Home | History | Annotate | Line # | Download | only in dev
zs.c revision 1.48
      1 /*	$NetBSD: zs.c,v 1.48 1997/07/29 09:58:18 fair Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This software was developed by the Computer Systems Engineering group
      8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  * contributed to Berkeley.
     10  *
     11  * All advertising materials mentioning features or use of this software
     12  * must display the following acknowledgement:
     13  *	This product includes software developed by the University of
     14  *	California, Lawrence Berkeley Laboratory.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  * 1. Redistributions of source code must retain the above copyright
     20  *    notice, this list of conditions and the following disclaimer.
     21  * 2. Redistributions in binary form must reproduce the above copyright
     22  *    notice, this list of conditions and the following disclaimer in the
     23  *    documentation and/or other materials provided with the distribution.
     24  * 3. All advertising materials mentioning features or use of this software
     25  *    must display the following acknowledgement:
     26  *	This product includes software developed by the University of
     27  *	California, Berkeley and its contributors.
     28  * 4. Neither the name of the University nor the names of its contributors
     29  *    may be used to endorse or promote products derived from this software
     30  *    without specific prior written permission.
     31  *
     32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     42  * SUCH DAMAGE.
     43  *
     44  *	@(#)zs.c	8.1 (Berkeley) 7/19/93
     45  */
     46 
     47 /*
     48  * Zilog Z8530 (ZSCC) driver.
     49  *
     50  * Runs two tty ports (ttya and ttyb) on zs0,
     51  * and runs a keyboard and mouse on zs1, and
     52  * possibly two more tty ports (ttyc and ttyd) on zs2.
     53  *
     54  * This driver knows far too much about chip to usage mappings.
     55  */
     56 #include "zs.h"
     57 
     58 #include <sys/param.h>
     59 #include <sys/systm.h>
     60 #include <sys/proc.h>
     61 #include <sys/device.h>
     62 #include <sys/file.h>
     63 #include <sys/ioctl.h>
     64 #include <sys/malloc.h>
     65 #include <sys/tty.h>
     66 #include <sys/time.h>
     67 #include <sys/kernel.h>
     68 #include <sys/syslog.h>
     69 #include <sys/conf.h>
     70 
     71 #include <machine/autoconf.h>
     72 #include <machine/conf.h>
     73 #include <machine/cpu.h>
     74 #include <machine/kbd.h>
     75 
     76 #include <sparc/sparc/vaddrs.h>
     77 #include <sparc/sparc/auxreg.h>
     78 #include <dev/ic/z8530reg.h>
     79 #include <sparc/dev/zsvar.h>
     80 
     81 #ifdef KGDB
     82 #include <machine/remote-sl.h>
     83 #endif
     84 
     85 #define	ZSMAJOR	12		/* XXX */
     86 
     87 #define	ZS_KBD		2	/* XXX */
     88 #define	ZS_MOUSE	3	/* XXX */
     89 
     90 /* the magic number below was stolen from the Sprite source. */
     91 #define PCLK	(19660800/4)	/* PCLK pin input clock rate */
     92 
     93 /*
     94  * Select software interrupt bit based on TTY ipl.
     95  */
     96 #if PIL_TTY == 1
     97 # define IE_ZSSOFT IE_L1
     98 #elif PIL_TTY == 4
     99 # define IE_ZSSOFT IE_L4
    100 #elif PIL_TTY == 6
    101 # define IE_ZSSOFT IE_L6
    102 #else
    103 # error "no suitable software interrupt bit"
    104 #endif
    105 
    106 /*
    107  * Software state per found chip.
    108  */
    109 struct zs_softc {
    110 	struct	device sc_dev;			/* base device */
    111 	volatile struct zsdevice *sc_zs;	/* chip registers */
    112 	struct	evcnt sc_intrcnt;		/* count interrupts */
    113 	struct	zs_chanstate sc_cs[2];		/* chan A/B software state */
    114 };
    115 
    116 /* Definition of the driver for autoconfig. */
    117 static int	zsmatch __P((struct device *, struct cfdata *, void *));
    118 static void	zsattach __P((struct device *, struct device *, void *));
    119 
    120 struct cfattach zs_ca = {
    121 	sizeof(struct zs_softc), zsmatch, zsattach
    122 };
    123 
    124 struct cfdriver zs_cd = {
    125 	NULL, "zs", DV_TTY
    126 };
    127 
    128 /* Interrupt handlers. */
    129 static int	zshard __P((void *));
    130 static struct intrhand levelhard = { zshard };
    131 static int	zssoft __P((void *));
    132 static struct intrhand levelsoft = { zssoft };
    133 
    134 struct zs_chanstate *zslist;
    135 
    136 /* Routines called from other code. */
    137 static void	zsiopen __P((struct tty *));
    138 static void	zsiclose __P((struct tty *));
    139 static void	zsstart __P((struct tty *));
    140 static int	zsparam __P((struct tty *, struct termios *));
    141 
    142 /* Routines purely local to this driver. */
    143 static int	zs_getspeed __P((volatile struct zschan *));
    144 #ifdef KGDB
    145 static void	zs_reset __P((volatile struct zschan *, int, int));
    146 #endif
    147 static void	zs_modem __P((struct zs_chanstate *, int));
    148 static void	zs_loadchannelregs __P((volatile struct zschan *, u_char *));
    149 
    150 /* Console stuff. */
    151 static struct tty *zs_ctty;	/* console `struct tty *' */
    152 static int zs_consin = -1, zs_consout = -1;
    153 static struct zs_chanstate *zs_conscs = NULL; /*console channel state */
    154 static void zscnputc __P((int));	/* console putc function */
    155 static volatile struct zschan *zs_conschan;
    156 static struct tty *zs_checkcons __P((struct zs_softc *, int,
    157     struct zs_chanstate *));
    158 
    159 #ifdef KGDB
    160 /* KGDB stuff.  Must reboot to change zs_kgdbunit. */
    161 extern int kgdb_dev, kgdb_rate;
    162 static int zs_kgdb_savedspeed;
    163 static void zs_checkkgdb __P((int, struct zs_chanstate *, struct tty *));
    164 void zskgdb __P((int));
    165 static int zs_kgdb_getc __P((void *));
    166 static void zs_kgdb_putc __P((void *, int));
    167 #endif
    168 
    169 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
    170 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
    171 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
    172 
    173 void zsabort __P((void));
    174 static void zsoverrun __P((int, long *, char *));
    175 
    176 static volatile struct zsdevice *zsaddr[NZS];	/* XXX, but saves work */
    177 
    178 /*
    179  * Console keyboard L1-A processing is done in the hardware interrupt code,
    180  * so we need to duplicate some of the console keyboard decode state.  (We
    181  * must not use the regular state as the hardware code keeps ahead of the
    182  * software state: the software state tracks the most recent ring input but
    183  * the hardware state tracks the most recent ZSCC input.)  See also kbd.h.
    184  */
    185 static struct conk_state {	/* console keyboard state */
    186 	char	conk_id;	/* true => ID coming up (console only) */
    187 	char	conk_l1;	/* true => L1 pressed (console only) */
    188 } zsconk_state;
    189 
    190 int zshardscope;
    191 int zsshortcuts;		/* number of "shortcut" software interrupts */
    192 
    193 #ifdef SUN4
    194 static u_int zs_read __P((volatile struct zschan *, u_int reg));
    195 static u_int zs_write __P((volatile struct zschan *, u_int, u_int));
    196 
    197 static u_int
    198 zs_read(zc, reg)
    199 	volatile struct zschan *zc;
    200 	u_int reg;
    201 {
    202 	u_char val;
    203 
    204 	zc->zc_csr = reg;
    205 	ZS_DELAY();
    206 	val = zc->zc_csr;
    207 	ZS_DELAY();
    208 	return val;
    209 }
    210 
    211 static u_int
    212 zs_write(zc, reg, val)
    213 	volatile struct zschan *zc;
    214 	u_int reg, val;
    215 {
    216 	zc->zc_csr = reg;
    217 	ZS_DELAY();
    218 	zc->zc_csr = val;
    219 	ZS_DELAY();
    220 	return val;
    221 }
    222 #endif /* SUN4 */
    223 
    224 /*
    225  * Match slave number to zs unit number, so that misconfiguration will
    226  * not set up the keyboard as ttya, etc.
    227  */
    228 static int
    229 zsmatch(parent, cf, aux)
    230 	struct device *parent;
    231 	struct cfdata *cf;
    232 	void *aux;
    233 {
    234 	struct confargs *ca = aux;
    235 	struct romaux *ra = &ca->ca_ra;
    236 
    237 	if (strcmp(cf->cf_driver->cd_name, ra->ra_name))
    238 		return (0);
    239 	if ((ca->ca_bustype == BUS_MAIN && !CPU_ISSUN4) ||
    240 	    (ca->ca_bustype == BUS_OBIO && CPU_ISSUN4M))
    241 		return (getpropint(ra->ra_node, "slave", -2) == cf->cf_unit);
    242 	ra->ra_len = NBPG;
    243 	return (probeget(ra->ra_vaddr, 1) != -1);
    244 }
    245 
    246 /*
    247  * Attach a found zs.
    248  *
    249  * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
    250  * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
    251  */
    252 static void
    253 zsattach(parent, dev, aux)
    254 	struct device *parent;
    255 	struct device *dev;
    256 	void *aux;
    257 {
    258 	register int zs = dev->dv_unit, unit;
    259 	register struct zs_softc *sc;
    260 	register struct zs_chanstate *cs;
    261 	register volatile struct zsdevice *addr;
    262 	register struct tty *tp, *ctp;
    263 	register struct confargs *ca = aux;
    264 	register struct romaux *ra = &ca->ca_ra;
    265 	int pri;
    266 	static int didintr, prevpri;
    267 	int ringsize;
    268 
    269 	if ((addr = zsaddr[zs]) == NULL)
    270 		addr = zsaddr[zs] = (volatile struct zsdevice *)findzs(zs);
    271 	if (ca->ca_bustype==BUS_MAIN)
    272 		if ((void *)addr != ra->ra_vaddr)
    273 			panic("zsattach");
    274 	if (ra->ra_nintr != 1) {
    275 		printf(": expected 1 interrupt, got %d\n", ra->ra_nintr);
    276 		return;
    277 	}
    278 	pri = ra->ra_intr[0].int_pri;
    279 	printf(" pri %d, softpri %d\n", pri, PIL_TTY);
    280 	if (!didintr) {
    281 		didintr = 1;
    282 		prevpri = pri;
    283 		intr_establish(pri, &levelhard);
    284 		intr_establish(PIL_TTY, &levelsoft);
    285 	} else if (pri != prevpri)
    286 		panic("broken zs interrupt scheme");
    287 	sc = (struct zs_softc *)dev;
    288 	evcnt_attach(&sc->sc_dev, "intr", &sc->sc_intrcnt);
    289 	sc->sc_zs = addr;
    290 	unit = zs * 2;
    291 	cs = sc->sc_cs;
    292 
    293 	/* link into interrupt list with order (A,B) (B=A+1) */
    294 	cs[0].cs_next = &cs[1];
    295 	cs[0].cs_sc = sc;
    296 	cs[1].cs_next = zslist;
    297 	cs[1].cs_sc = sc;
    298 	zslist = cs;
    299 
    300 	cs->cs_unit = unit;
    301 	cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_A]);
    302 	cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
    303 	if ((ctp = zs_checkcons(sc, unit, cs)) != NULL)
    304 		tp = ctp;
    305 	else {
    306 		tp = ttymalloc();
    307 		tp->t_dev = makedev(ZSMAJOR, unit);
    308 		tp->t_oproc = zsstart;
    309 		tp->t_param = zsparam;
    310 	}
    311 	cs->cs_ttyp = tp;
    312 #ifdef KGDB
    313 	if (ctp == NULL)
    314 		zs_checkkgdb(unit, cs, tp);
    315 #endif
    316 	if (unit == ZS_KBD) {
    317 		/*
    318 		 * Keyboard: tell /dev/kbd driver how to talk to us.
    319 		 */
    320 		tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
    321 		tp->t_cflag = CS8;
    322 		kbd_serial(tp, zsiopen, zsiclose);
    323 		cs->cs_conk = 1;		/* do L1-A processing */
    324 		ringsize = 128;
    325 	} else {
    326 		if (tp != ctp)
    327 			tty_attach(tp);
    328 		ringsize = 4096;
    329 		if (unit == zs_consout)
    330 			zs_conscs = cs;
    331 	}
    332 	cs->cs_ringmask = ringsize - 1;
    333 	cs->cs_rbuf = malloc((u_long)ringsize * sizeof(*cs->cs_rbuf),
    334 			      M_DEVBUF, M_NOWAIT);
    335 
    336 	unit++;
    337 	cs++;
    338 	cs->cs_unit = unit;
    339 	cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_B]);
    340 	cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
    341 	if ((ctp = zs_checkcons(sc, unit, cs)) != NULL)
    342 		tp = ctp;
    343 	else {
    344 		tp = ttymalloc();
    345 		tp->t_dev = makedev(ZSMAJOR, unit);
    346 		tp->t_oproc = zsstart;
    347 		tp->t_param = zsparam;
    348 	}
    349 	cs->cs_ttyp = tp;
    350 #ifdef KGDB
    351 	if (ctp == NULL)
    352 		zs_checkkgdb(unit, cs, tp);
    353 #endif
    354 	if (unit == ZS_MOUSE) {
    355 		/*
    356 		 * Mouse: tell /dev/mouse driver how to talk to us.
    357 		 */
    358 		tp->t_ispeed = tp->t_ospeed = B1200;
    359 		tp->t_cflag = CS8;
    360 		ms_serial(tp, zsiopen, zsiclose);
    361 		ringsize = 128;
    362 	} else {
    363 		if (tp != ctp)
    364 			tty_attach(tp);
    365 		ringsize = 4096;
    366 		if (unit == zs_consout)
    367 			zs_conscs = cs;
    368 	}
    369 	cs->cs_ringmask = ringsize - 1;
    370 	cs->cs_rbuf = malloc((u_long)ringsize * sizeof(*cs->cs_rbuf),
    371 			      M_DEVBUF, M_NOWAIT);
    372 }
    373 
    374 #ifdef KGDB
    375 /*
    376  * Put a channel in a known state.  Interrupts may be left disabled
    377  * or enabled, as desired.
    378  */
    379 static void
    380 zs_reset(zc, inten, speed)
    381 	volatile struct zschan *zc;
    382 	int inten, speed;
    383 {
    384 	int tconst;
    385 	static u_char reg[16] = {
    386 		0,
    387 		0,
    388 		0,
    389 		ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
    390 		ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
    391 		ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
    392 		0,
    393 		0,
    394 		0,
    395 		0,
    396 		ZSWR10_NRZ,
    397 		ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
    398 		0,
    399 		0,
    400 		ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
    401 		ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
    402 	};
    403 
    404 	reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
    405 	tconst = BPS_TO_TCONST(PCLK / 16, speed);
    406 	reg[12] = tconst;
    407 	reg[13] = tconst >> 8;
    408 	zs_loadchannelregs(zc, reg);
    409 }
    410 #endif
    411 
    412 /*
    413  * Declare the given tty (which is in fact &cons) as a console input
    414  * or output.  This happens before the zs chip is attached; the hookup
    415  * is finished later, in zs_setcons() below.
    416  *
    417  * This is used only for ports a and b.  The console keyboard is decoded
    418  * independently (we always send unit-2 input to /dev/kbd, which will
    419  * direct it to /dev/console if appropriate).
    420  */
    421 void
    422 zsconsole(tp, unit, out, fnstop)
    423 	register struct tty *tp;
    424 	register int unit;
    425 	int out;
    426 	void (**fnstop) __P((struct tty *, int));
    427 {
    428 	int zs;
    429 	volatile struct zsdevice *addr;
    430 
    431 	if (unit >= ZS_KBD)
    432 		panic("zsconsole");
    433 	if (out) {
    434 		zs_consout = unit;
    435 		zs = unit >> 1;
    436 		if ((addr = zsaddr[zs]) == NULL)
    437 			addr = zsaddr[zs] = (volatile struct zsdevice *)findzs(zs);
    438 		zs_conschan = (unit & 1) == 0 ? &addr->zs_chan[ZS_CHAN_A] :
    439 		    &addr->zs_chan[ZS_CHAN_B];
    440 		v_putc = zscnputc;
    441 	} else
    442 		zs_consin = unit;
    443 	if (fnstop)
    444 		*fnstop = &zsstop;
    445 	zs_ctty = tp;
    446 }
    447 
    448 /*
    449  * Polled console output putchar.
    450  */
    451 static void
    452 zscnputc(c)
    453 	int c;
    454 {
    455 	register volatile struct zschan *zc = zs_conschan;
    456 	register int s;
    457 
    458 	if (c == '\n')
    459 		zscnputc('\r');
    460 	/*
    461 	 * Must block output interrupts (i.e., raise to >= splzs) without
    462 	 * lowering current ipl.  Need a better way.
    463 	 */
    464 	s = splhigh();
    465 	if (CPU_ISSUN4C && s <= (12 << 8)) /* XXX */
    466 		(void) splzs();
    467 	while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
    468 		ZS_DELAY();
    469 	/*
    470 	 * If transmitter was busy doing regular tty I/O (ZSWR1_TIE on),
    471 	 * defer our output until the transmit interrupt runs. We still
    472 	 * sync with TX_READY so we can get by with a single-char "queue".
    473 	 */
    474 	if (zs_conscs != NULL && (zs_conscs->cs_creg[1] & ZSWR1_TIE)) {
    475 		/*
    476 		 * If previous not yet done, send it now; zsxint()
    477 		 * will field the interrupt for our char, but doesn't
    478 		 * care. We're running at sufficiently high spl for
    479 		 * this to work.
    480 		 */
    481 		if (zs_conscs->cs_deferred_cc != 0)
    482 			zc->zc_data = zs_conscs->cs_deferred_cc;
    483 		zs_conscs->cs_deferred_cc = c;
    484 		splx(s);
    485 		return;
    486 	}
    487 	zc->zc_data = c;
    488 	ZS_DELAY();
    489 	splx(s);
    490 }
    491 
    492 /*
    493  * Set up the given unit as console input, output, both, or neither, as
    494  * needed.  Return console tty if it is to receive console input.
    495  */
    496 static struct tty *
    497 zs_checkcons(sc, unit, cs)
    498 	struct zs_softc *sc;
    499 	int unit;
    500 	struct zs_chanstate *cs;
    501 {
    502 	register struct tty *tp;
    503 	char *i, *o;
    504 
    505 	if ((tp = zs_ctty) == NULL) /* XXX */
    506 		return (0);
    507 	i = zs_consin == unit ? "input" : NULL;
    508 	o = zs_consout == unit ? "output" : NULL;
    509 	if (i == NULL && o == NULL)
    510 		return (0);
    511 
    512 	/* rewire the minor device (gack) */
    513 	tp->t_dev = makedev(major(tp->t_dev), unit);
    514 
    515 	/*
    516 	 * Rewire input and/or output.  Note that baud rate reflects
    517 	 * input settings, not output settings, but we can do no better
    518 	 * if the console is split across two ports.
    519 	 *
    520 	 * XXX	split consoles don't work anyway -- this needs to be
    521 	 *	thrown away and redone
    522 	 */
    523 	if (i) {
    524 		tp->t_param = zsparam;
    525 		tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
    526 		tp->t_cflag = CS8;
    527 		ttsetwater(tp);
    528 	}
    529 	if (o) {
    530 		tp->t_oproc = zsstart;
    531 	}
    532 	printf("%s%c: console %s\n",
    533 	    sc->sc_dev.dv_xname, (unit & 1) + 'a', i ? (o ? "i/o" : i) : o);
    534 	cs->cs_consio = 1;
    535 	cs->cs_brkabort = 1;
    536 	return (tp);
    537 }
    538 
    539 #ifdef KGDB
    540 /*
    541  * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
    542  * Pick up the current speed and character size and restore the original
    543  * speed.
    544  */
    545 static void
    546 zs_checkkgdb(unit, cs, tp)
    547 	int unit;
    548 	struct zs_chanstate *cs;
    549 	struct tty *tp;
    550 {
    551 
    552 	if (kgdb_dev == makedev(ZSMAJOR, unit)) {
    553 		tp->t_ispeed = tp->t_ospeed = kgdb_rate;
    554 		tp->t_cflag = CS8;
    555 		cs->cs_kgdb = 1;
    556 		cs->cs_speed = zs_kgdb_savedspeed;
    557 		(void) zsparam(tp, &tp->t_termios);
    558 	}
    559 }
    560 #endif
    561 
    562 /*
    563  * Compute the current baud rate given a ZSCC channel.
    564  */
    565 static int
    566 zs_getspeed(zc)
    567 	register volatile struct zschan *zc;
    568 {
    569 	register int tconst;
    570 
    571 	tconst = ZS_READ(zc, 12);
    572 	tconst |= ZS_READ(zc, 13) << 8;
    573 	return (TCONST_TO_BPS(PCLK / 16, tconst));
    574 }
    575 
    576 
    577 /*
    578  * Do an internal open.
    579  */
    580 static void
    581 zsiopen(tp)
    582 	struct tty *tp;
    583 {
    584 
    585 	(void) zsparam(tp, &tp->t_termios);
    586 	ttsetwater(tp);
    587 	tp->t_state = TS_ISOPEN | TS_CARR_ON;
    588 }
    589 
    590 /*
    591  * Do an internal close.  Eventually we should shut off the chip when both
    592  * ports on it are closed.
    593  */
    594 static void
    595 zsiclose(tp)
    596 	struct tty *tp;
    597 {
    598 
    599 	ttylclose(tp, 0);	/* ??? */
    600 	ttyclose(tp);		/* ??? */
    601 	tp->t_state = 0;
    602 }
    603 
    604 
    605 /*
    606  * Open a zs serial port.  This interface may not be used to open
    607  * the keyboard and mouse ports. (XXX)
    608  */
    609 int
    610 zsopen(dev, flags, mode, p)
    611 	dev_t dev;
    612 	int flags;
    613 	int mode;
    614 	struct proc *p;
    615 {
    616 	register struct tty *tp;
    617 	register struct zs_chanstate *cs;
    618 	struct zs_softc *sc;
    619 	int unit = minor(dev), zs = unit >> 1, error, s;
    620 
    621 	if (zs >= zs_cd.cd_ndevs || (sc = zs_cd.cd_devs[zs]) == NULL ||
    622 	    unit == ZS_KBD || unit == ZS_MOUSE)
    623 		return (ENXIO);
    624 	cs = &sc->sc_cs[unit & 1];
    625 	if (cs->cs_consio)
    626 		return (ENXIO);		/* ??? */
    627 	tp = cs->cs_ttyp;
    628 	s = spltty();
    629 	if ((tp->t_state & TS_ISOPEN) == 0) {
    630 		ttychars(tp);
    631 		if (tp->t_ispeed == 0) {
    632 			tp->t_iflag = TTYDEF_IFLAG;
    633 			tp->t_oflag = TTYDEF_OFLAG;
    634 			tp->t_cflag = TTYDEF_CFLAG;
    635 			tp->t_lflag = TTYDEF_LFLAG;
    636 			tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
    637 		}
    638 		(void) zsparam(tp, &tp->t_termios);
    639 		ttsetwater(tp);
    640 	} else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
    641 		splx(s);
    642 		return (EBUSY);
    643 	}
    644 	error = 0;
    645 	for (;;) {
    646 		register int rr0;
    647 
    648 		/* loop, turning on the device, until carrier present */
    649 		zs_modem(cs, 1);
    650 		/* May never get status intr if carrier already on. -gwr */
    651 		rr0 = cs->cs_zc->zc_csr;
    652 		ZS_DELAY();
    653 		if ((rr0 & ZSRR0_DCD) || cs->cs_softcar)
    654 			tp->t_state |= TS_CARR_ON;
    655 		if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
    656 		    tp->t_state & TS_CARR_ON)
    657 			break;
    658 		tp->t_state |= TS_WOPEN;
    659 		error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
    660 				 ttopen, 0);
    661 		if (error) {
    662 			if (!(tp->t_state & TS_ISOPEN)) {
    663 				zs_modem(cs, 0);
    664 				tp->t_state &= ~TS_WOPEN;
    665 				ttwakeup(tp);
    666 			}
    667 			splx(s);
    668 			return error;
    669 		}
    670 	}
    671 	splx(s);
    672 	if (error == 0)
    673 		error = linesw[tp->t_line].l_open(dev, tp);
    674 	if (error)
    675 		zs_modem(cs, 0);
    676 	return (error);
    677 }
    678 
    679 /*
    680  * Close a zs serial port.
    681  */
    682 int
    683 zsclose(dev, flags, mode, p)
    684 	dev_t dev;
    685 	int flags;
    686 	int mode;
    687 	struct proc *p;
    688 {
    689 	register struct zs_chanstate *cs;
    690 	register struct tty *tp;
    691 	struct zs_softc *sc;
    692 	int unit = minor(dev), s;
    693 
    694 	sc = zs_cd.cd_devs[unit >> 1];
    695 	cs = &sc->sc_cs[unit & 1];
    696 	tp = cs->cs_ttyp;
    697 	linesw[tp->t_line].l_close(tp, flags);
    698 	if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
    699 	    (tp->t_state & TS_ISOPEN) == 0) {
    700 		zs_modem(cs, 0);
    701 		/* hold low for 1 second */
    702 		(void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
    703 	}
    704 	if (cs->cs_creg[5] & ZSWR5_BREAK)
    705 	{
    706 		s = splzs();
    707 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
    708 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
    709 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
    710 		splx(s);
    711 	}
    712 	ttyclose(tp);
    713 #ifdef KGDB
    714 	/* Reset the speed if we're doing kgdb on this port */
    715 	if (cs->cs_kgdb) {
    716 		tp->t_ispeed = tp->t_ospeed = kgdb_rate;
    717 		(void) zsparam(tp, &tp->t_termios);
    718 	}
    719 #endif
    720 	return (0);
    721 }
    722 
    723 /*
    724  * Read/write zs serial port.
    725  */
    726 int
    727 zsread(dev, uio, flags)
    728 	dev_t dev;
    729 	struct uio *uio;
    730 	int flags;
    731 {
    732 	register struct zs_chanstate *cs;
    733 	register struct zs_softc *sc;
    734 	register struct tty *tp;
    735 	int unit = minor(dev);
    736 
    737 	sc = zs_cd.cd_devs[unit >> 1];
    738 	cs = &sc->sc_cs[unit & 1];
    739 	tp = cs->cs_ttyp;
    740 
    741 	return (linesw[tp->t_line].l_read(tp, uio, flags));
    742 
    743 }
    744 
    745 int
    746 zswrite(dev, uio, flags)
    747 	dev_t dev;
    748 	struct uio *uio;
    749 	int flags;
    750 {
    751 	register struct zs_chanstate *cs;
    752 	register struct zs_softc *sc;
    753 	register struct tty *tp;
    754 	int unit = minor(dev);
    755 
    756 	sc = zs_cd.cd_devs[unit >> 1];
    757 	cs = &sc->sc_cs[unit & 1];
    758 	tp = cs->cs_ttyp;
    759 
    760 	return (linesw[tp->t_line].l_write(tp, uio, flags));
    761 }
    762 
    763 struct tty *
    764 zstty(dev)
    765 	dev_t dev;
    766 {
    767 	register struct zs_chanstate *cs;
    768 	register struct zs_softc *sc;
    769 	int unit = minor(dev);
    770 
    771 	sc = zs_cd.cd_devs[unit >> 1];
    772 	cs = &sc->sc_cs[unit & 1];
    773 
    774 	return (cs->cs_ttyp);
    775 }
    776 
    777 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
    778 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
    779 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
    780 
    781 /*
    782  * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
    783  * channels are kept in (A,B) pairs.
    784  *
    785  * Do just a little, then get out; set a software interrupt if more
    786  * work is needed.
    787  *
    788  * We deliberately ignore the vectoring Zilog gives us, and match up
    789  * only the number of `reset interrupt under service' operations, not
    790  * the order.
    791  */
    792 /* ARGSUSED */
    793 int
    794 zshard(intrarg)
    795 	void *intrarg;
    796 {
    797 	register struct zs_chanstate *a;
    798 #define	b (a + 1)
    799 	register volatile struct zschan *zc;
    800 	register int rr3, intflags = 0, v, i, ringmask;
    801 
    802 #define ZSHARD_NEED_SOFTINTR	1
    803 #define ZSHARD_WAS_SERVICED	2
    804 #define ZSHARD_CHIP_GOTINTR	4
    805 
    806 	for (a = zslist; a != NULL; a = b->cs_next) {
    807 		ringmask = a->cs_ringmask;
    808 		rr3 = ZS_READ(a->cs_zc, 3);
    809 		if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
    810 			intflags |= (ZSHARD_CHIP_GOTINTR|ZSHARD_WAS_SERVICED);
    811 			zc = a->cs_zc;
    812 			i = a->cs_rbput;
    813 			if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
    814 				a->cs_rbuf[i++ & ringmask] = v;
    815 				intflags |= ZSHARD_NEED_SOFTINTR;
    816 			}
    817 			if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
    818 				a->cs_rbuf[i++ & ringmask] = v;
    819 				intflags |= ZSHARD_NEED_SOFTINTR;
    820 			}
    821 			if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
    822 				a->cs_rbuf[i++ & ringmask] = v;
    823 				intflags |= ZSHARD_NEED_SOFTINTR;
    824 			}
    825 			a->cs_rbput = i;
    826 		}
    827 		if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
    828 			intflags |= (ZSHARD_CHIP_GOTINTR|ZSHARD_WAS_SERVICED);
    829 			zc = b->cs_zc;
    830 			i = b->cs_rbput;
    831 			if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
    832 				b->cs_rbuf[i++ & ringmask] = v;
    833 				intflags |= ZSHARD_NEED_SOFTINTR;
    834 			}
    835 			if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
    836 				b->cs_rbuf[i++ & ringmask] = v;
    837 				intflags |= ZSHARD_NEED_SOFTINTR;
    838 			}
    839 			if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
    840 				b->cs_rbuf[i++ & ringmask] = v;
    841 				intflags |= ZSHARD_NEED_SOFTINTR;
    842 			}
    843 			b->cs_rbput = i;
    844 		}
    845 		if (intflags & ZSHARD_CHIP_GOTINTR) {
    846 			a->cs_sc->sc_intrcnt.ev_count++;
    847 			intflags &= ~ZSHARD_CHIP_GOTINTR;
    848 		}
    849 	}
    850 #undef b
    851 
    852 	if (intflags & ZSHARD_NEED_SOFTINTR) {
    853 		if (CPU_ISSUN4COR4M) {
    854 			/* XXX -- but this will go away when zshard moves to locore.s */
    855 			struct clockframe *p = intrarg;
    856 
    857 			if ((p->psr & PSR_PIL) < (PIL_TTY << 8)) {
    858 				zsshortcuts++;
    859 				(void) spltty();
    860 				if (zshardscope) {
    861 					LED_ON;
    862 					LED_OFF;
    863 				}
    864 				return (zssoft(intrarg));
    865 			}
    866 		}
    867 
    868 #if defined(SUN4M)
    869 		if (CPU_ISSUN4M)
    870 			raise(0, PIL_TTY);
    871 		else
    872 #endif
    873 		ienab_bis(IE_ZSSOFT);
    874 	}
    875 	return (intflags & ZSHARD_WAS_SERVICED);
    876 }
    877 
    878 static int
    879 zsrint(cs, zc)
    880 	register struct zs_chanstate *cs;
    881 	register volatile struct zschan *zc;
    882 {
    883 	register u_int c = zc->zc_data;
    884 
    885 	ZS_DELAY();
    886 	if (cs->cs_conk) {
    887 		register struct conk_state *conk = &zsconk_state;
    888 
    889 		/*
    890 		 * Check here for console abort function, so that we
    891 		 * can abort even when interrupts are locking up the
    892 		 * machine.
    893 		 */
    894 		if (c == KBD_RESET) {
    895 			conk->conk_id = 1;	/* ignore next byte */
    896 			conk->conk_l1 = 0;
    897 		} else if (conk->conk_id)
    898 			conk->conk_id = 0;	/* stop ignoring bytes */
    899 		else if (c == KBD_L1)
    900 			conk->conk_l1 = 1;	/* L1 went down */
    901 		else if (c == (KBD_L1|KBD_UP))
    902 			conk->conk_l1 = 0;	/* L1 went up */
    903 		else if (c == KBD_A && conk->conk_l1) {
    904 			zsabort();
    905 			conk->conk_l1 = 0;	/* we never see the up */
    906 			goto clearit;		/* eat the A after L1-A */
    907 		}
    908 	}
    909 #ifdef KGDB
    910 	if (c == FRAME_START && cs->cs_kgdb &&
    911 	    (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
    912 		zskgdb(cs->cs_unit);
    913 		goto clearit;
    914 	}
    915 #endif
    916 	/* compose receive character and status */
    917 	c <<= 8;
    918 	c |= ZS_READ(zc, 1);
    919 
    920 	/* clear receive error & interrupt condition */
    921 	zc->zc_csr = ZSWR0_RESET_ERRORS;
    922 	ZS_DELAY();
    923 	zc->zc_csr = ZSWR0_CLR_INTR;
    924 	ZS_DELAY();
    925 
    926 	return (ZRING_MAKE(ZRING_RINT, c));
    927 
    928 clearit:
    929 	zc->zc_csr = ZSWR0_RESET_ERRORS;
    930 	ZS_DELAY();
    931 	zc->zc_csr = ZSWR0_CLR_INTR;
    932 	ZS_DELAY();
    933 	return (0);
    934 }
    935 
    936 static int
    937 zsxint(cs, zc)
    938 	register struct zs_chanstate *cs;
    939 	register volatile struct zschan *zc;
    940 {
    941 	register int i = cs->cs_tbc;
    942 
    943 	if (cs->cs_deferred_cc != 0) {
    944 		/* Handle deferred zscnputc() output first */
    945 		zc->zc_data = cs->cs_deferred_cc;
    946 		cs->cs_deferred_cc = 0;
    947 		ZS_DELAY();
    948 		zc->zc_csr = ZSWR0_CLR_INTR;
    949 		ZS_DELAY();
    950 		return (0);
    951 	}
    952 	if (i == 0) {
    953 		zc->zc_csr = ZSWR0_RESET_TXINT;
    954 		ZS_DELAY();
    955 		zc->zc_csr = ZSWR0_CLR_INTR;
    956 		ZS_DELAY();
    957 		return (ZRING_MAKE(ZRING_XINT, 0));
    958 	}
    959 	cs->cs_tbc = i - 1;
    960 	zc->zc_data = *cs->cs_tba++;
    961 	ZS_DELAY();
    962 	zc->zc_csr = ZSWR0_CLR_INTR;
    963 	ZS_DELAY();
    964 	return (0);
    965 }
    966 
    967 static int
    968 zssint(cs, zc)
    969 	register struct zs_chanstate *cs;
    970 	register volatile struct zschan *zc;
    971 {
    972 	register u_int rr0;
    973 
    974 	rr0 = zc->zc_csr;
    975 	ZS_DELAY();
    976 	zc->zc_csr = ZSWR0_RESET_STATUS;
    977 	ZS_DELAY();
    978 	zc->zc_csr = ZSWR0_CLR_INTR;
    979 	ZS_DELAY();
    980 	/*
    981 	 * The chip's hardware flow control is, as noted in zsreg.h,
    982 	 * busted---if the DCD line goes low the chip shuts off the
    983 	 * receiver (!).  If we want hardware CTS flow control but do
    984 	 * not have it, and carrier is now on, turn HFC on; if we have
    985 	 * HFC now but carrier has gone low, turn it off.
    986 	 */
    987 	if (rr0 & ZSRR0_DCD) {
    988 		if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
    989 		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
    990 			cs->cs_creg[3] |= ZSWR3_HFC;
    991 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    992 		}
    993 	} else {
    994 		if (cs->cs_creg[3] & ZSWR3_HFC) {
    995 			cs->cs_creg[3] &= ~ZSWR3_HFC;
    996 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
    997 		}
    998 	}
    999 	if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
   1000 		/*
   1001 		 * XXX This might not be necessary. Test and
   1002 		 * delete if it isn't.
   1003 		 */
   1004 		if (CPU_ISSUN4) {
   1005 			while (zc->zc_csr & ZSRR0_BREAK)
   1006 				ZS_DELAY();
   1007 		}
   1008 		zsabort();
   1009 		return (0);
   1010 	}
   1011 	return (ZRING_MAKE(ZRING_SINT, rr0));
   1012 }
   1013 
   1014 void
   1015 zsabort()
   1016 {
   1017 
   1018 #ifdef DDB
   1019 	Debugger();
   1020 #else
   1021 	printf("stopping on keyboard abort\n");
   1022 	callrom();
   1023 #endif
   1024 }
   1025 
   1026 #ifdef KGDB
   1027 /*
   1028  * KGDB framing character received: enter kernel debugger.  This probably
   1029  * should time out after a few seconds to avoid hanging on spurious input.
   1030  */
   1031 void
   1032 zskgdb(unit)
   1033 	int unit;
   1034 {
   1035 
   1036 	printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
   1037 	kgdb_connect(1);
   1038 }
   1039 #endif
   1040 
   1041 /*
   1042  * Print out a ring or fifo overrun error message.
   1043  */
   1044 static void
   1045 zsoverrun(unit, ptime, what)
   1046 	int unit;
   1047 	long *ptime;
   1048 	char *what;
   1049 {
   1050 
   1051 	if (*ptime != time.tv_sec) {
   1052 		*ptime = time.tv_sec;
   1053 		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
   1054 		    (unit & 1) + 'a', what);
   1055 	}
   1056 }
   1057 
   1058 /*
   1059  * ZS software interrupt.  Scan all channels for deferred interrupts.
   1060  */
   1061 int
   1062 zssoft(arg)
   1063 	void *arg;
   1064 {
   1065 	register struct zs_chanstate *cs;
   1066 	register volatile struct zschan *zc;
   1067 	register struct linesw *line;
   1068 	register struct tty *tp;
   1069 	register int get, n, c, cc, unit, s, ringmask, ringsize;
   1070 	int	retval = 0;
   1071 
   1072 	for (cs = zslist; cs != NULL; cs = cs->cs_next) {
   1073 		ringmask = cs->cs_ringmask;
   1074 		get = cs->cs_rbget;
   1075 again:
   1076 		n = cs->cs_rbput;	/* atomic */
   1077 		if (get == n)		/* nothing more on this line */
   1078 			continue;
   1079 		retval = 1;
   1080 		unit = cs->cs_unit;	/* set up to handle interrupts */
   1081 		zc = cs->cs_zc;
   1082 		tp = cs->cs_ttyp;
   1083 		line = &linesw[tp->t_line];
   1084 		/*
   1085 		 * Compute the number of interrupts in the receive ring.
   1086 		 * If the count is overlarge, we lost some events, and
   1087 		 * must advance to the first valid one.  It may get
   1088 		 * overwritten if more data are arriving, but this is
   1089 		 * too expensive to check and gains nothing (we already
   1090 		 * lost out; all we can do at this point is trade one
   1091 		 * kind of loss for another).
   1092 		 */
   1093 		ringsize = ringmask + 1;
   1094 		n -= get;
   1095 		if (n > ringsize) {
   1096 			zsoverrun(unit, &cs->cs_rotime, "ring");
   1097 			get += n - ringsize;
   1098 			n = ringsize;
   1099 		}
   1100 		while (--n >= 0) {
   1101 			/* race to keep ahead of incoming interrupts */
   1102 			c = cs->cs_rbuf[get++ & ringmask];
   1103 			switch (ZRING_TYPE(c)) {
   1104 
   1105 			case ZRING_RINT:
   1106 				c = ZRING_VALUE(c);
   1107 				if (c & ZSRR1_DO)
   1108 					zsoverrun(unit, &cs->cs_fotime, "fifo");
   1109 				cc = c >> 8;
   1110 				if (c & ZSRR1_FE)
   1111 					cc |= TTY_FE;
   1112 				if (c & ZSRR1_PE)
   1113 					cc |= TTY_PE;
   1114 				/*
   1115 				 * this should be done through
   1116 				 * bstreams	XXX gag choke
   1117 				 */
   1118 				if (unit == ZS_KBD)
   1119 					kbd_rint(cc);
   1120 				else if (unit == ZS_MOUSE)
   1121 					ms_rint(cc);
   1122 				else
   1123 					line->l_rint(cc, tp);
   1124 				break;
   1125 
   1126 			case ZRING_XINT:
   1127 				/*
   1128 				 * Transmit done: change registers and resume,
   1129 				 * or clear BUSY.
   1130 				 */
   1131 				if (cs->cs_heldchange) {
   1132 					s = splzs();
   1133 					c = zc->zc_csr;
   1134 					ZS_DELAY();
   1135 					if ((c & ZSRR0_DCD) == 0)
   1136 						cs->cs_preg[3] &= ~ZSWR3_HFC;
   1137 					bcopy((caddr_t)cs->cs_preg,
   1138 					    (caddr_t)cs->cs_creg, 16);
   1139 					zs_loadchannelregs(zc, cs->cs_creg);
   1140 					splx(s);
   1141 					cs->cs_heldchange = 0;
   1142 					if (cs->cs_heldtbc &&
   1143 					    (tp->t_state & TS_TTSTOP) == 0) {
   1144 						cs->cs_tbc = cs->cs_heldtbc - 1;
   1145 						zc->zc_data = *cs->cs_tba++;
   1146 						ZS_DELAY();
   1147 						goto again;
   1148 					}
   1149 				}
   1150 				tp->t_state &= ~TS_BUSY;
   1151 				if (tp->t_state & TS_FLUSH)
   1152 					tp->t_state &= ~TS_FLUSH;
   1153 				else
   1154 					ndflush(&tp->t_outq,
   1155 					 cs->cs_tba - (caddr_t)tp->t_outq.c_cf);
   1156 				line->l_start(tp);
   1157 				break;
   1158 
   1159 			case ZRING_SINT:
   1160 				/*
   1161 				 * Status line change.  HFC bit is run in
   1162 				 * hardware interrupt, to avoid locking
   1163 				 * at splzs here.
   1164 				 */
   1165 				c = ZRING_VALUE(c);
   1166 				if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
   1167 					cc = (c & ZSRR0_DCD) != 0;
   1168 					if (line->l_modem(tp, cc) == 0)
   1169 						zs_modem(cs, cc);
   1170 				}
   1171 				cs->cs_rr0 = c;
   1172 				break;
   1173 
   1174 			default:
   1175 				log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (0x%x)\n",
   1176 				    unit >> 1, (unit & 1) + 'a', c);
   1177 				break;
   1178 			}
   1179 		}
   1180 		cs->cs_rbget = get;
   1181 		goto again;
   1182 	}
   1183 	return (retval);
   1184 }
   1185 
   1186 int
   1187 zsioctl(dev, cmd, data, flag, p)
   1188 	dev_t dev;
   1189 	u_long cmd;
   1190 	caddr_t data;
   1191 	int flag;
   1192 	struct proc *p;
   1193 {
   1194 	int unit = minor(dev);
   1195 	struct zs_softc *sc = zs_cd.cd_devs[unit >> 1];
   1196 	register struct zs_chanstate *cs = &sc->sc_cs[unit & 1];
   1197 	register struct tty *tp = cs->cs_ttyp;
   1198 	register int error, s;
   1199 
   1200 	error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
   1201 	if (error >= 0)
   1202 		return (error);
   1203 	error = ttioctl(tp, cmd, data, flag, p);
   1204 	if (error >= 0)
   1205 		return (error);
   1206 
   1207 	switch (cmd) {
   1208 	case TIOCSBRK:
   1209 		s = splzs();
   1210 		cs->cs_preg[5] |= ZSWR5_BREAK;
   1211 		cs->cs_creg[5] |= ZSWR5_BREAK;
   1212 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
   1213 		splx(s);
   1214 		break;
   1215 	case TIOCCBRK:
   1216 		s = splzs();
   1217 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
   1218 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
   1219 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
   1220 		splx(s);
   1221 		break;
   1222 	case TIOCGFLAGS: {
   1223 		int bits = 0;
   1224 
   1225 		if (cs->cs_softcar)
   1226 			bits |= TIOCFLAG_SOFTCAR;
   1227 		if (cs->cs_creg[15] & ZSWR15_DCD_IE)
   1228 			bits |= TIOCFLAG_CLOCAL;
   1229 		if (cs->cs_creg[3] & ZSWR3_HFC)
   1230 			bits |= TIOCFLAG_CRTSCTS;
   1231 		*(int *)data = bits;
   1232 		break;
   1233 	}
   1234 	case TIOCSFLAGS: {
   1235 		int userbits;
   1236 
   1237 		error = suser(p->p_ucred, &p->p_acflag);
   1238 		if (error != 0)
   1239 			return (EPERM);
   1240 
   1241 		userbits = *(int *)data;
   1242 
   1243 		/*
   1244 		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
   1245 		 # defaulting to software flow control.
   1246 		 */
   1247 		if (userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
   1248 			return(EINVAL);
   1249 		if (userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
   1250 			return(ENXIO);
   1251 
   1252 		s = splzs();
   1253 		if ((userbits & TIOCFLAG_SOFTCAR) || cs->cs_consio) {
   1254 			cs->cs_softcar = 1;	/* turn on softcar */
   1255 			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
   1256 			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
   1257 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
   1258 		} else if (userbits & TIOCFLAG_CLOCAL) {
   1259 			cs->cs_softcar = 0; 	/* turn off softcar */
   1260 			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
   1261 			cs->cs_creg[15] |= ZSWR15_DCD_IE;
   1262 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
   1263 			tp->t_termios.c_cflag |= CLOCAL;
   1264 		}
   1265 		if (userbits & TIOCFLAG_CRTSCTS) {
   1266 			cs->cs_preg[15] |= ZSWR15_CTS_IE;
   1267 			cs->cs_creg[15] |= ZSWR15_CTS_IE;
   1268 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
   1269 			cs->cs_preg[3] |= ZSWR3_HFC;
   1270 			cs->cs_creg[3] |= ZSWR3_HFC;
   1271 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
   1272 			tp->t_termios.c_cflag |= CRTSCTS;
   1273 		} else {
   1274 			/* no mdmbuf, so we must want software flow control */
   1275 			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
   1276 			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
   1277 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
   1278 			cs->cs_preg[3] &= ~ZSWR3_HFC;
   1279 			cs->cs_creg[3] &= ~ZSWR3_HFC;
   1280 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
   1281 			tp->t_termios.c_cflag &= ~CRTSCTS;
   1282 		}
   1283 		splx(s);
   1284 		break;
   1285 	}
   1286 	case TIOCSDTR:
   1287 		zs_modem(cs, 1);
   1288 		break;
   1289 	case TIOCCDTR:
   1290 		zs_modem(cs, 0);
   1291 		break;
   1292 	case TIOCMSET:
   1293 	case TIOCMGET:
   1294 	case TIOCMBIS:
   1295 	case TIOCMBIC:
   1296 	default:
   1297 		return (ENOTTY);
   1298 	}
   1299 	return (0);
   1300 }
   1301 
   1302 /*
   1303  * Start or restart transmission.
   1304  */
   1305 static void
   1306 zsstart(tp)
   1307 	register struct tty *tp;
   1308 {
   1309 	register struct zs_chanstate *cs;
   1310 	register int s, nch;
   1311 	int unit = minor(tp->t_dev);
   1312 	struct zs_softc *sc = zs_cd.cd_devs[unit >> 1];
   1313 
   1314 	cs = &sc->sc_cs[unit & 1];
   1315 	s = spltty();
   1316 
   1317 	/*
   1318 	 * If currently active or delaying, no need to do anything.
   1319 	 */
   1320 	if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
   1321 		goto out;
   1322 
   1323 	/*
   1324 	 * If there are sleepers, and output has drained below low
   1325 	 * water mark, awaken.
   1326 	 */
   1327 	if (tp->t_outq.c_cc <= tp->t_lowat) {
   1328 		if (tp->t_state & TS_ASLEEP) {
   1329 			tp->t_state &= ~TS_ASLEEP;
   1330 			wakeup((caddr_t)&tp->t_outq);
   1331 		}
   1332 		selwakeup(&tp->t_wsel);
   1333 	}
   1334 
   1335 	nch = ndqb(&tp->t_outq, 0);	/* XXX */
   1336 	if (nch) {
   1337 		register char *p = tp->t_outq.c_cf;
   1338 
   1339 		/* mark busy, enable tx done interrupts, & send first byte */
   1340 		tp->t_state |= TS_BUSY;
   1341 		(void) splzs();
   1342 		cs->cs_preg[1] |= ZSWR1_TIE;
   1343 		cs->cs_creg[1] |= ZSWR1_TIE;
   1344 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
   1345 		cs->cs_zc->zc_data = *p;
   1346 		ZS_DELAY();
   1347 		cs->cs_tba = p + 1;
   1348 		cs->cs_tbc = nch - 1;
   1349 	} else {
   1350 		/*
   1351 		 * Nothing to send, turn off transmit done interrupts.
   1352 		 * This is useful if something is doing polled output.
   1353 		 */
   1354 		(void) splzs();
   1355 		cs->cs_preg[1] &= ~ZSWR1_TIE;
   1356 		cs->cs_creg[1] &= ~ZSWR1_TIE;
   1357 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
   1358 	}
   1359 out:
   1360 	splx(s);
   1361 }
   1362 
   1363 /*
   1364  * Stop output, e.g., for ^S or output flush.
   1365  */
   1366 void
   1367 zsstop(tp, flag)
   1368 	register struct tty *tp;
   1369 	int flag;
   1370 {
   1371 	register struct zs_chanstate *cs;
   1372 	register int s, unit = minor(tp->t_dev);
   1373 	struct zs_softc *sc = zs_cd.cd_devs[unit >> 1];
   1374 
   1375 	cs = &sc->sc_cs[unit & 1];
   1376 	s = splzs();
   1377 	if (tp->t_state & TS_BUSY) {
   1378 		/*
   1379 		 * Device is transmitting; must stop it.
   1380 		 */
   1381 		cs->cs_tbc = 0;
   1382 		if ((tp->t_state & TS_TTSTOP) == 0)
   1383 			tp->t_state |= TS_FLUSH;
   1384 	}
   1385 	splx(s);
   1386 }
   1387 
   1388 /*
   1389  * Set ZS tty parameters from termios.
   1390  *
   1391  * This routine makes use of the fact that only registers
   1392  * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
   1393  */
   1394 static int
   1395 zsparam(tp, t)
   1396 	register struct tty *tp;
   1397 	register struct termios *t;
   1398 {
   1399 	int unit = minor(tp->t_dev);
   1400 	struct zs_softc *sc = zs_cd.cd_devs[unit >> 1];
   1401 	register struct zs_chanstate *cs = &sc->sc_cs[unit & 1];
   1402 	register int tmp, tmp5, cflag, s;
   1403 
   1404 	/*
   1405 	 * Because PCLK is only run at 4.9 MHz, the fastest we
   1406 	 * can go is 51200 baud (this corresponds to TC=1).
   1407 	 * This is somewhat unfortunate as there is no real
   1408 	 * reason we should not be able to handle higher rates.
   1409 	 */
   1410 	tmp = t->c_ospeed;
   1411 	if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
   1412 		return (EINVAL);
   1413 	if (tmp == 0) {
   1414 		/* stty 0 => drop DTR and RTS */
   1415 		zs_modem(cs, 0);
   1416 		return (0);
   1417 	}
   1418 	tmp = BPS_TO_TCONST(PCLK / 16, tmp);
   1419 #ifdef ALLOW_TC_EQUAL_ZERO
   1420 	if (tmp < 0)
   1421 #else
   1422 	if (tmp < 1)
   1423 #endif
   1424 		return (EINVAL);
   1425 
   1426 	cflag = t->c_cflag;
   1427 	tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
   1428 	tp->t_cflag = cflag;
   1429 
   1430 	/*
   1431 	 * Block interrupts so that state will not
   1432 	 * be altered until we are done setting it up.
   1433 	 */
   1434 	s = splzs();
   1435 	cs->cs_preg[12] = tmp;
   1436 	cs->cs_preg[13] = tmp >> 8;
   1437 	cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
   1438 	switch (cflag & CSIZE) {
   1439 	case CS5:
   1440 		tmp = ZSWR3_RX_5;
   1441 		tmp5 = ZSWR5_TX_5;
   1442 		break;
   1443 	case CS6:
   1444 		tmp = ZSWR3_RX_6;
   1445 		tmp5 = ZSWR5_TX_6;
   1446 		break;
   1447 	case CS7:
   1448 		tmp = ZSWR3_RX_7;
   1449 		tmp5 = ZSWR5_TX_7;
   1450 		break;
   1451 	case CS8:
   1452 	default:
   1453 		tmp = ZSWR3_RX_8;
   1454 		tmp5 = ZSWR5_TX_8;
   1455 		break;
   1456 	}
   1457 
   1458 	/*
   1459 	 * Output hardware flow control on the chip is horrendous: if
   1460 	 * carrier detect drops, the receiver is disabled.  Hence we
   1461 	 * can only do this when the carrier is on.
   1462 	 */
   1463 	tmp |= ZSWR3_RX_ENABLE;
   1464 	if (cflag & CCTS_OFLOW) {
   1465 		if (cs->cs_zc->zc_csr & ZSRR0_DCD)
   1466 			tmp |= ZSWR3_HFC;
   1467 		ZS_DELAY();
   1468 	}
   1469 	cs->cs_preg[3] = tmp;
   1470 	cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
   1471 
   1472 	tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
   1473 	if ((cflag & PARODD) == 0)
   1474 		tmp |= ZSWR4_EVENP;
   1475 	if (cflag & PARENB)
   1476 		tmp |= ZSWR4_PARENB;
   1477 	cs->cs_preg[4] = tmp;
   1478 	cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR;
   1479 	cs->cs_preg[10] = ZSWR10_NRZ;
   1480 	cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
   1481 	cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
   1482 	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
   1483 
   1484 	/*
   1485 	 * If nothing is being transmitted, set up new current values,
   1486 	 * else mark them as pending.
   1487 	 */
   1488 	if (cs->cs_heldchange == 0) {
   1489 		if (cs->cs_ttyp->t_state & TS_BUSY) {
   1490 			cs->cs_heldtbc = cs->cs_tbc;
   1491 			cs->cs_tbc = 0;
   1492 			cs->cs_heldchange = 1;
   1493 		} else {
   1494 			bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
   1495 			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
   1496 		}
   1497 	}
   1498 	splx(s);
   1499 	return (0);
   1500 }
   1501 
   1502 /*
   1503  * Raise or lower modem control (DTR/RTS) signals.  If a character is
   1504  * in transmission, the change is deferred.
   1505  */
   1506 static void
   1507 zs_modem(cs, onoff)
   1508 	struct zs_chanstate *cs;
   1509 	int onoff;
   1510 {
   1511 	int s, bis, and;
   1512 
   1513 	if (onoff) {
   1514 		bis = ZSWR5_DTR | ZSWR5_RTS;
   1515 		and = ~0;
   1516 	} else {
   1517 		bis = 0;
   1518 		and = ~(ZSWR5_DTR | ZSWR5_RTS);
   1519 	}
   1520 	s = splzs();
   1521 	cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
   1522 	if (cs->cs_heldchange == 0) {
   1523 		if (cs->cs_ttyp->t_state & TS_BUSY) {
   1524 			cs->cs_heldtbc = cs->cs_tbc;
   1525 			cs->cs_tbc = 0;
   1526 			cs->cs_heldchange = 1;
   1527 		} else {
   1528 			cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
   1529 			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
   1530 		}
   1531 	}
   1532 	splx(s);
   1533 }
   1534 
   1535 /*
   1536  * Write the given register set to the given zs channel in the proper order.
   1537  * The channel must not be transmitting at the time.  The receiver will
   1538  * be disabled for the time it takes to write all the registers.
   1539  */
   1540 static void
   1541 zs_loadchannelregs(zc, reg)
   1542 	volatile struct zschan *zc;
   1543 	u_char *reg;
   1544 {
   1545 	int i;
   1546 
   1547 	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
   1548 	ZS_DELAY();
   1549 	i = zc->zc_data;		/* drain fifo */
   1550 	ZS_DELAY();
   1551 	i = zc->zc_data;
   1552 	ZS_DELAY();
   1553 	i = zc->zc_data;
   1554 	ZS_DELAY();
   1555 	ZS_WRITE(zc, 4, reg[4]);
   1556 	ZS_WRITE(zc, 10, reg[10]);
   1557 	ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
   1558 	ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
   1559 	ZS_WRITE(zc, 1, reg[1]);
   1560 	ZS_WRITE(zc, 9, reg[9]);
   1561 	ZS_WRITE(zc, 11, reg[11]);
   1562 	ZS_WRITE(zc, 12, reg[12]);
   1563 	ZS_WRITE(zc, 13, reg[13]);
   1564 	ZS_WRITE(zc, 14, reg[14]);
   1565 	ZS_WRITE(zc, 15, reg[15]);
   1566 	ZS_WRITE(zc, 3, reg[3]);
   1567 	ZS_WRITE(zc, 5, reg[5]);
   1568 }
   1569 
   1570 #ifdef KGDB
   1571 /*
   1572  * Get a character from the given kgdb channel.  Called at splhigh().
   1573  */
   1574 static int
   1575 zs_kgdb_getc(arg)
   1576 	void *arg;
   1577 {
   1578 	register volatile struct zschan *zc = (volatile struct zschan *)arg;
   1579 	u_char c;
   1580 
   1581 	while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
   1582 		ZS_DELAY();
   1583 	c = zc->zc_data;
   1584 	ZS_DELAY();
   1585 	return c;
   1586 }
   1587 
   1588 /*
   1589  * Put a character to the given kgdb channel.  Called at splhigh().
   1590  */
   1591 static void
   1592 zs_kgdb_putc(arg, c)
   1593 	void *arg;
   1594 	int c;
   1595 {
   1596 	register volatile struct zschan *zc = (volatile struct zschan *)arg;
   1597 
   1598 	while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
   1599 		ZS_DELAY();
   1600 	zc->zc_data = c;
   1601 	ZS_DELAY();
   1602 }
   1603 
   1604 /*
   1605  * Set up for kgdb; called at boot time before configuration.
   1606  * KGDB interrupts will be enabled later when zs0 is configured.
   1607  */
   1608 void
   1609 zs_kgdb_init()
   1610 {
   1611 	volatile struct zsdevice *addr;
   1612 	volatile struct zschan *zc;
   1613 	int unit, zs;
   1614 
   1615 	if (major(kgdb_dev) != ZSMAJOR)
   1616 		return;
   1617 	unit = minor(kgdb_dev);
   1618 	/*
   1619 	 * Unit must be 0 or 1 (zs0).
   1620 	 */
   1621 	if ((unsigned)unit >= ZS_KBD) {
   1622 		printf("zs_kgdb_init: bad minor dev %d\n", unit);
   1623 		return;
   1624 	}
   1625 	zs = unit >> 1;
   1626 	if ((addr = zsaddr[zs]) == NULL)
   1627 		addr = zsaddr[zs] = (volatile struct zsdevice *)findzs(zs);
   1628 	unit &= 1;
   1629 	zc = unit == 0 ? &addr->zs_chan[ZS_CHAN_A] : &addr->zs_chan[ZS_CHAN_B];
   1630 	zs_kgdb_savedspeed = zs_getspeed(zc);
   1631 	printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
   1632 	    zs, unit + 'a', kgdb_rate);
   1633 	zs_reset(zc, 1, kgdb_rate);
   1634 	kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
   1635 }
   1636 #endif /* KGDB */
   1637