Home | History | Annotate | Line # | Download | only in dev
zs.c revision 1.72
      1 /*	$NetBSD: zs.c,v 1.72 2000/02/12 12:51:03 pk Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1996 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Gordon W. Ross.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Zilog Z8530 Dual UART driver (machine-dependent part)
     41  *
     42  * Runs two serial lines per chip using slave drivers.
     43  * Plain tty/async lines use the zs_async slave.
     44  * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
     45  */
     46 
     47 #include "opt_ddb.h"
     48 
     49 #include <sys/param.h>
     50 #include <sys/systm.h>
     51 #include <sys/conf.h>
     52 #include <sys/device.h>
     53 #include <sys/file.h>
     54 #include <sys/ioctl.h>
     55 #include <sys/kernel.h>
     56 #include <sys/proc.h>
     57 #include <sys/tty.h>
     58 #include <sys/time.h>
     59 #include <sys/syslog.h>
     60 
     61 #include <machine/bsd_openprom.h>
     62 #include <machine/autoconf.h>
     63 #include <machine/conf.h>
     64 #include <machine/cpu.h>
     65 #include <machine/eeprom.h>
     66 #include <machine/psl.h>
     67 #include <machine/z8530var.h>
     68 
     69 #include <dev/cons.h>
     70 #include <dev/ic/z8530reg.h>
     71 
     72 #include <sparc/sparc/vaddrs.h>
     73 #include <sparc/sparc/auxreg.h>
     74 #include <sparc/dev/cons.h>
     75 
     76 #include "kbd.h"	/* NKBD */
     77 #include "zs.h" 	/* NZS */
     78 
     79 /* Make life easier for the initialized arrays here. */
     80 #if NZS < 3
     81 #undef  NZS
     82 #define NZS 3
     83 #endif
     84 
     85 /*
     86  * Some warts needed by z8530tty.c -
     87  * The default parity REALLY needs to be the same as the PROM uses,
     88  * or you can not see messages done with printf during boot-up...
     89  */
     90 int zs_def_cflag = (CREAD | CS8 | HUPCL);
     91 int zs_major = 12;
     92 
     93 /*
     94  * The Sun provides a 4.9152 MHz clock to the ZS chips.
     95  */
     96 #define PCLK	(9600 * 512)	/* PCLK pin input clock rate */
     97 
     98 /*
     99  * Select software interrupt bit based on TTY ipl.
    100  */
    101 #if PIL_TTY == 1
    102 # define IE_ZSSOFT IE_L1
    103 #elif PIL_TTY == 4
    104 # define IE_ZSSOFT IE_L4
    105 #elif PIL_TTY == 6
    106 # define IE_ZSSOFT IE_L6
    107 #else
    108 # error "no suitable software interrupt bit"
    109 #endif
    110 
    111 #define	ZS_DELAY()		(CPU_ISSUN4C ? (0) : delay(2))
    112 
    113 /* The layout of this is hardware-dependent (padding, order). */
    114 struct zschan {
    115 	volatile u_char	zc_csr;		/* ctrl,status, and indirect access */
    116 	u_char		zc_xxx0;
    117 	volatile u_char	zc_data;	/* data */
    118 	u_char		zc_xxx1;
    119 };
    120 struct zsdevice {
    121 	/* Yes, they are backwards. */
    122 	struct	zschan zs_chan_b;
    123 	struct	zschan zs_chan_a;
    124 };
    125 
    126 /* ZS channel used as the console device (if any) */
    127 void *zs_conschan;
    128 
    129 /* Default speed for each channel */
    130 static int zs_defspeed[NZS][2] = {
    131 	{ 9600, 	/* ttya */
    132 	  9600 },	/* ttyb */
    133 	{ 1200, 	/* keyboard */
    134 	  1200 },	/* mouse */
    135 	{ 9600, 	/* ttyc */
    136 	  9600 },	/* ttyd */
    137 };
    138 
    139 static u_char zs_init_reg[16] = {
    140 	0,	/* 0: CMD (reset, etc.) */
    141 	0,	/* 1: No interrupts yet. */
    142 	0,	/* 2: IVECT */
    143 	ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
    144 	ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
    145 	ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
    146 	0,	/* 6: TXSYNC/SYNCLO */
    147 	0,	/* 7: RXSYNC/SYNCHI */
    148 	0,	/* 8: alias for data port */
    149 	ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR,
    150 	0,	/*10: Misc. TX/RX control bits */
    151 	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
    152 	((PCLK/32)/9600)-2,	/*12: BAUDLO (default=9600) */
    153 	0,			/*13: BAUDHI (default=9600) */
    154 	ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
    155 	ZSWR15_BREAK_IE,
    156 };
    157 
    158 
    159 /****************************************************************
    160  * Autoconfig
    161  ****************************************************************/
    162 
    163 /* Definition of the driver for autoconfig. */
    164 static int  zs_match_mainbus __P((struct device *, struct cfdata *, void *));
    165 static int  zs_match_obio __P((struct device *, struct cfdata *, void *));
    166 static void zs_attach_mainbus __P((struct device *, struct device *, void *));
    167 static void zs_attach_obio __P((struct device *, struct device *, void *));
    168 
    169 static void zs_attach __P((struct zsc_softc *, struct zsdevice *, int));
    170 static int  zs_print __P((void *, const char *name));
    171 
    172 struct cfattach zs_mainbus_ca = {
    173 	sizeof(struct zsc_softc), zs_match_mainbus, zs_attach_mainbus
    174 };
    175 
    176 struct cfattach zs_obio_ca = {
    177 	sizeof(struct zsc_softc), zs_match_obio, zs_attach_obio
    178 };
    179 
    180 extern struct cfdriver zs_cd;
    181 
    182 /* Interrupt handlers. */
    183 static int zshard __P((void *));
    184 static int zssoft __P((void *));
    185 static struct intrhand levelsoft = { zssoft };
    186 
    187 static int zs_get_speed __P((struct zs_chanstate *));
    188 
    189 
    190 /*
    191  * Is the zs chip present?
    192  */
    193 static int
    194 zs_match_mainbus(parent, cf, aux)
    195 	struct device *parent;
    196 	struct cfdata *cf;
    197 	void *aux;
    198 {
    199 	struct mainbus_attach_args *ma = aux;
    200 
    201 	if (strcmp(cf->cf_driver->cd_name, ma->ma_name) != 0)
    202 		return (0);
    203 
    204 	return (getpropint(ma->ma_node, "slave", -2) == cf->cf_unit);
    205 }
    206 
    207 static int
    208 zs_match_obio(parent, cf, aux)
    209 	struct device *parent;
    210 	struct cfdata *cf;
    211 	void *aux;
    212 {
    213 	union obio_attach_args *uoba = aux;
    214 	struct obio4_attach_args *oba;
    215 
    216 	if (uoba->uoba_isobio4 == 0) {
    217 		struct sbus_attach_args *sa = &uoba->uoba_sbus;
    218 
    219 		if (strcmp(cf->cf_driver->cd_name, sa->sa_name) != 0)
    220 			return (0);
    221 
    222 		return (getpropint(sa->sa_node, "slave", -2) == cf->cf_unit);
    223 	}
    224 
    225 	oba = &uoba->uoba_oba4;
    226 	return (bus_space_probe(oba->oba_bustag, 0, oba->oba_paddr,
    227 			        1, 0, 0, NULL, NULL));
    228 }
    229 
    230 static void
    231 zs_attach_mainbus(parent, self, aux)
    232 	struct device *parent;
    233 	struct device *self;
    234 	void *aux;
    235 {
    236 	struct zsc_softc *zsc = (void *) self;
    237 	struct mainbus_attach_args *ma = aux;
    238 
    239 	zsc->zsc_bustag = ma->ma_bustag;
    240 	zsc->zsc_dmatag = ma->ma_dmatag;
    241 
    242 	/*
    243 	 * For machines with zs on mainbus (all sun4c models), we expect
    244 	 * the device registers to be mapped by the PROM.
    245 	 */
    246 	zs_attach(zsc, ma->ma_promvaddr, ma->ma_pri);
    247 }
    248 
    249 static void
    250 zs_attach_obio(parent, self, aux)
    251 	struct device *parent;
    252 	struct device *self;
    253 	void *aux;
    254 {
    255 	struct zsc_softc *zsc = (void *) self;
    256 	union obio_attach_args *uoba = aux;
    257 
    258 	if (uoba->uoba_isobio4 == 0) {
    259 		struct sbus_attach_args *sa = &uoba->uoba_sbus;
    260 		void *va;
    261 
    262 		if (sa->sa_nintr == 0) {
    263 			printf(" no interrupt lines\n");
    264 			return;
    265 		}
    266 
    267 		/*
    268 		 * Some sun4m models (Javastations) may not map the zs device.
    269 		 */
    270 		if (sa->sa_npromvaddrs > 0)
    271 			va = (void *)sa->sa_promvaddr;
    272 		else {
    273 			bus_space_handle_t bh;
    274 
    275 			if (sbus_bus_map(sa->sa_bustag,
    276 					  sa->sa_slot,
    277 					  sa->sa_offset,
    278 					  sa->sa_size,
    279 					  BUS_SPACE_MAP_LINEAR,
    280 					  0, &bh) != 0) {
    281 				printf(" cannot map zs registers\n");
    282 				return;
    283 			}
    284 			va = (void *)bh;
    285 		}
    286 
    287 		zsc->zsc_bustag = sa->sa_bustag;
    288 		zsc->zsc_dmatag = sa->sa_dmatag;
    289 		zs_attach(zsc, va, sa->sa_pri);
    290 	} else {
    291 		struct obio4_attach_args *oba = &uoba->uoba_oba4;
    292 		bus_space_handle_t bh;
    293 
    294 		/*
    295 		 * As for zs on mainbus, we require a PROM mapping.
    296 		 */
    297 		if (bus_space_map(oba->oba_bustag,
    298 				  oba->oba_paddr,
    299 				  sizeof(struct zsdevice),
    300 				  BUS_SPACE_MAP_LINEAR | OBIO_BUS_MAP_USE_ROM,
    301 				  &bh) != 0) {
    302 			printf(" cannot map zs registers\n");
    303 			return;
    304 		}
    305 		zsc->zsc_bustag = oba->oba_bustag;
    306 		zsc->zsc_dmatag = oba->oba_dmatag;
    307 		zs_attach(zsc, (void *)bh, oba->oba_pri);
    308 	}
    309 }
    310 /*
    311  * Attach a found zs.
    312  *
    313  * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
    314  * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
    315  */
    316 static void
    317 zs_attach(zsc, zsd, pri)
    318 	struct zsc_softc *zsc;
    319 	struct zsdevice *zsd;
    320 	int pri;
    321 {
    322 	struct zsc_attach_args zsc_args;
    323 	struct zs_chanstate *cs;
    324 	int s, zs_unit, channel;
    325 	static int didintr, prevpri;
    326 
    327 	if (zsd == NULL) {
    328 		printf("configuration incomplete\n");
    329 		return;
    330 	}
    331 
    332 	printf(" softpri %d\n", PIL_TTY);
    333 
    334 	/*
    335 	 * Initialize software state for each channel.
    336 	 */
    337 	zs_unit = zsc->zsc_dev.dv_unit;
    338 	for (channel = 0; channel < 2; channel++) {
    339 		volatile struct zschan *zc;
    340 
    341 		zsc_args.channel = channel;
    342 		zsc_args.hwflags = 0;
    343 		cs = &zsc->zsc_cs_store[channel];
    344 		zsc->zsc_cs[channel] = cs;
    345 
    346 		cs->cs_channel = channel;
    347 		cs->cs_private = NULL;
    348 		cs->cs_ops = &zsops_null;
    349 		cs->cs_brg_clk = PCLK / 16;
    350 
    351 		zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b;
    352 		if (zc == zs_conschan)
    353 			zsc_args.hwflags |= ZS_HWFLAG_CONSOLE;
    354 
    355 		cs->cs_reg_csr  = &zc->zc_csr;
    356 		cs->cs_reg_data = &zc->zc_data;
    357 
    358 		bcopy(zs_init_reg, cs->cs_creg, 16);
    359 		bcopy(zs_init_reg, cs->cs_preg, 16);
    360 
    361 		/* XXX: Get these from the PROM properties! */
    362 		/* XXX: See the mvme167 code.  Better. */
    363 		if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE)
    364 			cs->cs_defspeed = zs_get_speed(cs);
    365 		else
    366 			cs->cs_defspeed = zs_defspeed[zs_unit][channel];
    367 		cs->cs_defcflag = zs_def_cflag;
    368 
    369 		/* Make these correspond to cs_defcflag (-crtscts) */
    370 		cs->cs_rr0_dcd = ZSRR0_DCD;
    371 		cs->cs_rr0_cts = 0;
    372 		cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
    373 		cs->cs_wr5_rts = 0;
    374 
    375 		/*
    376 		 * Clear the master interrupt enable.
    377 		 * The INTENA is common to both channels,
    378 		 * so just do it on the A channel.
    379 		 */
    380 		if (channel == 0) {
    381 			zs_write_reg(cs, 9, 0);
    382 		}
    383 
    384 		/*
    385 		 * Look for a child driver for this channel.
    386 		 * The child attach will setup the hardware.
    387 		 */
    388 		if (!config_found(&zsc->zsc_dev, (void *)&zsc_args, zs_print)) {
    389 			/* No sub-driver.  Just reset it. */
    390 			u_char reset = (channel == 0) ?
    391 				ZSWR9_A_RESET : ZSWR9_B_RESET;
    392 			s = splzs();
    393 			zs_write_reg(cs,  9, reset);
    394 			splx(s);
    395 		}
    396 	}
    397 
    398 	/*
    399 	 * Now safe to install interrupt handlers.  Note the arguments
    400 	 * to the interrupt handlers aren't used.  Note, we only do this
    401 	 * once since both SCCs interrupt at the same level and vector.
    402 	 */
    403 	if (!didintr) {
    404 		didintr = 1;
    405 		prevpri = pri;
    406 		bus_intr_establish(zsc->zsc_bustag, pri, 0, zshard, NULL);
    407 		intr_establish(PIL_TTY, &levelsoft);
    408 	} else if (pri != prevpri)
    409 		panic("broken zs interrupt scheme");
    410 
    411 	evcnt_attach(&zsc->zsc_dev, "intr", &zsc->zsc_intrcnt);
    412 
    413 	/*
    414 	 * Set the master interrupt enable and interrupt vector.
    415 	 * (common to both channels, do it on A)
    416 	 */
    417 	cs = zsc->zsc_cs[0];
    418 	s = splhigh();
    419 	/* interrupt vector */
    420 	zs_write_reg(cs, 2, zs_init_reg[2]);
    421 	/* master interrupt control (enable) */
    422 	zs_write_reg(cs, 9, zs_init_reg[9]);
    423 	splx(s);
    424 
    425 #if 0
    426 	/*
    427 	 * XXX: L1A hack - We would like to be able to break into
    428 	 * the debugger during the rest of autoconfiguration, so
    429 	 * lower interrupts just enough to let zs interrupts in.
    430 	 * This is done after both zs devices are attached.
    431 	 */
    432 	if (zs_unit == 1) {
    433 		printf("zs1: enabling zs interrupts\n");
    434 		(void)splfd(); /* XXX: splzs - 1 */
    435 	}
    436 #endif
    437 }
    438 
    439 static int
    440 zs_print(aux, name)
    441 	void *aux;
    442 	const char *name;
    443 {
    444 	struct zsc_attach_args *args = aux;
    445 
    446 	if (name != NULL)
    447 		printf("%s: ", name);
    448 
    449 	if (args->channel != -1)
    450 		printf(" channel %d", args->channel);
    451 
    452 	return (UNCONF);
    453 }
    454 
    455 static volatile int zssoftpending;
    456 
    457 /*
    458  * Our ZS chips all share a common, autovectored interrupt,
    459  * so we have to look at all of them on each interrupt.
    460  */
    461 static int
    462 zshard(arg)
    463 	void *arg;
    464 {
    465 	register struct zsc_softc *zsc;
    466 	register int unit, rr3, rval, softreq;
    467 
    468 	rval = softreq = 0;
    469 	for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
    470 		zsc = zs_cd.cd_devs[unit];
    471 		if (zsc == NULL)
    472 			continue;
    473 		rr3 = zsc_intr_hard(zsc);
    474 		/* Count up the interrupts. */
    475 		if (rr3) {
    476 			rval |= rr3;
    477 			zsc->zsc_intrcnt.ev_count++;
    478 		}
    479 		softreq |= zsc->zsc_cs[0]->cs_softreq;
    480 		softreq |= zsc->zsc_cs[1]->cs_softreq;
    481 	}
    482 
    483 	/* We are at splzs here, so no need to lock. */
    484 	if (softreq && (zssoftpending == 0)) {
    485 		zssoftpending = IE_ZSSOFT;
    486 #if defined(SUN4M)
    487 		if (CPU_ISSUN4M)
    488 			raise(0, PIL_TTY);
    489 		else
    490 #endif
    491 			ienab_bis(IE_ZSSOFT);
    492 	}
    493 	return (rval);
    494 }
    495 
    496 /*
    497  * Similar scheme as for zshard (look at all of them)
    498  */
    499 static int
    500 zssoft(arg)
    501 	void *arg;
    502 {
    503 	register struct zsc_softc *zsc;
    504 	register int s, unit;
    505 
    506 	/* This is not the only ISR on this IPL. */
    507 	if (zssoftpending == 0)
    508 		return (0);
    509 
    510 	/*
    511 	 * The soft intr. bit will be set by zshard only if
    512 	 * the variable zssoftpending is zero.  The order of
    513 	 * these next two statements prevents our clearing
    514 	 * the soft intr bit just after zshard has set it.
    515 	 */
    516 	/* ienab_bic(IE_ZSSOFT); */
    517 	zssoftpending = 0;
    518 
    519 	/* Make sure we call the tty layer at spltty. */
    520 	s = spltty();
    521 	for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
    522 		zsc = zs_cd.cd_devs[unit];
    523 		if (zsc == NULL)
    524 			continue;
    525 		(void)zsc_intr_soft(zsc);
    526 	}
    527 	splx(s);
    528 	return (1);
    529 }
    530 
    531 
    532 /*
    533  * Compute the current baud rate given a ZS channel.
    534  */
    535 static int
    536 zs_get_speed(cs)
    537 	struct zs_chanstate *cs;
    538 {
    539 	int tconst;
    540 
    541 	tconst = zs_read_reg(cs, 12);
    542 	tconst |= zs_read_reg(cs, 13) << 8;
    543 	return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
    544 }
    545 
    546 /*
    547  * MD functions for setting the baud rate and control modes.
    548  */
    549 int
    550 zs_set_speed(cs, bps)
    551 	struct zs_chanstate *cs;
    552 	int bps;	/* bits per second */
    553 {
    554 	int tconst, real_bps;
    555 
    556 	if (bps == 0)
    557 		return (0);
    558 
    559 #ifdef	DIAGNOSTIC
    560 	if (cs->cs_brg_clk == 0)
    561 		panic("zs_set_speed");
    562 #endif
    563 
    564 	tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
    565 	if (tconst < 0)
    566 		return (EINVAL);
    567 
    568 	/* Convert back to make sure we can do it. */
    569 	real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
    570 
    571 	/* XXX - Allow some tolerance here? */
    572 	if (real_bps != bps)
    573 		return (EINVAL);
    574 
    575 	cs->cs_preg[12] = tconst;
    576 	cs->cs_preg[13] = tconst >> 8;
    577 
    578 	/* Caller will stuff the pending registers. */
    579 	return (0);
    580 }
    581 
    582 int
    583 zs_set_modes(cs, cflag)
    584 	struct zs_chanstate *cs;
    585 	int cflag;	/* bits per second */
    586 {
    587 	int s;
    588 
    589 	/*
    590 	 * Output hardware flow control on the chip is horrendous:
    591 	 * if carrier detect drops, the receiver is disabled, and if
    592 	 * CTS drops, the transmitter is stoped IN MID CHARACTER!
    593 	 * Therefore, NEVER set the HFC bit, and instead use the
    594 	 * status interrupt to detect CTS changes.
    595 	 */
    596 	s = splzs();
    597 	cs->cs_rr0_pps = 0;
    598 	if ((cflag & (CLOCAL | MDMBUF)) != 0) {
    599 		cs->cs_rr0_dcd = 0;
    600 		if ((cflag & MDMBUF) == 0)
    601 			cs->cs_rr0_pps = ZSRR0_DCD;
    602 	} else
    603 		cs->cs_rr0_dcd = ZSRR0_DCD;
    604 	if ((cflag & CRTSCTS) != 0) {
    605 		cs->cs_wr5_dtr = ZSWR5_DTR;
    606 		cs->cs_wr5_rts = ZSWR5_RTS;
    607 		cs->cs_rr0_cts = ZSRR0_CTS;
    608 	} else if ((cflag & CDTRCTS) != 0) {
    609 		cs->cs_wr5_dtr = 0;
    610 		cs->cs_wr5_rts = ZSWR5_DTR;
    611 		cs->cs_rr0_cts = ZSRR0_CTS;
    612 	} else if ((cflag & MDMBUF) != 0) {
    613 		cs->cs_wr5_dtr = 0;
    614 		cs->cs_wr5_rts = ZSWR5_DTR;
    615 		cs->cs_rr0_cts = ZSRR0_DCD;
    616 	} else {
    617 		cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
    618 		cs->cs_wr5_rts = 0;
    619 		cs->cs_rr0_cts = 0;
    620 	}
    621 	splx(s);
    622 
    623 	/* Caller will stuff the pending registers. */
    624 	return (0);
    625 }
    626 
    627 
    628 /*
    629  * Read or write the chip with suitable delays.
    630  */
    631 
    632 u_char
    633 zs_read_reg(cs, reg)
    634 	struct zs_chanstate *cs;
    635 	u_char reg;
    636 {
    637 	u_char val;
    638 
    639 	*cs->cs_reg_csr = reg;
    640 	ZS_DELAY();
    641 	val = *cs->cs_reg_csr;
    642 	ZS_DELAY();
    643 	return (val);
    644 }
    645 
    646 void
    647 zs_write_reg(cs, reg, val)
    648 	struct zs_chanstate *cs;
    649 	u_char reg, val;
    650 {
    651 	*cs->cs_reg_csr = reg;
    652 	ZS_DELAY();
    653 	*cs->cs_reg_csr = val;
    654 	ZS_DELAY();
    655 }
    656 
    657 u_char
    658 zs_read_csr(cs)
    659 	struct zs_chanstate *cs;
    660 {
    661 	register u_char val;
    662 
    663 	val = *cs->cs_reg_csr;
    664 	ZS_DELAY();
    665 	return (val);
    666 }
    667 
    668 void  zs_write_csr(cs, val)
    669 	struct zs_chanstate *cs;
    670 	u_char val;
    671 {
    672 	*cs->cs_reg_csr = val;
    673 	ZS_DELAY();
    674 }
    675 
    676 u_char zs_read_data(cs)
    677 	struct zs_chanstate *cs;
    678 {
    679 	register u_char val;
    680 
    681 	val = *cs->cs_reg_data;
    682 	ZS_DELAY();
    683 	return (val);
    684 }
    685 
    686 void  zs_write_data(cs, val)
    687 	struct zs_chanstate *cs;
    688 	u_char val;
    689 {
    690 	*cs->cs_reg_data = val;
    691 	ZS_DELAY();
    692 }
    693 
    694 /****************************************************************
    695  * Console support functions (Sun specific!)
    696  * Note: this code is allowed to know about the layout of
    697  * the chip registers, and uses that to keep things simple.
    698  * XXX - I think I like the mvme167 code better. -gwr
    699  ****************************************************************/
    700 
    701 /*
    702  * Handle user request to enter kernel debugger.
    703  */
    704 void
    705 zs_abort(cs)
    706 	struct zs_chanstate *cs;
    707 {
    708 	register volatile struct zschan *zc = zs_conschan;
    709 	int rr0;
    710 
    711 	/* Wait for end of break to avoid PROM abort. */
    712 	/* XXX - Limit the wait? */
    713 	do {
    714 		rr0 = zc->zc_csr;
    715 		ZS_DELAY();
    716 	} while (rr0 & ZSRR0_BREAK);
    717 
    718 #if defined(KGDB)
    719 	zskgdb(cs);
    720 #elif defined(DDB)
    721 	Debugger();
    722 #else
    723 	printf("stopping on keyboard abort\n");
    724 	callrom();
    725 #endif
    726 }
    727 
    728 /*
    729  * Polled input char.
    730  */
    731 int
    732 zs_getc(arg)
    733 	void *arg;
    734 {
    735 	register volatile struct zschan *zc = arg;
    736 	register int s, c, rr0;
    737 
    738 	s = splhigh();
    739 	/* Wait for a character to arrive. */
    740 	do {
    741 		rr0 = zc->zc_csr;
    742 		ZS_DELAY();
    743 	} while ((rr0 & ZSRR0_RX_READY) == 0);
    744 
    745 	c = zc->zc_data;
    746 	ZS_DELAY();
    747 	splx(s);
    748 
    749 	/*
    750 	 * This is used by the kd driver to read scan codes,
    751 	 * so don't translate '\r' ==> '\n' here...
    752 	 */
    753 	return (c);
    754 }
    755 
    756 /*
    757  * Polled output char.
    758  */
    759 void
    760 zs_putc(arg, c)
    761 	void *arg;
    762 	int c;
    763 {
    764 	register volatile struct zschan *zc = arg;
    765 	register int s, rr0;
    766 
    767 	s = splhigh();
    768 
    769 	/* Wait for transmitter to become ready. */
    770 	do {
    771 		rr0 = zc->zc_csr;
    772 		ZS_DELAY();
    773 	} while ((rr0 & ZSRR0_TX_READY) == 0);
    774 
    775 	/*
    776 	 * Send the next character.
    777 	 * Now you'd think that this could be followed by a ZS_DELAY()
    778 	 * just like all the other chip accesses, but it turns out that
    779 	 * the `transmit-ready' interrupt isn't de-asserted until
    780 	 * some period of time after the register write completes
    781 	 * (more than a couple instructions).  So to avoid stray
    782 	 * interrupts we put in the 2us delay regardless of cpu model.
    783 	 */
    784 	zc->zc_data = c;
    785 	delay(2);
    786 
    787 	splx(s);
    788 }
    789 
    790 /*****************************************************************/
    791 
    792 static void zscninit __P((struct consdev *));
    793 static int  zscngetc __P((dev_t));
    794 static void zscnputc __P((dev_t, int));
    795 
    796 /*
    797  * Console table shared by ttya, ttyb
    798  */
    799 struct consdev consdev_tty = {
    800 	nullcnprobe,
    801 	zscninit,
    802 	zscngetc,
    803 	zscnputc,
    804 	nullcnpollc,
    805 };
    806 
    807 static void
    808 zscninit(cn)
    809 	struct consdev *cn;
    810 {
    811 }
    812 
    813 /*
    814  * Polled console input putchar.
    815  */
    816 static int
    817 zscngetc(dev)
    818 	dev_t dev;
    819 {
    820 	return (zs_getc(zs_conschan));
    821 }
    822 
    823 /*
    824  * Polled console output putchar.
    825  */
    826 static void
    827 zscnputc(dev, c)
    828 	dev_t dev;
    829 	int c;
    830 {
    831 	zs_putc(zs_conschan, c);
    832 }
    833 
    834 /*****************************************************************/
    835 
    836 static void prom_cninit __P((struct consdev *));
    837 static int  prom_cngetc __P((dev_t));
    838 static void prom_cnputc __P((dev_t, int));
    839 
    840 /*
    841  * The console is set to this one initially,
    842  * which lets us use the PROM until consinit()
    843  * is called to select a real console.
    844  */
    845 struct consdev consdev_prom = {
    846 	nullcnprobe,
    847 	prom_cninit,
    848 	prom_cngetc,
    849 	prom_cnputc,
    850 	nullcnpollc,
    851 };
    852 
    853 /*
    854  * The console table pointer is statically initialized
    855  * to point to the PROM (output only) table, so that
    856  * early calls to printf will work.
    857  */
    858 struct consdev *cn_tab = &consdev_prom;
    859 
    860 void
    861 nullcnprobe(cn)
    862 	struct consdev *cn;
    863 {
    864 }
    865 
    866 static void
    867 prom_cninit(cn)
    868 	struct consdev *cn;
    869 {
    870 }
    871 
    872 /*
    873  * PROM console input putchar.
    874  * (dummy - this is output only) (WHY?????!)
    875  */
    876 static int
    877 prom_cngetc(dev)
    878 	dev_t dev;
    879 {
    880 	return (prom_getchar());
    881 }
    882 
    883 /*
    884  * PROM console output putchar.
    885  */
    886 static void
    887 prom_cnputc(dev, c)
    888 	dev_t dev;
    889 	int c;
    890 {
    891 
    892 	prom_putchar(c);
    893 }
    894 
    895 /*****************************************************************/
    896 
    897 extern struct consdev consdev_kd;
    898 
    899 static char *prom_inSrc_name[] = {
    900 	"keyboard/display",
    901 	"ttya", "ttyb",
    902 	"ttyc", "ttyd" };
    903 
    904 
    905 static int get_serial_promdev __P((int));
    906 
    907 int
    908 get_serial_promdev(io)
    909 	int io;
    910 {
    911 	char *prop, *cp, buffer[128];
    912 	int node;
    913 
    914 	node = findroot();
    915 	prop = (io == 0) ? "stdin-path" : "stdout-path";
    916 
    917 	cp = getpropstringA(node, prop, buffer, sizeof buffer);
    918 
    919 	/*
    920 	 * At this point we assume the device path is in the form
    921 	 *   ....device@x,y:a for ttya and ...device@x,y:b for ttyb, etc.
    922 	 */
    923 	if (cp[0] != '\0' && cp[1] != '\0') {
    924 		while (*cp != '\0')
    925 			cp++;
    926 		cp -= 2;
    927 	} else {
    928 		/*
    929 		 * If don't have at least a 2 character string at cp, then
    930 		 *  we default to using using the string ":a" for ttya.
    931 		 */
    932 		cp[0] = ':';
    933 		cp[1] = 'a';
    934 		cp[2] = '\0';
    935 	}
    936 
    937 	if (cp >= buffer) {
    938 		/* XXX: only allows tty's a->z, assumes PROMDEV_TTYx contig */
    939 		if (cp[0] == ':' && cp[1] >= 'a' && cp[1] <= 'z')
    940 			return (PROMDEV_TTYA + (cp[1] - 'a'));
    941 	}
    942 
    943 	printf("Warning: unparseable %s property\n", prop);
    944 	return (-1);
    945 }
    946 
    947 /*
    948  * This function replaces sys/dev/cninit.c
    949  * Determine which device is the console using
    950  * the PROM "input source" and "output sink".
    951  */
    952 void
    953 consinit()
    954 {
    955 	struct zschan *zc;
    956 	struct zsdevice *zsd;
    957 	struct consdev *cn;
    958 	int channel, promzs_unit, zstty_unit;
    959 	int inSource, outSink;
    960 	int node;
    961 	char *devtype;
    962 	extern int fbnode;
    963 
    964 	switch (prom_version()) {
    965 	case PROM_OLDMON:
    966 	case PROM_OBP_V0:
    967 		/* The stdio handles identify the device type */
    968 		inSource = prom_stdin();
    969 		outSink  = prom_stdout();
    970 		break;
    971 	case PROM_OBP_V2:
    972 	case PROM_OBP_V3:
    973 	case PROM_OPENFIRM:
    974 		/*
    975 		 * We need to probe the PROM device tree.
    976 		 *
    977 		 * Translate the STDIO package instance (`ihandle') -- that
    978 		 * the PROM has already opened for us -- to a device tree
    979 		 * node (i.e. a `phandle').
    980 		 */
    981 
    982 		if ((node = prom_instance_to_package(prom_stdin())) == 0) {
    983 			printf("consinit: cannot convert stdin ihandle\n");
    984 			inSource = -1;
    985 			goto setup_output;
    986 		}
    987 
    988 		if (prom_node_has_property(node, "keyboard")) {
    989 			inSource = PROMDEV_KBD;
    990 		} else if (strcmp(getpropstring(node, "device_type"),
    991 				  "serial") == 0) {
    992 			inSource = get_serial_promdev(0);
    993 		} else {
    994 			/* not serial, not keyboard. what is it?!? */
    995 			inSource = -1;
    996 		}
    997 
    998 setup_output:
    999 		if ((node = prom_instance_to_package(prom_stdout())) == 0) {
   1000 			printf("consinit: cannot convert stdout ihandle\n");
   1001 			outSink = -1;
   1002 			goto setup_console;
   1003 		}
   1004 		devtype = getpropstring(node, "device_type");
   1005 		if (strcmp(devtype, "display") == 0) {
   1006 			/* frame buffer output */
   1007 			outSink = PROMDEV_SCREEN;
   1008 			fbnode = node;
   1009 		} else if (strcmp(devtype, "serial") == 0) {
   1010 			outSink = get_serial_promdev(1);
   1011 		} else {
   1012 			/* not screen, not serial. Whatzit? */
   1013 			outSink = -1;
   1014 		}
   1015 		break;
   1016 
   1017 	default:
   1018 		inSource = -1;
   1019 		outSink = -1;
   1020 	}
   1021 
   1022 setup_console:
   1023 	if (inSource != outSink) {
   1024 		printf("cninit: mismatched PROM output selector\n");
   1025 		printf("inSource=%x; Sink=%x\n", inSource, outSink);
   1026 	}
   1027 
   1028 	switch (inSource) {
   1029 	default:
   1030 		printf("cninit: invalid inSource=0x%x\n", inSource);
   1031 		prom_abort();
   1032 		inSource = PROMDEV_KBD;
   1033 		/* fall through */
   1034 
   1035 	case 0:	/* keyboard/display */
   1036 #if NKBD > 0
   1037 		promzs_unit = 1;	/* XXX - config info! */
   1038 		channel = 0;
   1039 		cn = &consdev_kd;
   1040 		/* Set cn_dev, cn_pri in kd.c */
   1041 		break;
   1042 #else	/* NKBD */
   1043 		printf("cninit: kdb/display not configured\n");
   1044 		callrom();
   1045 		inSource = PROMDEV_TTYA;
   1046 		/* fall through */
   1047 #endif	/* NKBD */
   1048 
   1049 	case PROMDEV_TTYA:
   1050 	case PROMDEV_TTYB:
   1051 		zstty_unit = inSource - PROMDEV_TTYA;
   1052 		promzs_unit = 0;	/* XXX - config info! */
   1053 		channel = zstty_unit & 1;
   1054 		cn = &consdev_tty;
   1055 		cn->cn_dev = makedev(zs_major, zstty_unit);
   1056 		cn->cn_pri = CN_REMOTE;
   1057 		break;
   1058 
   1059 	}
   1060 	/* Now that inSource has been validated, print it. */
   1061 	printf("console is %s\n", prom_inSrc_name[inSource]);
   1062 
   1063 	zsd = findzs(promzs_unit);
   1064 	if (zsd == NULL) {
   1065 		printf("cninit: zs not mapped.\n");
   1066 		return;
   1067 	}
   1068 	zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b;
   1069 	zs_conschan = zc;
   1070 	cn_tab = cn;
   1071 	(*cn->cn_init)(cn);
   1072 #ifdef	KGDB
   1073 	zs_kgdb_init();
   1074 #endif
   1075 }
   1076