zs.c revision 1.49 1 /* $NetBSD: zs.c,v 1.49 1997/08/31 21:26:37 pk Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 *
44 * @(#)zs.c 8.1 (Berkeley) 7/19/93
45 */
46
47 /*
48 * Zilog Z8530 (ZSCC) driver.
49 *
50 * Runs two tty ports (ttya and ttyb) on zs0,
51 * and runs a keyboard and mouse on zs1, and
52 * possibly two more tty ports (ttyc and ttyd) on zs2.
53 *
54 * This driver knows far too much about chip to usage mappings.
55 */
56 #include "zs.h"
57
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/proc.h>
61 #include <sys/device.h>
62 #include <sys/file.h>
63 #include <sys/ioctl.h>
64 #include <sys/malloc.h>
65 #include <sys/tty.h>
66 #include <sys/time.h>
67 #include <sys/kernel.h>
68 #include <sys/syslog.h>
69 #include <sys/conf.h>
70
71 #include <machine/autoconf.h>
72 #include <machine/conf.h>
73 #include <machine/cpu.h>
74 #include <machine/kbd.h>
75
76 #include <sparc/sparc/vaddrs.h>
77 #include <sparc/sparc/auxreg.h>
78 #include <dev/ic/z8530reg.h>
79 #include <sparc/dev/zsvar.h>
80
81 #ifdef KGDB
82 #include <sys/kgdb.h>
83 #include <machine/remote-sl.h>
84 #endif
85
86 #define ZSMAJOR 12 /* XXX */
87
88 #define ZS_KBD 2 /* XXX */
89 #define ZS_MOUSE 3 /* XXX */
90
91 /* the magic number below was stolen from the Sprite source. */
92 #define PCLK (19660800/4) /* PCLK pin input clock rate */
93
94 /*
95 * Select software interrupt bit based on TTY ipl.
96 */
97 #if PIL_TTY == 1
98 # define IE_ZSSOFT IE_L1
99 #elif PIL_TTY == 4
100 # define IE_ZSSOFT IE_L4
101 #elif PIL_TTY == 6
102 # define IE_ZSSOFT IE_L6
103 #else
104 # error "no suitable software interrupt bit"
105 #endif
106
107 /*
108 * Software state per found chip.
109 */
110 struct zs_softc {
111 struct device sc_dev; /* base device */
112 volatile struct zsdevice *sc_zs; /* chip registers */
113 struct evcnt sc_intrcnt; /* count interrupts */
114 struct zs_chanstate sc_cs[2]; /* chan A/B software state */
115 };
116
117 /* Definition of the driver for autoconfig. */
118 static int zsmatch __P((struct device *, struct cfdata *, void *));
119 static void zsattach __P((struct device *, struct device *, void *));
120
121 struct cfattach zs_ca = {
122 sizeof(struct zs_softc), zsmatch, zsattach
123 };
124
125 struct cfdriver zs_cd = {
126 NULL, "zs", DV_TTY
127 };
128
129 /* Interrupt handlers. */
130 static int zshard __P((void *));
131 static struct intrhand levelhard = { zshard };
132 static int zssoft __P((void *));
133 static struct intrhand levelsoft = { zssoft };
134
135 struct zs_chanstate *zslist;
136
137 /* Routines called from other code. */
138 static void zsiopen __P((struct tty *));
139 static void zsiclose __P((struct tty *));
140 static void zsstart __P((struct tty *));
141 static int zsparam __P((struct tty *, struct termios *));
142
143 /* Routines purely local to this driver. */
144 static int zs_getspeed __P((volatile struct zschan *));
145 #ifdef KGDB
146 static void zs_reset __P((volatile struct zschan *, int, int));
147 #endif
148 static void zs_modem __P((struct zs_chanstate *, int));
149 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *));
150
151 /* Console stuff. */
152 static struct tty *zs_ctty; /* console `struct tty *' */
153 static int zs_consin = -1, zs_consout = -1;
154 static struct zs_chanstate *zs_conscs = NULL; /*console channel state */
155 static void zscnputc __P((int)); /* console putc function */
156 static volatile struct zschan *zs_conschan;
157 static struct tty *zs_checkcons __P((struct zs_softc *, int,
158 struct zs_chanstate *));
159
160 #ifdef KGDB
161 /* KGDB stuff. Must reboot to change zs_kgdbunit. */
162 extern int kgdb_dev, kgdb_rate;
163 static int zs_kgdb_savedspeed;
164 static void zs_checkkgdb __P((int, struct zs_chanstate *, struct tty *));
165 void zskgdb __P((int));
166 static int zs_kgdb_getc __P((void *));
167 static void zs_kgdb_putc __P((void *, int));
168 #endif
169
170 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
171 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
172 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
173
174 void zsabort __P((int));
175 static void zsoverrun __P((int, long *, char *));
176
177 static volatile struct zsdevice *zsaddr[NZS]; /* XXX, but saves work */
178
179 /*
180 * Console keyboard L1-A processing is done in the hardware interrupt code,
181 * so we need to duplicate some of the console keyboard decode state. (We
182 * must not use the regular state as the hardware code keeps ahead of the
183 * software state: the software state tracks the most recent ring input but
184 * the hardware state tracks the most recent ZSCC input.) See also kbd.h.
185 */
186 static struct conk_state { /* console keyboard state */
187 char conk_id; /* true => ID coming up (console only) */
188 char conk_l1; /* true => L1 pressed (console only) */
189 } zsconk_state;
190
191 int zshardscope;
192 int zsshortcuts; /* number of "shortcut" software interrupts */
193
194 #ifdef SUN4
195 static u_int zs_read __P((volatile struct zschan *, u_int reg));
196 static u_int zs_write __P((volatile struct zschan *, u_int, u_int));
197
198 static u_int
199 zs_read(zc, reg)
200 volatile struct zschan *zc;
201 u_int reg;
202 {
203 u_char val;
204
205 zc->zc_csr = reg;
206 ZS_DELAY();
207 val = zc->zc_csr;
208 ZS_DELAY();
209 return val;
210 }
211
212 static u_int
213 zs_write(zc, reg, val)
214 volatile struct zschan *zc;
215 u_int reg, val;
216 {
217 zc->zc_csr = reg;
218 ZS_DELAY();
219 zc->zc_csr = val;
220 ZS_DELAY();
221 return val;
222 }
223 #endif /* SUN4 */
224
225 /*
226 * Match slave number to zs unit number, so that misconfiguration will
227 * not set up the keyboard as ttya, etc.
228 */
229 static int
230 zsmatch(parent, cf, aux)
231 struct device *parent;
232 struct cfdata *cf;
233 void *aux;
234 {
235 struct confargs *ca = aux;
236 struct romaux *ra = &ca->ca_ra;
237
238 if (strcmp(cf->cf_driver->cd_name, ra->ra_name))
239 return (0);
240 if ((ca->ca_bustype == BUS_MAIN && !CPU_ISSUN4) ||
241 (ca->ca_bustype == BUS_OBIO && CPU_ISSUN4M))
242 return (getpropint(ra->ra_node, "slave", -2) == cf->cf_unit);
243 ra->ra_len = NBPG;
244 return (probeget(ra->ra_vaddr, 1) != -1);
245 }
246
247 /*
248 * Attach a found zs.
249 *
250 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
251 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
252 */
253 static void
254 zsattach(parent, dev, aux)
255 struct device *parent;
256 struct device *dev;
257 void *aux;
258 {
259 register int zs = dev->dv_unit, unit;
260 register struct zs_softc *sc;
261 register struct zs_chanstate *cs;
262 register volatile struct zsdevice *addr;
263 register struct tty *tp, *ctp;
264 register struct confargs *ca = aux;
265 register struct romaux *ra = &ca->ca_ra;
266 int pri;
267 static int didintr, prevpri;
268 int ringsize;
269
270 if ((addr = zsaddr[zs]) == NULL)
271 addr = zsaddr[zs] = (volatile struct zsdevice *)findzs(zs);
272 if (ca->ca_bustype==BUS_MAIN)
273 if ((void *)addr != ra->ra_vaddr)
274 panic("zsattach");
275 if (ra->ra_nintr != 1) {
276 printf(": expected 1 interrupt, got %d\n", ra->ra_nintr);
277 return;
278 }
279 pri = ra->ra_intr[0].int_pri;
280 printf(" pri %d, softpri %d\n", pri, PIL_TTY);
281 if (!didintr) {
282 didintr = 1;
283 prevpri = pri;
284 intr_establish(pri, &levelhard);
285 intr_establish(PIL_TTY, &levelsoft);
286 } else if (pri != prevpri)
287 panic("broken zs interrupt scheme");
288 sc = (struct zs_softc *)dev;
289 evcnt_attach(&sc->sc_dev, "intr", &sc->sc_intrcnt);
290 sc->sc_zs = addr;
291 unit = zs * 2;
292 cs = sc->sc_cs;
293
294 /* link into interrupt list with order (A,B) (B=A+1) */
295 cs[0].cs_next = &cs[1];
296 cs[0].cs_sc = sc;
297 cs[1].cs_next = zslist;
298 cs[1].cs_sc = sc;
299 zslist = cs;
300
301 cs->cs_unit = unit;
302 cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_A]);
303 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A];
304 if ((ctp = zs_checkcons(sc, unit, cs)) != NULL)
305 tp = ctp;
306 else {
307 tp = ttymalloc();
308 tp->t_dev = makedev(ZSMAJOR, unit);
309 tp->t_oproc = zsstart;
310 tp->t_param = zsparam;
311 }
312 cs->cs_ttyp = tp;
313 #ifdef KGDB
314 if (ctp == NULL)
315 zs_checkkgdb(unit, cs, tp);
316 #endif
317 if (unit == ZS_KBD) {
318 /*
319 * Keyboard: tell /dev/kbd driver how to talk to us.
320 */
321 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
322 tp->t_cflag = CS8;
323 kbd_serial(tp, zsiopen, zsiclose);
324 cs->cs_conk = 1; /* do L1-A processing */
325 ringsize = 128;
326 } else {
327 if (tp != ctp)
328 tty_attach(tp);
329 ringsize = 4096;
330 if (unit == zs_consout)
331 zs_conscs = cs;
332 }
333 cs->cs_ringmask = ringsize - 1;
334 cs->cs_rbuf = malloc((u_long)ringsize * sizeof(*cs->cs_rbuf),
335 M_DEVBUF, M_NOWAIT);
336
337 unit++;
338 cs++;
339 cs->cs_unit = unit;
340 cs->cs_speed = zs_getspeed(&addr->zs_chan[ZS_CHAN_B]);
341 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B];
342 if ((ctp = zs_checkcons(sc, unit, cs)) != NULL)
343 tp = ctp;
344 else {
345 tp = ttymalloc();
346 tp->t_dev = makedev(ZSMAJOR, unit);
347 tp->t_oproc = zsstart;
348 tp->t_param = zsparam;
349 }
350 cs->cs_ttyp = tp;
351 #ifdef KGDB
352 if (ctp == NULL)
353 zs_checkkgdb(unit, cs, tp);
354 #endif
355 if (unit == ZS_MOUSE) {
356 /*
357 * Mouse: tell /dev/mouse driver how to talk to us.
358 */
359 tp->t_ispeed = tp->t_ospeed = B1200;
360 tp->t_cflag = CS8;
361 ms_serial(tp, zsiopen, zsiclose);
362 ringsize = 128;
363 } else {
364 if (tp != ctp)
365 tty_attach(tp);
366 ringsize = 4096;
367 if (unit == zs_consout)
368 zs_conscs = cs;
369 }
370 cs->cs_ringmask = ringsize - 1;
371 cs->cs_rbuf = malloc((u_long)ringsize * sizeof(*cs->cs_rbuf),
372 M_DEVBUF, M_NOWAIT);
373 }
374
375 #ifdef KGDB
376 /*
377 * Put a channel in a known state. Interrupts may be left disabled
378 * or enabled, as desired.
379 */
380 static void
381 zs_reset(zc, inten, speed)
382 volatile struct zschan *zc;
383 int inten, speed;
384 {
385 int tconst;
386 static u_char reg[16] = {
387 0,
388 0,
389 0,
390 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
391 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
392 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
393 0,
394 0,
395 0,
396 0,
397 ZSWR10_NRZ,
398 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
399 0,
400 0,
401 ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
402 ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
403 };
404
405 reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR;
406 tconst = BPS_TO_TCONST(PCLK / 16, speed);
407 reg[12] = tconst;
408 reg[13] = tconst >> 8;
409 zs_loadchannelregs(zc, reg);
410 }
411 #endif
412
413 /*
414 * Declare the given tty (which is in fact &cons) as a console input
415 * or output. This happens before the zs chip is attached; the hookup
416 * is finished later, in zs_setcons() below.
417 *
418 * This is used only for ports a and b. The console keyboard is decoded
419 * independently (we always send unit-2 input to /dev/kbd, which will
420 * direct it to /dev/console if appropriate).
421 */
422 void
423 zsconsole(tp, unit, out, fnstop)
424 register struct tty *tp;
425 register int unit;
426 int out;
427 void (**fnstop) __P((struct tty *, int));
428 {
429 int zs;
430 volatile struct zsdevice *addr;
431
432 if (unit >= ZS_KBD)
433 panic("zsconsole");
434 if (out) {
435 zs_consout = unit;
436 zs = unit >> 1;
437 if ((addr = zsaddr[zs]) == NULL)
438 addr = zsaddr[zs] = (volatile struct zsdevice *)findzs(zs);
439 zs_conschan = (unit & 1) == 0 ? &addr->zs_chan[ZS_CHAN_A] :
440 &addr->zs_chan[ZS_CHAN_B];
441 v_putc = zscnputc;
442 } else
443 zs_consin = unit;
444 if (fnstop)
445 *fnstop = &zsstop;
446 zs_ctty = tp;
447 }
448
449 /*
450 * Polled console output putchar.
451 */
452 static void
453 zscnputc(c)
454 int c;
455 {
456 register volatile struct zschan *zc = zs_conschan;
457 register int s;
458
459 if (c == '\n')
460 zscnputc('\r');
461 /*
462 * Must block output interrupts (i.e., raise to >= splzs) without
463 * lowering current ipl. Need a better way.
464 */
465 s = splhigh();
466 if (CPU_ISSUN4C && s <= (12 << 8)) /* XXX */
467 (void) splzs();
468 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
469 ZS_DELAY();
470 /*
471 * If transmitter was busy doing regular tty I/O (ZSWR1_TIE on),
472 * defer our output until the transmit interrupt runs. We still
473 * sync with TX_READY so we can get by with a single-char "queue".
474 */
475 if (zs_conscs != NULL && (zs_conscs->cs_creg[1] & ZSWR1_TIE)) {
476 /*
477 * If previous not yet done, send it now; zsxint()
478 * will field the interrupt for our char, but doesn't
479 * care. We're running at sufficiently high spl for
480 * this to work.
481 */
482 if (zs_conscs->cs_deferred_cc != 0)
483 zc->zc_data = zs_conscs->cs_deferred_cc;
484 zs_conscs->cs_deferred_cc = c;
485 splx(s);
486 return;
487 }
488 zc->zc_data = c;
489 ZS_DELAY();
490 splx(s);
491 }
492
493 /*
494 * Set up the given unit as console input, output, both, or neither, as
495 * needed. Return console tty if it is to receive console input.
496 */
497 static struct tty *
498 zs_checkcons(sc, unit, cs)
499 struct zs_softc *sc;
500 int unit;
501 struct zs_chanstate *cs;
502 {
503 register struct tty *tp;
504 char *i, *o;
505
506 if ((tp = zs_ctty) == NULL) /* XXX */
507 return (0);
508 i = zs_consin == unit ? "input" : NULL;
509 o = zs_consout == unit ? "output" : NULL;
510 if (i == NULL && o == NULL)
511 return (0);
512
513 /* rewire the minor device (gack) */
514 tp->t_dev = makedev(major(tp->t_dev), unit);
515
516 /*
517 * Rewire input and/or output. Note that baud rate reflects
518 * input settings, not output settings, but we can do no better
519 * if the console is split across two ports.
520 *
521 * XXX split consoles don't work anyway -- this needs to be
522 * thrown away and redone
523 */
524 if (i) {
525 tp->t_param = zsparam;
526 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
527 tp->t_cflag = CS8;
528 ttsetwater(tp);
529 }
530 if (o) {
531 tp->t_oproc = zsstart;
532 }
533 printf("%s%c: console %s\n",
534 sc->sc_dev.dv_xname, (unit & 1) + 'a', i ? (o ? "i/o" : i) : o);
535 cs->cs_consio = 1;
536 cs->cs_brkabort = 1;
537 return (tp);
538 }
539
540 #ifdef KGDB
541 /*
542 * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init).
543 * Pick up the current speed and character size and restore the original
544 * speed.
545 */
546 static void
547 zs_checkkgdb(unit, cs, tp)
548 int unit;
549 struct zs_chanstate *cs;
550 struct tty *tp;
551 {
552
553 if (kgdb_dev == makedev(ZSMAJOR, unit)) {
554 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
555 tp->t_cflag = CS8;
556 cs->cs_kgdb = 1;
557 cs->cs_speed = zs_kgdb_savedspeed;
558 (void) zsparam(tp, &tp->t_termios);
559 }
560 }
561 #endif
562
563 /*
564 * Compute the current baud rate given a ZSCC channel.
565 */
566 static int
567 zs_getspeed(zc)
568 register volatile struct zschan *zc;
569 {
570 register int tconst;
571
572 tconst = ZS_READ(zc, 12);
573 tconst |= ZS_READ(zc, 13) << 8;
574 return (TCONST_TO_BPS(PCLK / 16, tconst));
575 }
576
577
578 /*
579 * Do an internal open.
580 */
581 static void
582 zsiopen(tp)
583 struct tty *tp;
584 {
585
586 (void) zsparam(tp, &tp->t_termios);
587 ttsetwater(tp);
588 tp->t_state = TS_ISOPEN | TS_CARR_ON;
589 }
590
591 /*
592 * Do an internal close. Eventually we should shut off the chip when both
593 * ports on it are closed.
594 */
595 static void
596 zsiclose(tp)
597 struct tty *tp;
598 {
599
600 ttylclose(tp, 0); /* ??? */
601 ttyclose(tp); /* ??? */
602 tp->t_state = 0;
603 }
604
605
606 /*
607 * Open a zs serial port. This interface may not be used to open
608 * the keyboard and mouse ports. (XXX)
609 */
610 int
611 zsopen(dev, flags, mode, p)
612 dev_t dev;
613 int flags;
614 int mode;
615 struct proc *p;
616 {
617 register struct tty *tp;
618 register struct zs_chanstate *cs;
619 struct zs_softc *sc;
620 int unit = minor(dev), zs = unit >> 1, error, s;
621
622 if (zs >= zs_cd.cd_ndevs || (sc = zs_cd.cd_devs[zs]) == NULL ||
623 unit == ZS_KBD || unit == ZS_MOUSE)
624 return (ENXIO);
625 cs = &sc->sc_cs[unit & 1];
626 if (cs->cs_consio)
627 return (ENXIO); /* ??? */
628 tp = cs->cs_ttyp;
629 s = spltty();
630 if ((tp->t_state & TS_ISOPEN) == 0) {
631 ttychars(tp);
632 if (tp->t_ispeed == 0) {
633 tp->t_iflag = TTYDEF_IFLAG;
634 tp->t_oflag = TTYDEF_OFLAG;
635 tp->t_cflag = TTYDEF_CFLAG;
636 tp->t_lflag = TTYDEF_LFLAG;
637 tp->t_ispeed = tp->t_ospeed = cs->cs_speed;
638 }
639 (void) zsparam(tp, &tp->t_termios);
640 ttsetwater(tp);
641 } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
642 splx(s);
643 return (EBUSY);
644 }
645 error = 0;
646 for (;;) {
647 register int rr0;
648
649 /* loop, turning on the device, until carrier present */
650 zs_modem(cs, 1);
651 /* May never get status intr if carrier already on. -gwr */
652 rr0 = cs->cs_zc->zc_csr;
653 ZS_DELAY();
654 if ((rr0 & ZSRR0_DCD) || cs->cs_softcar)
655 tp->t_state |= TS_CARR_ON;
656 if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
657 tp->t_state & TS_CARR_ON)
658 break;
659 tp->t_state |= TS_WOPEN;
660 error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
661 ttopen, 0);
662 if (error) {
663 if (!(tp->t_state & TS_ISOPEN)) {
664 zs_modem(cs, 0);
665 tp->t_state &= ~TS_WOPEN;
666 ttwakeup(tp);
667 }
668 splx(s);
669 return error;
670 }
671 }
672 splx(s);
673 if (error == 0)
674 error = linesw[tp->t_line].l_open(dev, tp);
675 if (error)
676 zs_modem(cs, 0);
677 return (error);
678 }
679
680 /*
681 * Close a zs serial port.
682 */
683 int
684 zsclose(dev, flags, mode, p)
685 dev_t dev;
686 int flags;
687 int mode;
688 struct proc *p;
689 {
690 register struct zs_chanstate *cs;
691 register struct tty *tp;
692 struct zs_softc *sc;
693 int unit = minor(dev), s;
694
695 sc = zs_cd.cd_devs[unit >> 1];
696 cs = &sc->sc_cs[unit & 1];
697 tp = cs->cs_ttyp;
698 linesw[tp->t_line].l_close(tp, flags);
699 if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
700 (tp->t_state & TS_ISOPEN) == 0) {
701 zs_modem(cs, 0);
702 /* hold low for 1 second */
703 (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
704 }
705 if (cs->cs_creg[5] & ZSWR5_BREAK)
706 {
707 s = splzs();
708 cs->cs_preg[5] &= ~ZSWR5_BREAK;
709 cs->cs_creg[5] &= ~ZSWR5_BREAK;
710 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
711 splx(s);
712 }
713 ttyclose(tp);
714 #ifdef KGDB
715 /* Reset the speed if we're doing kgdb on this port */
716 if (cs->cs_kgdb) {
717 tp->t_ispeed = tp->t_ospeed = kgdb_rate;
718 (void) zsparam(tp, &tp->t_termios);
719 }
720 #endif
721 return (0);
722 }
723
724 /*
725 * Read/write zs serial port.
726 */
727 int
728 zsread(dev, uio, flags)
729 dev_t dev;
730 struct uio *uio;
731 int flags;
732 {
733 register struct zs_chanstate *cs;
734 register struct zs_softc *sc;
735 register struct tty *tp;
736 int unit = minor(dev);
737
738 sc = zs_cd.cd_devs[unit >> 1];
739 cs = &sc->sc_cs[unit & 1];
740 tp = cs->cs_ttyp;
741
742 return (linesw[tp->t_line].l_read(tp, uio, flags));
743
744 }
745
746 int
747 zswrite(dev, uio, flags)
748 dev_t dev;
749 struct uio *uio;
750 int flags;
751 {
752 register struct zs_chanstate *cs;
753 register struct zs_softc *sc;
754 register struct tty *tp;
755 int unit = minor(dev);
756
757 sc = zs_cd.cd_devs[unit >> 1];
758 cs = &sc->sc_cs[unit & 1];
759 tp = cs->cs_ttyp;
760
761 return (linesw[tp->t_line].l_write(tp, uio, flags));
762 }
763
764 struct tty *
765 zstty(dev)
766 dev_t dev;
767 {
768 register struct zs_chanstate *cs;
769 register struct zs_softc *sc;
770 int unit = minor(dev);
771
772 sc = zs_cd.cd_devs[unit >> 1];
773 cs = &sc->sc_cs[unit & 1];
774
775 return (cs->cs_ttyp);
776 }
777
778 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *));
779 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *));
780 static int zssint __P((struct zs_chanstate *, volatile struct zschan *));
781
782 /*
783 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that
784 * channels are kept in (A,B) pairs.
785 *
786 * Do just a little, then get out; set a software interrupt if more
787 * work is needed.
788 *
789 * We deliberately ignore the vectoring Zilog gives us, and match up
790 * only the number of `reset interrupt under service' operations, not
791 * the order.
792 */
793 /* ARGSUSED */
794 int
795 zshard(intrarg)
796 void *intrarg;
797 {
798 register struct zs_chanstate *a;
799 #define b (a + 1)
800 register volatile struct zschan *zc;
801 register int rr3, intflags = 0, v, i, ringmask;
802
803 #define ZSHARD_NEED_SOFTINTR 1
804 #define ZSHARD_WAS_SERVICED 2
805 #define ZSHARD_CHIP_GOTINTR 4
806
807 for (a = zslist; a != NULL; a = b->cs_next) {
808 ringmask = a->cs_ringmask;
809 rr3 = ZS_READ(a->cs_zc, 3);
810 if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
811 intflags |= (ZSHARD_CHIP_GOTINTR|ZSHARD_WAS_SERVICED);
812 zc = a->cs_zc;
813 i = a->cs_rbput;
814 if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
815 a->cs_rbuf[i++ & ringmask] = v;
816 intflags |= ZSHARD_NEED_SOFTINTR;
817 }
818 if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
819 a->cs_rbuf[i++ & ringmask] = v;
820 intflags |= ZSHARD_NEED_SOFTINTR;
821 }
822 if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
823 a->cs_rbuf[i++ & ringmask] = v;
824 intflags |= ZSHARD_NEED_SOFTINTR;
825 }
826 a->cs_rbput = i;
827 }
828 if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
829 intflags |= (ZSHARD_CHIP_GOTINTR|ZSHARD_WAS_SERVICED);
830 zc = b->cs_zc;
831 i = b->cs_rbput;
832 if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
833 b->cs_rbuf[i++ & ringmask] = v;
834 intflags |= ZSHARD_NEED_SOFTINTR;
835 }
836 if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
837 b->cs_rbuf[i++ & ringmask] = v;
838 intflags |= ZSHARD_NEED_SOFTINTR;
839 }
840 if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
841 b->cs_rbuf[i++ & ringmask] = v;
842 intflags |= ZSHARD_NEED_SOFTINTR;
843 }
844 b->cs_rbput = i;
845 }
846 if (intflags & ZSHARD_CHIP_GOTINTR) {
847 a->cs_sc->sc_intrcnt.ev_count++;
848 intflags &= ~ZSHARD_CHIP_GOTINTR;
849 }
850 }
851 #undef b
852
853 if (intflags & ZSHARD_NEED_SOFTINTR) {
854 if (CPU_ISSUN4COR4M) {
855 /* XXX -- but this will go away when zshard moves to locore.s */
856 struct clockframe *p = intrarg;
857
858 if ((p->psr & PSR_PIL) < (PIL_TTY << 8)) {
859 zsshortcuts++;
860 (void) spltty();
861 if (zshardscope) {
862 LED_ON;
863 LED_OFF;
864 }
865 return (zssoft(intrarg));
866 }
867 }
868
869 #if defined(SUN4M)
870 if (CPU_ISSUN4M)
871 raise(0, PIL_TTY);
872 else
873 #endif
874 ienab_bis(IE_ZSSOFT);
875 }
876 return (intflags & ZSHARD_WAS_SERVICED);
877 }
878
879 static int
880 zsrint(cs, zc)
881 register struct zs_chanstate *cs;
882 register volatile struct zschan *zc;
883 {
884 register u_int c = zc->zc_data;
885
886 ZS_DELAY();
887 if (cs->cs_conk) {
888 register struct conk_state *conk = &zsconk_state;
889
890 /*
891 * Check here for console abort function, so that we
892 * can abort even when interrupts are locking up the
893 * machine.
894 */
895 if (c == KBD_RESET) {
896 conk->conk_id = 1; /* ignore next byte */
897 conk->conk_l1 = 0;
898 } else if (conk->conk_id)
899 conk->conk_id = 0; /* stop ignoring bytes */
900 else if (c == KBD_L1)
901 conk->conk_l1 = 1; /* L1 went down */
902 else if (c == (KBD_L1|KBD_UP))
903 conk->conk_l1 = 0; /* L1 went up */
904 else if (c == KBD_A && conk->conk_l1) {
905 zsabort(cs->cs_unit);
906 conk->conk_l1 = 0; /* we never see the up */
907 goto clearit; /* eat the A after L1-A */
908 }
909 }
910 #ifdef KGDB
911 if (c == FRAME_START && cs->cs_kgdb &&
912 (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) {
913 zskgdb(cs->cs_unit);
914 goto clearit;
915 }
916 #endif
917 /* compose receive character and status */
918 c <<= 8;
919 c |= ZS_READ(zc, 1);
920
921 /* clear receive error & interrupt condition */
922 zc->zc_csr = ZSWR0_RESET_ERRORS;
923 ZS_DELAY();
924 zc->zc_csr = ZSWR0_CLR_INTR;
925 ZS_DELAY();
926
927 return (ZRING_MAKE(ZRING_RINT, c));
928
929 clearit:
930 zc->zc_csr = ZSWR0_RESET_ERRORS;
931 ZS_DELAY();
932 zc->zc_csr = ZSWR0_CLR_INTR;
933 ZS_DELAY();
934 return (0);
935 }
936
937 static int
938 zsxint(cs, zc)
939 register struct zs_chanstate *cs;
940 register volatile struct zschan *zc;
941 {
942 register int i = cs->cs_tbc;
943
944 if (cs->cs_deferred_cc != 0) {
945 /* Handle deferred zscnputc() output first */
946 zc->zc_data = cs->cs_deferred_cc;
947 cs->cs_deferred_cc = 0;
948 ZS_DELAY();
949 zc->zc_csr = ZSWR0_CLR_INTR;
950 ZS_DELAY();
951 return (0);
952 }
953 if (i == 0) {
954 zc->zc_csr = ZSWR0_RESET_TXINT;
955 ZS_DELAY();
956 zc->zc_csr = ZSWR0_CLR_INTR;
957 ZS_DELAY();
958 return (ZRING_MAKE(ZRING_XINT, 0));
959 }
960 cs->cs_tbc = i - 1;
961 zc->zc_data = *cs->cs_tba++;
962 ZS_DELAY();
963 zc->zc_csr = ZSWR0_CLR_INTR;
964 ZS_DELAY();
965 return (0);
966 }
967
968 static int
969 zssint(cs, zc)
970 register struct zs_chanstate *cs;
971 register volatile struct zschan *zc;
972 {
973 register u_int rr0;
974
975 rr0 = zc->zc_csr;
976 ZS_DELAY();
977 zc->zc_csr = ZSWR0_RESET_STATUS;
978 ZS_DELAY();
979 zc->zc_csr = ZSWR0_CLR_INTR;
980 ZS_DELAY();
981 /*
982 * The chip's hardware flow control is, as noted in zsreg.h,
983 * busted---if the DCD line goes low the chip shuts off the
984 * receiver (!). If we want hardware CTS flow control but do
985 * not have it, and carrier is now on, turn HFC on; if we have
986 * HFC now but carrier has gone low, turn it off.
987 */
988 if (rr0 & ZSRR0_DCD) {
989 if (cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
990 (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
991 cs->cs_creg[3] |= ZSWR3_HFC;
992 ZS_WRITE(zc, 3, cs->cs_creg[3]);
993 }
994 } else {
995 if (cs->cs_creg[3] & ZSWR3_HFC) {
996 cs->cs_creg[3] &= ~ZSWR3_HFC;
997 ZS_WRITE(zc, 3, cs->cs_creg[3]);
998 }
999 }
1000 if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) {
1001 /*
1002 * XXX This might not be necessary. Test and
1003 * delete if it isn't.
1004 */
1005 if (CPU_ISSUN4) {
1006 while (zc->zc_csr & ZSRR0_BREAK)
1007 ZS_DELAY();
1008 }
1009 zsabort(cs->cs_unit);
1010 return (0);
1011 }
1012 return (ZRING_MAKE(ZRING_SINT, rr0));
1013 }
1014
1015 void
1016 zsabort(unit)
1017 int unit;
1018 {
1019
1020 #if defined(KGDB)
1021 zskgdb(unit);
1022 #elif defined(DDB)
1023 Debugger();
1024 #else
1025 printf("stopping on keyboard abort\n");
1026 callrom();
1027 #endif
1028 }
1029
1030 #ifdef KGDB
1031 /*
1032 * KGDB framing character received: enter kernel debugger. This probably
1033 * should time out after a few seconds to avoid hanging on spurious input.
1034 */
1035 void
1036 zskgdb(unit)
1037 int unit;
1038 {
1039
1040 printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a');
1041 kgdb_connect(1);
1042 }
1043 #endif
1044
1045 /*
1046 * Print out a ring or fifo overrun error message.
1047 */
1048 static void
1049 zsoverrun(unit, ptime, what)
1050 int unit;
1051 long *ptime;
1052 char *what;
1053 {
1054
1055 if (*ptime != time.tv_sec) {
1056 *ptime = time.tv_sec;
1057 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
1058 (unit & 1) + 'a', what);
1059 }
1060 }
1061
1062 /*
1063 * ZS software interrupt. Scan all channels for deferred interrupts.
1064 */
1065 int
1066 zssoft(arg)
1067 void *arg;
1068 {
1069 register struct zs_chanstate *cs;
1070 register volatile struct zschan *zc;
1071 register struct linesw *line;
1072 register struct tty *tp;
1073 register int get, n, c, cc, unit, s, ringmask, ringsize;
1074 int retval = 0;
1075
1076 for (cs = zslist; cs != NULL; cs = cs->cs_next) {
1077 ringmask = cs->cs_ringmask;
1078 get = cs->cs_rbget;
1079 again:
1080 n = cs->cs_rbput; /* atomic */
1081 if (get == n) /* nothing more on this line */
1082 continue;
1083 retval = 1;
1084 unit = cs->cs_unit; /* set up to handle interrupts */
1085 zc = cs->cs_zc;
1086 tp = cs->cs_ttyp;
1087 line = &linesw[tp->t_line];
1088 /*
1089 * Compute the number of interrupts in the receive ring.
1090 * If the count is overlarge, we lost some events, and
1091 * must advance to the first valid one. It may get
1092 * overwritten if more data are arriving, but this is
1093 * too expensive to check and gains nothing (we already
1094 * lost out; all we can do at this point is trade one
1095 * kind of loss for another).
1096 */
1097 ringsize = ringmask + 1;
1098 n -= get;
1099 if (n > ringsize) {
1100 zsoverrun(unit, &cs->cs_rotime, "ring");
1101 get += n - ringsize;
1102 n = ringsize;
1103 }
1104 while (--n >= 0) {
1105 /* race to keep ahead of incoming interrupts */
1106 c = cs->cs_rbuf[get++ & ringmask];
1107 switch (ZRING_TYPE(c)) {
1108
1109 case ZRING_RINT:
1110 c = ZRING_VALUE(c);
1111 if (c & ZSRR1_DO)
1112 zsoverrun(unit, &cs->cs_fotime, "fifo");
1113 cc = c >> 8;
1114 if (c & ZSRR1_FE)
1115 cc |= TTY_FE;
1116 if (c & ZSRR1_PE)
1117 cc |= TTY_PE;
1118 /*
1119 * this should be done through
1120 * bstreams XXX gag choke
1121 */
1122 if (unit == ZS_KBD)
1123 kbd_rint(cc);
1124 else if (unit == ZS_MOUSE)
1125 ms_rint(cc);
1126 else
1127 line->l_rint(cc, tp);
1128 break;
1129
1130 case ZRING_XINT:
1131 /*
1132 * Transmit done: change registers and resume,
1133 * or clear BUSY.
1134 */
1135 if (cs->cs_heldchange) {
1136 s = splzs();
1137 c = zc->zc_csr;
1138 ZS_DELAY();
1139 if ((c & ZSRR0_DCD) == 0)
1140 cs->cs_preg[3] &= ~ZSWR3_HFC;
1141 bcopy((caddr_t)cs->cs_preg,
1142 (caddr_t)cs->cs_creg, 16);
1143 zs_loadchannelregs(zc, cs->cs_creg);
1144 splx(s);
1145 cs->cs_heldchange = 0;
1146 if (cs->cs_heldtbc &&
1147 (tp->t_state & TS_TTSTOP) == 0) {
1148 cs->cs_tbc = cs->cs_heldtbc - 1;
1149 zc->zc_data = *cs->cs_tba++;
1150 ZS_DELAY();
1151 goto again;
1152 }
1153 }
1154 tp->t_state &= ~TS_BUSY;
1155 if (tp->t_state & TS_FLUSH)
1156 tp->t_state &= ~TS_FLUSH;
1157 else
1158 ndflush(&tp->t_outq,
1159 cs->cs_tba - (caddr_t)tp->t_outq.c_cf);
1160 line->l_start(tp);
1161 break;
1162
1163 case ZRING_SINT:
1164 /*
1165 * Status line change. HFC bit is run in
1166 * hardware interrupt, to avoid locking
1167 * at splzs here.
1168 */
1169 c = ZRING_VALUE(c);
1170 if ((c ^ cs->cs_rr0) & ZSRR0_DCD) {
1171 cc = (c & ZSRR0_DCD) != 0;
1172 if (line->l_modem(tp, cc) == 0)
1173 zs_modem(cs, cc);
1174 }
1175 cs->cs_rr0 = c;
1176 break;
1177
1178 default:
1179 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (0x%x)\n",
1180 unit >> 1, (unit & 1) + 'a', c);
1181 break;
1182 }
1183 }
1184 cs->cs_rbget = get;
1185 goto again;
1186 }
1187 return (retval);
1188 }
1189
1190 int
1191 zsioctl(dev, cmd, data, flag, p)
1192 dev_t dev;
1193 u_long cmd;
1194 caddr_t data;
1195 int flag;
1196 struct proc *p;
1197 {
1198 int unit = minor(dev);
1199 struct zs_softc *sc = zs_cd.cd_devs[unit >> 1];
1200 register struct zs_chanstate *cs = &sc->sc_cs[unit & 1];
1201 register struct tty *tp = cs->cs_ttyp;
1202 register int error, s;
1203
1204 error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
1205 if (error >= 0)
1206 return (error);
1207 error = ttioctl(tp, cmd, data, flag, p);
1208 if (error >= 0)
1209 return (error);
1210
1211 switch (cmd) {
1212 case TIOCSBRK:
1213 s = splzs();
1214 cs->cs_preg[5] |= ZSWR5_BREAK;
1215 cs->cs_creg[5] |= ZSWR5_BREAK;
1216 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1217 splx(s);
1218 break;
1219 case TIOCCBRK:
1220 s = splzs();
1221 cs->cs_preg[5] &= ~ZSWR5_BREAK;
1222 cs->cs_creg[5] &= ~ZSWR5_BREAK;
1223 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1224 splx(s);
1225 break;
1226 case TIOCGFLAGS: {
1227 int bits = 0;
1228
1229 if (cs->cs_softcar)
1230 bits |= TIOCFLAG_SOFTCAR;
1231 if (cs->cs_creg[15] & ZSWR15_DCD_IE)
1232 bits |= TIOCFLAG_CLOCAL;
1233 if (cs->cs_creg[3] & ZSWR3_HFC)
1234 bits |= TIOCFLAG_CRTSCTS;
1235 *(int *)data = bits;
1236 break;
1237 }
1238 case TIOCSFLAGS: {
1239 int userbits;
1240
1241 error = suser(p->p_ucred, &p->p_acflag);
1242 if (error != 0)
1243 return (EPERM);
1244
1245 userbits = *(int *)data;
1246
1247 /*
1248 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
1249 # defaulting to software flow control.
1250 */
1251 if (userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
1252 return(EINVAL);
1253 if (userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */
1254 return(ENXIO);
1255
1256 s = splzs();
1257 if ((userbits & TIOCFLAG_SOFTCAR) || cs->cs_consio) {
1258 cs->cs_softcar = 1; /* turn on softcar */
1259 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
1260 cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
1261 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1262 } else if (userbits & TIOCFLAG_CLOCAL) {
1263 cs->cs_softcar = 0; /* turn off softcar */
1264 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
1265 cs->cs_creg[15] |= ZSWR15_DCD_IE;
1266 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1267 tp->t_termios.c_cflag |= CLOCAL;
1268 }
1269 if (userbits & TIOCFLAG_CRTSCTS) {
1270 cs->cs_preg[15] |= ZSWR15_CTS_IE;
1271 cs->cs_creg[15] |= ZSWR15_CTS_IE;
1272 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1273 cs->cs_preg[3] |= ZSWR3_HFC;
1274 cs->cs_creg[3] |= ZSWR3_HFC;
1275 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
1276 tp->t_termios.c_cflag |= CRTSCTS;
1277 } else {
1278 /* no mdmbuf, so we must want software flow control */
1279 cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
1280 cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
1281 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
1282 cs->cs_preg[3] &= ~ZSWR3_HFC;
1283 cs->cs_creg[3] &= ~ZSWR3_HFC;
1284 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
1285 tp->t_termios.c_cflag &= ~CRTSCTS;
1286 }
1287 splx(s);
1288 break;
1289 }
1290 case TIOCSDTR:
1291 zs_modem(cs, 1);
1292 break;
1293 case TIOCCDTR:
1294 zs_modem(cs, 0);
1295 break;
1296 case TIOCMSET:
1297 case TIOCMGET:
1298 case TIOCMBIS:
1299 case TIOCMBIC:
1300 default:
1301 return (ENOTTY);
1302 }
1303 return (0);
1304 }
1305
1306 /*
1307 * Start or restart transmission.
1308 */
1309 static void
1310 zsstart(tp)
1311 register struct tty *tp;
1312 {
1313 register struct zs_chanstate *cs;
1314 register int s, nch;
1315 int unit = minor(tp->t_dev);
1316 struct zs_softc *sc = zs_cd.cd_devs[unit >> 1];
1317
1318 cs = &sc->sc_cs[unit & 1];
1319 s = spltty();
1320
1321 /*
1322 * If currently active or delaying, no need to do anything.
1323 */
1324 if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1325 goto out;
1326
1327 /*
1328 * If there are sleepers, and output has drained below low
1329 * water mark, awaken.
1330 */
1331 if (tp->t_outq.c_cc <= tp->t_lowat) {
1332 if (tp->t_state & TS_ASLEEP) {
1333 tp->t_state &= ~TS_ASLEEP;
1334 wakeup((caddr_t)&tp->t_outq);
1335 }
1336 selwakeup(&tp->t_wsel);
1337 }
1338
1339 nch = ndqb(&tp->t_outq, 0); /* XXX */
1340 if (nch) {
1341 register char *p = tp->t_outq.c_cf;
1342
1343 /* mark busy, enable tx done interrupts, & send first byte */
1344 tp->t_state |= TS_BUSY;
1345 (void) splzs();
1346 cs->cs_preg[1] |= ZSWR1_TIE;
1347 cs->cs_creg[1] |= ZSWR1_TIE;
1348 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1349 cs->cs_zc->zc_data = *p;
1350 ZS_DELAY();
1351 cs->cs_tba = p + 1;
1352 cs->cs_tbc = nch - 1;
1353 } else {
1354 /*
1355 * Nothing to send, turn off transmit done interrupts.
1356 * This is useful if something is doing polled output.
1357 */
1358 (void) splzs();
1359 cs->cs_preg[1] &= ~ZSWR1_TIE;
1360 cs->cs_creg[1] &= ~ZSWR1_TIE;
1361 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1362 }
1363 out:
1364 splx(s);
1365 }
1366
1367 /*
1368 * Stop output, e.g., for ^S or output flush.
1369 */
1370 void
1371 zsstop(tp, flag)
1372 register struct tty *tp;
1373 int flag;
1374 {
1375 register struct zs_chanstate *cs;
1376 register int s, unit = minor(tp->t_dev);
1377 struct zs_softc *sc = zs_cd.cd_devs[unit >> 1];
1378
1379 cs = &sc->sc_cs[unit & 1];
1380 s = splzs();
1381 if (tp->t_state & TS_BUSY) {
1382 /*
1383 * Device is transmitting; must stop it.
1384 */
1385 cs->cs_tbc = 0;
1386 if ((tp->t_state & TS_TTSTOP) == 0)
1387 tp->t_state |= TS_FLUSH;
1388 }
1389 splx(s);
1390 }
1391
1392 /*
1393 * Set ZS tty parameters from termios.
1394 *
1395 * This routine makes use of the fact that only registers
1396 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1397 */
1398 static int
1399 zsparam(tp, t)
1400 register struct tty *tp;
1401 register struct termios *t;
1402 {
1403 int unit = minor(tp->t_dev);
1404 struct zs_softc *sc = zs_cd.cd_devs[unit >> 1];
1405 register struct zs_chanstate *cs = &sc->sc_cs[unit & 1];
1406 register int tmp, tmp5, cflag, s;
1407
1408 /*
1409 * Because PCLK is only run at 4.9 MHz, the fastest we
1410 * can go is 51200 baud (this corresponds to TC=1).
1411 * This is somewhat unfortunate as there is no real
1412 * reason we should not be able to handle higher rates.
1413 */
1414 tmp = t->c_ospeed;
1415 if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
1416 return (EINVAL);
1417 if (tmp == 0) {
1418 /* stty 0 => drop DTR and RTS */
1419 zs_modem(cs, 0);
1420 return (0);
1421 }
1422 tmp = BPS_TO_TCONST(PCLK / 16, tmp);
1423 #ifdef ALLOW_TC_EQUAL_ZERO
1424 if (tmp < 0)
1425 #else
1426 if (tmp < 1)
1427 #endif
1428 return (EINVAL);
1429
1430 cflag = t->c_cflag;
1431 tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
1432 tp->t_cflag = cflag;
1433
1434 /*
1435 * Block interrupts so that state will not
1436 * be altered until we are done setting it up.
1437 */
1438 s = splzs();
1439 cs->cs_preg[12] = tmp;
1440 cs->cs_preg[13] = tmp >> 8;
1441 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1442 switch (cflag & CSIZE) {
1443 case CS5:
1444 tmp = ZSWR3_RX_5;
1445 tmp5 = ZSWR5_TX_5;
1446 break;
1447 case CS6:
1448 tmp = ZSWR3_RX_6;
1449 tmp5 = ZSWR5_TX_6;
1450 break;
1451 case CS7:
1452 tmp = ZSWR3_RX_7;
1453 tmp5 = ZSWR5_TX_7;
1454 break;
1455 case CS8:
1456 default:
1457 tmp = ZSWR3_RX_8;
1458 tmp5 = ZSWR5_TX_8;
1459 break;
1460 }
1461
1462 /*
1463 * Output hardware flow control on the chip is horrendous: if
1464 * carrier detect drops, the receiver is disabled. Hence we
1465 * can only do this when the carrier is on.
1466 */
1467 tmp |= ZSWR3_RX_ENABLE;
1468 if (cflag & CCTS_OFLOW) {
1469 if (cs->cs_zc->zc_csr & ZSRR0_DCD)
1470 tmp |= ZSWR3_HFC;
1471 ZS_DELAY();
1472 }
1473 cs->cs_preg[3] = tmp;
1474 cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1475
1476 tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
1477 if ((cflag & PARODD) == 0)
1478 tmp |= ZSWR4_EVENP;
1479 if (cflag & PARENB)
1480 tmp |= ZSWR4_PARENB;
1481 cs->cs_preg[4] = tmp;
1482 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR;
1483 cs->cs_preg[10] = ZSWR10_NRZ;
1484 cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
1485 cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
1486 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1487
1488 /*
1489 * If nothing is being transmitted, set up new current values,
1490 * else mark them as pending.
1491 */
1492 if (cs->cs_heldchange == 0) {
1493 if (cs->cs_ttyp->t_state & TS_BUSY) {
1494 cs->cs_heldtbc = cs->cs_tbc;
1495 cs->cs_tbc = 0;
1496 cs->cs_heldchange = 1;
1497 } else {
1498 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1499 zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1500 }
1501 }
1502 splx(s);
1503 return (0);
1504 }
1505
1506 /*
1507 * Raise or lower modem control (DTR/RTS) signals. If a character is
1508 * in transmission, the change is deferred.
1509 */
1510 static void
1511 zs_modem(cs, onoff)
1512 struct zs_chanstate *cs;
1513 int onoff;
1514 {
1515 int s, bis, and;
1516
1517 if (onoff) {
1518 bis = ZSWR5_DTR | ZSWR5_RTS;
1519 and = ~0;
1520 } else {
1521 bis = 0;
1522 and = ~(ZSWR5_DTR | ZSWR5_RTS);
1523 }
1524 s = splzs();
1525 cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and;
1526 if (cs->cs_heldchange == 0) {
1527 if (cs->cs_ttyp->t_state & TS_BUSY) {
1528 cs->cs_heldtbc = cs->cs_tbc;
1529 cs->cs_tbc = 0;
1530 cs->cs_heldchange = 1;
1531 } else {
1532 cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and;
1533 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1534 }
1535 }
1536 splx(s);
1537 }
1538
1539 /*
1540 * Write the given register set to the given zs channel in the proper order.
1541 * The channel must not be transmitting at the time. The receiver will
1542 * be disabled for the time it takes to write all the registers.
1543 */
1544 static void
1545 zs_loadchannelregs(zc, reg)
1546 volatile struct zschan *zc;
1547 u_char *reg;
1548 {
1549 int i;
1550
1551 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */
1552 ZS_DELAY();
1553 i = zc->zc_data; /* drain fifo */
1554 ZS_DELAY();
1555 i = zc->zc_data;
1556 ZS_DELAY();
1557 i = zc->zc_data;
1558 ZS_DELAY();
1559 ZS_WRITE(zc, 4, reg[4]);
1560 ZS_WRITE(zc, 10, reg[10]);
1561 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE);
1562 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE);
1563 ZS_WRITE(zc, 1, reg[1]);
1564 ZS_WRITE(zc, 9, reg[9]);
1565 ZS_WRITE(zc, 11, reg[11]);
1566 ZS_WRITE(zc, 12, reg[12]);
1567 ZS_WRITE(zc, 13, reg[13]);
1568 ZS_WRITE(zc, 14, reg[14]);
1569 ZS_WRITE(zc, 15, reg[15]);
1570 ZS_WRITE(zc, 3, reg[3]);
1571 ZS_WRITE(zc, 5, reg[5]);
1572 }
1573
1574 #ifdef KGDB
1575 /*
1576 * Get a character from the given kgdb channel. Called at splhigh().
1577 */
1578 static int
1579 zs_kgdb_getc(arg)
1580 void *arg;
1581 {
1582 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1583 u_char c;
1584
1585 while ((zc->zc_csr & ZSRR0_RX_READY) == 0)
1586 ZS_DELAY();
1587 c = zc->zc_data;
1588 ZS_DELAY();
1589 return c;
1590 }
1591
1592 /*
1593 * Put a character to the given kgdb channel. Called at splhigh().
1594 */
1595 static void
1596 zs_kgdb_putc(arg, c)
1597 void *arg;
1598 int c;
1599 {
1600 register volatile struct zschan *zc = (volatile struct zschan *)arg;
1601
1602 while ((zc->zc_csr & ZSRR0_TX_READY) == 0)
1603 ZS_DELAY();
1604 zc->zc_data = c;
1605 ZS_DELAY();
1606 }
1607
1608 /*
1609 * Set up for kgdb; called at boot time before configuration.
1610 * KGDB interrupts will be enabled later when zs0 is configured.
1611 */
1612 void
1613 zs_kgdb_init()
1614 {
1615 volatile struct zsdevice *addr;
1616 volatile struct zschan *zc;
1617 int unit, zs;
1618
1619 if (major(kgdb_dev) != ZSMAJOR)
1620 return;
1621 unit = minor(kgdb_dev);
1622 /*
1623 * Unit must be 0 or 1 (zs0).
1624 */
1625 if ((unsigned)unit >= ZS_KBD) {
1626 printf("zs_kgdb_init: bad minor dev %d\n", unit);
1627 return;
1628 }
1629 zs = unit >> 1;
1630 if ((addr = zsaddr[zs]) == NULL)
1631 addr = zsaddr[zs] = (volatile struct zsdevice *)findzs(zs);
1632 unit &= 1;
1633 zc = unit == 0 ? &addr->zs_chan[ZS_CHAN_A] : &addr->zs_chan[ZS_CHAN_B];
1634 zs_kgdb_savedspeed = zs_getspeed(zc);
1635 printf("zs_kgdb_init: attaching zs%d%c at %d baud\n",
1636 zs, unit + 'a', kgdb_rate);
1637 zs_reset(zc, 1, kgdb_rate);
1638 kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc);
1639 }
1640 #endif /* KGDB */
1641