
1077 if (c & ZSRR1_FE)
1078 cc |= TTY_FE;
1079 if (c & ZSRR1_PE)
1080 cc |= TTY_PE;
1081 /*
1082 * this should be done through
1083 * bstreams XXX gag choke
1084 */
1085 if (unit == ZS_KBD)
1086 kbd_rint(cc);
1087 else if (unit == ZS_MOUSE)
1088 ms_rint(cc);
1089 else
1090 line->l_rint(cc, tp);
1091 break;
1092
1093 case ZRING_XINT:
1094 /*
1095 * Transmit done: change registers and resume,
1096 * or clear BUSY.
1097 */
1098 if (cs->cs_heldchange) {
1099 s = splzs();
1100 c = zc->zc_csr;
1101 ZS_DELAY();
1102 if ((c & ZSRR0_DCD) == 0)
1103 cs->cs_preg[3] &= ~ZSWR3_HFC;
1104 bcopy((caddr_t)cs->cs_preg,
1105 (caddr_t)cs->cs_creg, 16);
1106 zs_loadchannelregs(zc, cs->cs_creg);
1107 splx(s);
1108 cs->cs_heldchange = 0;
1109 if (cs->cs_heldtbc &&
1110 (tp->t_state & TS_TTSTOP) == 0) {
1111 cs->cs_tbc = cs->cs_heldtbc - 1;
1112 zc->zc_data = *cs->cs_tba++;
1113 ZS_DELAY();
1114 goto again;
1115 }
1116 }
1117 tp->t_state &= ~TS_BUSY;
1118 if (tp->t_state & TS_FLUSH)
1119 tp->t_state &= ~TS_FLUSH;
1120 else
1121 ndflush(&tp->t_outq,
1122 cs->cs_tba - (caddr_t)tp->t_outq.c_cf);
1123 line->l_start(tp);
1124 break;
1125
1126 case ZRING_SINT:
1127 /*
1128 * Status line change. HFC bit is run in
1129 * hardware interrupt, to avoid locking
1130 * at splzs here.
1131 */
1132 c = ZRING_VALUE(c);
1133 if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
1134 cc = (c & ZSRR0_DCD) != 0;
1135 if (line->l_modem(tp, cc) == 0)
1136 zs_modem(cs, cc);
1137 }
1138 cs->cs_rr0 = c;
1139 break;
1140
1141 default:
1142 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
1143 unit >> 1, (unit & 1) + 'a', c);
1144 break;
1145 }
1146 }
1147 cs->cs_rbget = get;
1148 goto again;
1149 }
1150 return (retval);
1151 }
1152
1153 int
1154 zsioctl(dev, cmd, data, flag, p)
1155 dev_t dev;
1156 u_long cmd;
1157 caddr_t data;
1158 int flag;
1159 struct proc *p;
1160 {
1161 int unit = minor(dev);
1162 struct zs_softc *sc = zs_cd.cd_devs[unit >> 1];
1163 register struct zs_chanstate *cs = &sc->sc_cs[unit & 1];
1164 register struct tty *tp = cs->cs_ttyp;
1165 register int error, s;
1166
1167 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
1168 if (error >= 0)
1169 return (error);
1170 error = ttioctl(tp, cmd, data, flag, p);
1171 if (error >= 0)
1172 return (error);
1173
1174 switch (cmd) {
1175 case TIOCSBRK:
1176 s = splzs();
1177 cs->cs_preg[5] |= ZSWR5_BREAK;
1178 cs->cs_creg[5] |= ZSWR5_BREAK;
1179 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1180 splx(s);
1181 break;
1182 case TIOCCBRK:
1183 s = splzs();
1184 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1185 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1186 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1187 splx(s);
1188 break;
1189 case TIOCGFLAGS: {
1190 int bits = 0;
1191
1192 if (cs->cs_softcar)
1193 bits |= TIOCFLAG_SOFTCAR;
1194 if (cs->cs_creg[15] & ZSWR15_DCD_IE)
1195 bits |= TIOCFLAG_CLOCAL;
1196 if (cs->cs_creg[3] & ZSWR3_HFC)
1197 bits |= TIOCFLAG_CRTSCTS;
1198 *(int *)data = bits;
1199 break;
1200 }
1201 case TIOCSFLAGS: {
1202 int userbits;
1203
1204 error = suser(p->p_ucred, &p->p_acflag);
1205 if (error != 0)
1206 return (EPERM);
1207
1208 userbits = *(int *)data;
1209
1210 /*
1211 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
1212 # defaulting to software flow control.
1213 */
1214 if (userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
1215 return(EINVAL);
1216 if (userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
1217 return(ENXIO);
1218
1219 s = splzs();
1220 if ((userbits & TIOCFLAG_SOFTCAR) || cs->cs_consio) {
1221 cs->cs_softcar = 1; /* turn on softcar */
1222 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
1223 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
1224 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1225 } else if (userbits & TIOCFLAG_CLOCAL) {
1226 cs->cs_softcar = 0; /* turn off softcar */
1227 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
1228 cs->cs_creg[15] |= ZSWR15_DCD_IE;
1229 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1230 tp->t_termios.c_cflag |= CLOCAL;
1231 }
1232 if (userbits & TIOCFLAG_CRTSCTS) {
1233 cs->cs_preg[15] |= ZSWR15_CTS_IE;
1234 cs->cs_creg[15] |= ZSWR15_CTS_IE;
1235 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1236 cs->cs_preg[3] |= ZSWR3_HFC;
1237 cs->cs_creg[3] |= ZSWR3_HFC;
1238 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
1239 tp->t_termios.c_cflag |= CRTSCTS;
1240 } else {
1241 /* no mdmbuf, so we must want software flow control */
1242 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
1243 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
1244 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1245 cs->cs_preg[3] &= ~ZSWR3_HFC;
1246 cs->cs_creg[3] &= ~ZSWR3_HFC;
1247 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
1248 tp->t_termios.c_cflag &= ~CRTSCTS;
1249 }
1250 splx(s);
1251 break;
1252 }
1253 case TIOCSDTR:
1254 zs_modem(cs, 1);
1255 break;
1256 case TIOCCDTR:
1257 zs_modem(cs, 0);
1258 break;
1259 case TIOCMSET:
1260 case TIOCMGET:
1261 case TIOCMBIS:
1262 case TIOCMBIC:
1263 default:
1264 return (ENOTTY);
1265 }
1266 return (0);
1267 }
1268
1269 /*
1270 * Start or restart transmission.
1271 */
1272 static void
1273 zsstart(tp)
1274 register struct tty *tp;
1275 {
1276 register struct zs_chanstate *cs;
1277 register int s, nch;
1278 int unit = minor(tp->t_dev);
1279 struct zs_softc *sc = zs_cd.cd_devs[unit >> 1];
1280
1281 cs = &sc->sc_cs[unit & 1];
1282 s = spltty();
1283
1284 /*
1285 * If currently active or delaying, no need to do anything.
1286 */
1287 if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1288 goto out;
1289
1290 /*
1291 * If there are sleepers, and output has drained below low
1292 * water mark, awaken.
1293 */
1294 if (tp->t_outq.c_cc <= tp->t_lowat) {
1295 if (tp->t_state & TS_ASLEEP) {
1296 tp->t_state &= ~TS_ASLEEP;
1297 wakeup((caddr_t)&tp->t_outq);
1298 }
1299 selwakeup(&tp->t_wsel);
1300 }
1301
1302 nch = ndqb(&tp->t_outq, 0); /* XXX */
1303 if (nch) {
1304 register char *p = tp->t_outq.c_cf;
1305
1306 /* mark busy, enable tx done interrupts, & send first byte */
1307 tp->t_state |= TS_BUSY;
1308 (void) splzs();
1309 cs->cs_preg[1] |= ZSWR1_TIE;
1310 cs->cs_creg[1] |= ZSWR1_TIE;
1311 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1312 cs->cs_zc->zc_data = *p;
1313 ZS_DELAY();
1314 cs->cs_tba = p + 1;
1315 cs->cs_tbc = nch - 1;
1316 } else {
1317 /*
1318 * Nothing to send, turn off transmit done interrupts.
1319 * This is useful if something is doing polled output.
1320 */
1321 (void) splzs();
1322 cs->cs_preg[1] &= ~ZSWR1_TIE;
1323 cs->cs_creg[1] &= ~ZSWR1_TIE;
1324 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1325 }
1326 out:
1327 splx(s);
1328 }
1329
1330 /*
1331 * Stop output, e.g., for ^S or output flush.
1332 */
1333 int
1334 zsstop(tp, flag)
1335 register struct tty *tp;
1336 int flag;
1337 {
1338 register struct zs_chanstate *cs;
1339 register int s, unit = minor(tp->t_dev);
1340 struct zs_softc *sc = zs_cd.cd_devs[unit >> 1];
1341
1342 cs = &sc->sc_cs[unit & 1];
1343 s = splzs();
1344 if (tp->t_state & TS_BUSY) {
1345 /*
1346 * Device is transmitting; must stop it.
1347 */
1348 cs->cs_tbc = 0;
1349 if ((tp->t_state & TS_TTSTOP) == 0)
1350 tp->t_state |= TS_FLUSH;
1351 }
1352 splx(s);
1353 }
1354
1355 /*
1356 * Set ZS tty parameters from termios.
1357 *
1358 * This routine makes use of the fact that only registers
1359 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1360 */
1361 static int
1362 zsparam(tp, t)
1363 register struct tty *tp;
1364 register struct termios *t;
1365 {
1366 int unit = minor(tp->t_dev);
1367 struct zs_softc *sc = zs_cd.cd_devs[unit >> 1];
1368 register struct zs_chanstate *cs = &sc->sc_cs[unit & 1];
1369 register int tmp, tmp5, cflag, s;
1370
1371 /*
1372 * Because PCLK is only run at 4.9 MHz, the fastest we
1373 * can go is 51200 baud (this corresponds to TC=1).
1374 * This is somewhat unfortunate as there is no real
1375 * reason we should not be able to handle higher rates.
1376 */
1377 tmp = t->c_ospeed;
1378 if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
1379 return (EINVAL);
1380 if (tmp == 0) {
1381 /* stty 0 => drop DTR and RTS */
1382 zs_modem(cs, 0);
1383 return (0);
1384 }
1385 tmp = BPS_TO_TCONST(PCLK / 16, tmp);
1386 if (tmp < 2)
1387 return (EINVAL);
1388
1389 cflag = t->c_cflag;
1390 tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
1391 tp->t_cflag = cflag;
1392
1393 /*
1394 * Block interrupts so that state will not
1395 * be altered until we are done setting it up.
1396 */
1397 s = splzs();
1398 cs->cs_preg[12] = tmp;
1399 cs->cs_preg[13] = tmp >> 8;
1400 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1401 switch (cflag & CSIZE) {
1402 case CS5:
1403 tmp = ZSWR3_RX_5;
1404 tmp5 = ZSWR5_TX_5;
1405 break;
1406 case CS6:
1407 tmp = ZSWR3_RX_6;
1408 tmp5 = ZSWR5_TX_6;
1409 break;
1410 case CS7:
1411 tmp = ZSWR3_RX_7;
1412 tmp5 = ZSWR5_TX_7;
1413 break;
1414 case CS8:
1415 default:
1416 tmp = ZSWR3_RX_8;
1417 tmp5 = ZSWR5_TX_8;
1418 break;
1419 }
1420
1421 /*
1422 * Output hardware flow control on the chip is horrendous: if
1423 * carrier detect drops, the receiver is disabled. Hence we
1424 * can only do this when the carrier is on.
1425 */
1426 tmp |= ZSWR3_RX_ENABLE;
1427 if (cflag & CCTS_OFLOW) {
1428 if (cs->cs_zc->zc_csr & ZSRR0_DCD)
1429 tmp |= ZSWR3_HFC;
1430 ZS_DELAY();
1431 }
1432 cs->cs_preg[3] = tmp;
1433 cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1434
1435 tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
1436 if ((cflag & PARODD) == 0)
1437 tmp |= ZSWR4_EVENP;
1438 if (cflag & PARENB)
1439 tmp |= ZSWR4_PARENB;
1440 cs->cs_preg[4] = tmp;
1441 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR;
1442 cs->cs_preg[10] = ZSWR10_NRZ;
1443 cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
1444 cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
1445 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1446
1447 /*
1448 * If nothing is being transmitted, set up new current values,
1449 * else mark them as pending.
1450 */
1451 if (cs->cs_heldchange == 0) {
1452 if (cs->cs_ttyp->t_state & TS_BUSY) {
1453 cs->cs_heldtbc = cs->cs_tbc;
1454 cs->cs_tbc = 0;
1455 cs->cs_heldchange = 1;
1456 } else {
1457 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1458 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1459 }
1460 }
1461 splx(s);
1462 return (0);
1463 }
1464
1465 /*
1466 * Raise or lower modem control (DTR/RTS) signals. If a character is
1467 * in transmission, the change is deferred.
1468 */
1469 static void
1470 zs_modem(cs, onoff)
1471 struct zs_chanstate *cs;
1472 int onoff;
1473 {
1474 int s, bis, and;
1475
1476 if (onoff) {
1477 bis = ZSWR5_DTR | ZSWR5_RTS;
1478 and = ~0;
1479 } else {
1480 bis = 0;
1481 and = ~(ZSWR5_DTR | ZSWR5_RTS);
1482 }
1483 s = splzs();
1484 cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
1485 if (cs->cs_heldchange == 0) {
1486 if (cs->cs_ttyp->t_state & TS_BUSY) {
1487 cs->cs_heldtbc = cs->cs_tbc;
1488 cs->cs_tbc = 0;
1489 cs->cs_heldchange = 1;
1490 } else {
1491 cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
1492 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1493 }
1494 }
1495 splx(s);
1496 }
1497
1498 /*
1499 * Write the given register set to the given zs channel in the proper order.
1500 * The channel must not be transmitting at the time. The receiver will
1501 * be disabled for the time it takes to write all the registers.
1502 */
1503 static void
1504 zs_loadchannelregs(zc, reg)
1505 volatile struct zschan *zc;
1506 u_char *reg;
1507 {
1508 int i;
1509
1510 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1511 ZS_DELAY();
1512 i = zc->zc_data; /* drain fifo */
1513 ZS_DELAY();
1514 i = zc->zc_data;
1515 ZS_DELAY();
1516 i = zc->zc_data;
1517 ZS_DELAY();
1518 ZS_WRITE(zc, 4, reg[4]);
1519 ZS_WRITE(zc, 10, reg[10]);
1520 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1521 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1522 ZS_WRITE(zc, 1, reg[1]);
1523 ZS_WRITE(zc, 9, reg[9]);
1524 ZS_WRITE(zc, 11, reg[11]);
1525 ZS_WRITE(zc, 12, reg[12]);
1526 ZS_WRITE(zc, 13, reg[13]);
1527 ZS_WRITE(zc, 14, reg[14]);
1528 ZS_WRITE(zc, 15, reg[15]);
1529 ZS_WRITE(zc, 3, reg[3]);
1530 ZS_WRITE(zc, 5, reg[5]);
1531 }
1532
1533 #ifdef KGDB
1534 /*
1535 * Get a character from the given kgdb channel. Called at splhigh().
1536 */
1537 static int
1538 zs_kgdb_getc(arg)
1539 void *arg;
1540 {
1541 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1542 u_char c;
1543
1544 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
1545 ZS_DELAY();
1546 c = zc->zc_data;
1547 ZS_DELAY();
1548 return c;
1549 }
1550
1551 /*
1552 * Put a character to the given kgdb channel. Called at splhigh().
1553 */
1554 static void
1555 zs_kgdb_putc(arg, c)
1556 void *arg;
1557 int c;
1558 {
1559 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1560
1561 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
1562 ZS_DELAY();
1563 zc->zc_data = c;
1564 ZS_DELAY();
1565 }
1566
1567 /*
1568 * Set up for kgdb; called at boot time before configuration.
1569 * KGDB interrupts will be enabled later when zs0 is configured.
1570 */
1571 void
1572 zs_kgdb_init()
1573 {
1574 volatile struct zsdevice *addr;
1575 volatile struct zschan *zc;
1576 int unit, zs;
1577
1578 if (major(kgdb_dev) != ZSMAJOR)
1579 return;
1580 unit = minor(kgdb_dev);
1581 /*
1582 * Unit must be 0 or 1 (zs0).
1583 */
1584 if ((unsigned)unit >= ZS_KBD) {
1585 printf("zs_kgdb_init: bad minor dev %d\n", unit);
1586 return;
1587 }
1588 zs = unit >> 1;
1589 if ((addr = zsaddr[zs]) == NULL)
1590 addr = zsaddr[zs] = (volatile struct zsdevice *)findzs(zs);
1591 unit &= 1;
1592 zc = unit == 0 ? &addr->zs_chan[ZS_CHAN_A] : &addr->zs_chan[ZS_CHAN_B];
1593 zs_kgdb_savedspeed = zs_getspeed(zc);
1594 printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
1595 zs, unit + 'a', kgdb_rate);
1596 zs_reset(zc, 1, kgdb_rate);
1597 kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
1598 }
1599 #endif /* KGDB */
1600