zs.c revision 1.75 1 /* $NetBSD: zs.c,v 1.75 2000/03/14 21:20:51 jdc Exp $ */
2
3 /*-
4 * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Zilog Z8530 Dual UART driver (machine-dependent part)
41 *
42 * Runs two serial lines per chip using slave drivers.
43 * Plain tty/async lines use the zs_async slave.
44 * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
45 */
46
47 #include "opt_ddb.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/conf.h>
52 #include <sys/device.h>
53 #include <sys/file.h>
54 #include <sys/ioctl.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/tty.h>
58 #include <sys/time.h>
59 #include <sys/syslog.h>
60
61 #include <machine/bsd_openprom.h>
62 #include <machine/autoconf.h>
63 #include <machine/conf.h>
64 #include <machine/cpu.h>
65 #include <machine/eeprom.h>
66 #include <machine/psl.h>
67 #include <machine/z8530var.h>
68
69 #include <dev/cons.h>
70 #include <dev/ic/z8530reg.h>
71
72 #include <sparc/sparc/vaddrs.h>
73 #include <sparc/sparc/auxreg.h>
74 #include <sparc/sparc/auxiotwo.h>
75 #include <sparc/dev/cons.h>
76
77 #include "kbd.h" /* NKBD */
78 #include "zs.h" /* NZS */
79
80 /* Make life easier for the initialized arrays here. */
81 #if NZS < 3
82 #undef NZS
83 #define NZS 3
84 #endif
85
86 /*
87 * Some warts needed by z8530tty.c -
88 * The default parity REALLY needs to be the same as the PROM uses,
89 * or you can not see messages done with printf during boot-up...
90 */
91 int zs_def_cflag = (CREAD | CS8 | HUPCL);
92 int zs_major = 12;
93
94 /*
95 * The Sun provides a 4.9152 MHz clock to the ZS chips.
96 */
97 #define PCLK (9600 * 512) /* PCLK pin input clock rate */
98
99 /*
100 * Select software interrupt bit based on TTY ipl.
101 */
102 #if PIL_TTY == 1
103 # define IE_ZSSOFT IE_L1
104 #elif PIL_TTY == 4
105 # define IE_ZSSOFT IE_L4
106 #elif PIL_TTY == 6
107 # define IE_ZSSOFT IE_L6
108 #else
109 # error "no suitable software interrupt bit"
110 #endif
111
112 #define ZS_DELAY() (CPU_ISSUN4C ? (0) : delay(2))
113
114 /* The layout of this is hardware-dependent (padding, order). */
115 struct zschan {
116 volatile u_char zc_csr; /* ctrl,status, and indirect access */
117 u_char zc_xxx0;
118 volatile u_char zc_data; /* data */
119 u_char zc_xxx1;
120 };
121 struct zsdevice {
122 /* Yes, they are backwards. */
123 struct zschan zs_chan_b;
124 struct zschan zs_chan_a;
125 };
126
127 /* ZS channel used as the console device (if any) */
128 void *zs_conschan;
129
130 /* Default speed for each channel */
131 static int zs_defspeed[NZS][2] = {
132 { 9600, /* ttya */
133 9600 }, /* ttyb */
134 { 1200, /* keyboard */
135 1200 }, /* mouse */
136 { 9600, /* ttyc */
137 9600 }, /* ttyd */
138 };
139
140 static u_char zs_init_reg[16] = {
141 0, /* 0: CMD (reset, etc.) */
142 0, /* 1: No interrupts yet. */
143 0, /* 2: IVECT */
144 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
145 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
146 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
147 0, /* 6: TXSYNC/SYNCLO */
148 0, /* 7: RXSYNC/SYNCHI */
149 0, /* 8: alias for data port */
150 ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR,
151 0, /*10: Misc. TX/RX control bits */
152 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
153 ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */
154 0, /*13: BAUDHI (default=9600) */
155 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
156 ZSWR15_BREAK_IE,
157 };
158
159
160 /****************************************************************
161 * Autoconfig
162 ****************************************************************/
163
164 /* Definition of the driver for autoconfig. */
165 static int zs_match_mainbus __P((struct device *, struct cfdata *, void *));
166 static int zs_match_obio __P((struct device *, struct cfdata *, void *));
167 static void zs_attach_mainbus __P((struct device *, struct device *, void *));
168 static void zs_attach_obio __P((struct device *, struct device *, void *));
169
170 static void zs_attach __P((struct zsc_softc *, struct zsdevice *, int));
171 static int zs_print __P((void *, const char *name));
172
173 struct cfattach zs_mainbus_ca = {
174 sizeof(struct zsc_softc), zs_match_mainbus, zs_attach_mainbus
175 };
176
177 struct cfattach zs_obio_ca = {
178 sizeof(struct zsc_softc), zs_match_obio, zs_attach_obio
179 };
180
181 extern struct cfdriver zs_cd;
182
183 /* Interrupt handlers. */
184 static int zshard __P((void *));
185 static int zssoft __P((void *));
186 static struct intrhand levelsoft = { zssoft };
187
188 static int zs_get_speed __P((struct zs_chanstate *));
189
190 /* Power management hooks */
191 int zs_enable __P((struct zs_chanstate *));
192 void zs_disable __P((struct zs_chanstate *));
193
194
195 /*
196 * Is the zs chip present?
197 */
198 static int
199 zs_match_mainbus(parent, cf, aux)
200 struct device *parent;
201 struct cfdata *cf;
202 void *aux;
203 {
204 struct mainbus_attach_args *ma = aux;
205
206 if (strcmp(cf->cf_driver->cd_name, ma->ma_name) != 0)
207 return (0);
208
209 return (1);
210 }
211
212 static int
213 zs_match_obio(parent, cf, aux)
214 struct device *parent;
215 struct cfdata *cf;
216 void *aux;
217 {
218 union obio_attach_args *uoba = aux;
219 struct obio4_attach_args *oba;
220
221 if (uoba->uoba_isobio4 == 0) {
222 struct sbus_attach_args *sa = &uoba->uoba_sbus;
223
224 if (strcmp(cf->cf_driver->cd_name, sa->sa_name) != 0)
225 return (0);
226
227 return (1);
228 }
229
230 oba = &uoba->uoba_oba4;
231 return (bus_space_probe(oba->oba_bustag, 0, oba->oba_paddr,
232 1, 0, 0, NULL, NULL));
233 }
234
235 static void
236 zs_attach_mainbus(parent, self, aux)
237 struct device *parent;
238 struct device *self;
239 void *aux;
240 {
241 struct zsc_softc *zsc = (void *) self;
242 struct mainbus_attach_args *ma = aux;
243
244 zsc->zsc_bustag = ma->ma_bustag;
245 zsc->zsc_dmatag = ma->ma_dmatag;
246
247 /*
248 * For machines with zs on mainbus (all sun4c models), we expect
249 * the device registers to be mapped by the PROM.
250 */
251 zs_attach(zsc, ma->ma_promvaddr, ma->ma_pri);
252 }
253
254 static void
255 zs_attach_obio(parent, self, aux)
256 struct device *parent;
257 struct device *self;
258 void *aux;
259 {
260 struct zsc_softc *zsc = (void *) self;
261 union obio_attach_args *uoba = aux;
262
263 if (uoba->uoba_isobio4 == 0) {
264 struct sbus_attach_args *sa = &uoba->uoba_sbus;
265 void *va;
266 struct zs_chanstate *cs;
267 int channel;
268
269 if (sa->sa_nintr == 0) {
270 printf(" no interrupt lines\n");
271 return;
272 }
273
274 /*
275 * Some sun4m models (Javastations) may not map the zs device.
276 */
277 if (sa->sa_npromvaddrs > 0)
278 va = (void *)sa->sa_promvaddr;
279 else {
280 bus_space_handle_t bh;
281
282 if (sbus_bus_map(sa->sa_bustag,
283 sa->sa_slot,
284 sa->sa_offset,
285 sa->sa_size,
286 BUS_SPACE_MAP_LINEAR,
287 0, &bh) != 0) {
288 printf(" cannot map zs registers\n");
289 return;
290 }
291 va = (void *)bh;
292 }
293
294 /*
295 * Check if power state can be set, e.g. Tadpole 3GX
296 */
297 if (getpropint(sa->sa_node, "pwr-on-auxio2", 0))
298 {
299 printf (" powered via auxio2");
300 for (channel = 0; channel < 2; channel++) {
301 cs = &zsc->zsc_cs_store[channel];
302 cs->enable = zs_enable;
303 cs->disable = zs_disable;
304 }
305 }
306
307 zsc->zsc_bustag = sa->sa_bustag;
308 zsc->zsc_dmatag = sa->sa_dmatag;
309 zs_attach(zsc, va, sa->sa_pri);
310 } else {
311 struct obio4_attach_args *oba = &uoba->uoba_oba4;
312 bus_space_handle_t bh;
313
314 /*
315 * As for zs on mainbus, we require a PROM mapping.
316 */
317 if (bus_space_map(oba->oba_bustag,
318 oba->oba_paddr,
319 sizeof(struct zsdevice),
320 BUS_SPACE_MAP_LINEAR | OBIO_BUS_MAP_USE_ROM,
321 &bh) != 0) {
322 printf(" cannot map zs registers\n");
323 return;
324 }
325 zsc->zsc_bustag = oba->oba_bustag;
326 zsc->zsc_dmatag = oba->oba_dmatag;
327 zs_attach(zsc, (void *)bh, oba->oba_pri);
328 }
329 }
330 /*
331 * Attach a found zs.
332 *
333 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
334 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
335 */
336 static void
337 zs_attach(zsc, zsd, pri)
338 struct zsc_softc *zsc;
339 struct zsdevice *zsd;
340 int pri;
341 {
342 struct zsc_attach_args zsc_args;
343 struct zs_chanstate *cs;
344 int s, zs_unit, channel;
345 static int didintr, prevpri;
346
347 if (zsd == NULL) {
348 printf("configuration incomplete\n");
349 return;
350 }
351
352 printf(" softpri %d\n", PIL_TTY);
353
354 /*
355 * Initialize software state for each channel.
356 */
357 zs_unit = zsc->zsc_dev.dv_unit;
358 for (channel = 0; channel < 2; channel++) {
359 volatile struct zschan *zc;
360
361 zsc_args.channel = channel;
362 zsc_args.hwflags = 0;
363 cs = &zsc->zsc_cs_store[channel];
364 zsc->zsc_cs[channel] = cs;
365
366 cs->cs_channel = channel;
367 cs->cs_private = NULL;
368 cs->cs_ops = &zsops_null;
369 cs->cs_brg_clk = PCLK / 16;
370
371 zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b;
372 if (zc == zs_conschan)
373 zsc_args.hwflags |= ZS_HWFLAG_CONSOLE;
374
375 cs->cs_reg_csr = &zc->zc_csr;
376 cs->cs_reg_data = &zc->zc_data;
377
378 bcopy(zs_init_reg, cs->cs_creg, 16);
379 bcopy(zs_init_reg, cs->cs_preg, 16);
380
381 /* XXX: Get these from the PROM properties! */
382 /* XXX: See the mvme167 code. Better. */
383 if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE)
384 cs->cs_defspeed = zs_get_speed(cs);
385 else
386 cs->cs_defspeed = zs_defspeed[zs_unit][channel];
387 cs->cs_defcflag = zs_def_cflag;
388
389 /* Make these correspond to cs_defcflag (-crtscts) */
390 cs->cs_rr0_dcd = ZSRR0_DCD;
391 cs->cs_rr0_cts = 0;
392 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
393 cs->cs_wr5_rts = 0;
394
395 /*
396 * Clear the master interrupt enable.
397 * The INTENA is common to both channels,
398 * so just do it on the A channel.
399 */
400 if (channel == 0) {
401 zs_write_reg(cs, 9, 0);
402 }
403
404 /*
405 * Look for a child driver for this channel.
406 * The child attach will setup the hardware.
407 */
408 if (!config_found(&zsc->zsc_dev, (void *)&zsc_args, zs_print)) {
409 /* No sub-driver. Just reset it. */
410 u_char reset = (channel == 0) ?
411 ZSWR9_A_RESET : ZSWR9_B_RESET;
412 s = splzs();
413 zs_write_reg(cs, 9, reset);
414 splx(s);
415 }
416 }
417
418 /*
419 * Now safe to install interrupt handlers. Note the arguments
420 * to the interrupt handlers aren't used. Note, we only do this
421 * once since both SCCs interrupt at the same level and vector.
422 */
423 if (!didintr) {
424 didintr = 1;
425 prevpri = pri;
426 bus_intr_establish(zsc->zsc_bustag, pri, 0, zshard, NULL);
427 intr_establish(PIL_TTY, &levelsoft);
428 } else if (pri != prevpri)
429 panic("broken zs interrupt scheme");
430
431 evcnt_attach(&zsc->zsc_dev, "intr", &zsc->zsc_intrcnt);
432
433 /*
434 * Set the master interrupt enable and interrupt vector.
435 * (common to both channels, do it on A)
436 */
437 cs = zsc->zsc_cs[0];
438 s = splhigh();
439 /* interrupt vector */
440 zs_write_reg(cs, 2, zs_init_reg[2]);
441 /* master interrupt control (enable) */
442 zs_write_reg(cs, 9, zs_init_reg[9]);
443 splx(s);
444
445 #if 0
446 /*
447 * XXX: L1A hack - We would like to be able to break into
448 * the debugger during the rest of autoconfiguration, so
449 * lower interrupts just enough to let zs interrupts in.
450 * This is done after both zs devices are attached.
451 */
452 if (zs_unit == 1) {
453 printf("zs1: enabling zs interrupts\n");
454 (void)splfd(); /* XXX: splzs - 1 */
455 }
456 #endif
457 }
458
459 static int
460 zs_print(aux, name)
461 void *aux;
462 const char *name;
463 {
464 struct zsc_attach_args *args = aux;
465
466 if (name != NULL)
467 printf("%s: ", name);
468
469 if (args->channel != -1)
470 printf(" channel %d", args->channel);
471
472 return (UNCONF);
473 }
474
475 static volatile int zssoftpending;
476
477 /*
478 * Our ZS chips all share a common, autovectored interrupt,
479 * so we have to look at all of them on each interrupt.
480 */
481 static int
482 zshard(arg)
483 void *arg;
484 {
485 register struct zsc_softc *zsc;
486 register int unit, rr3, rval, softreq;
487
488 rval = softreq = 0;
489 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
490 zsc = zs_cd.cd_devs[unit];
491 if (zsc == NULL)
492 continue;
493 rr3 = zsc_intr_hard(zsc);
494 /* Count up the interrupts. */
495 if (rr3) {
496 rval |= rr3;
497 zsc->zsc_intrcnt.ev_count++;
498 }
499 softreq |= zsc->zsc_cs[0]->cs_softreq;
500 softreq |= zsc->zsc_cs[1]->cs_softreq;
501 }
502
503 /* We are at splzs here, so no need to lock. */
504 if (softreq && (zssoftpending == 0)) {
505 zssoftpending = IE_ZSSOFT;
506 #if defined(SUN4M)
507 if (CPU_ISSUN4M)
508 raise(0, PIL_TTY);
509 else
510 #endif
511 ienab_bis(IE_ZSSOFT);
512 }
513 return (rval);
514 }
515
516 /*
517 * Similar scheme as for zshard (look at all of them)
518 */
519 static int
520 zssoft(arg)
521 void *arg;
522 {
523 register struct zsc_softc *zsc;
524 register int s, unit;
525
526 /* This is not the only ISR on this IPL. */
527 if (zssoftpending == 0)
528 return (0);
529
530 /*
531 * The soft intr. bit will be set by zshard only if
532 * the variable zssoftpending is zero. The order of
533 * these next two statements prevents our clearing
534 * the soft intr bit just after zshard has set it.
535 */
536 /* ienab_bic(IE_ZSSOFT); */
537 zssoftpending = 0;
538
539 /* Make sure we call the tty layer at spltty. */
540 s = spltty();
541 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
542 zsc = zs_cd.cd_devs[unit];
543 if (zsc == NULL)
544 continue;
545 (void)zsc_intr_soft(zsc);
546 }
547 splx(s);
548 return (1);
549 }
550
551
552 /*
553 * Compute the current baud rate given a ZS channel.
554 */
555 static int
556 zs_get_speed(cs)
557 struct zs_chanstate *cs;
558 {
559 int tconst;
560
561 tconst = zs_read_reg(cs, 12);
562 tconst |= zs_read_reg(cs, 13) << 8;
563 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
564 }
565
566 /*
567 * MD functions for setting the baud rate and control modes.
568 */
569 int
570 zs_set_speed(cs, bps)
571 struct zs_chanstate *cs;
572 int bps; /* bits per second */
573 {
574 int tconst, real_bps;
575
576 if (bps == 0)
577 return (0);
578
579 #ifdef DIAGNOSTIC
580 if (cs->cs_brg_clk == 0)
581 panic("zs_set_speed");
582 #endif
583
584 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
585 if (tconst < 0)
586 return (EINVAL);
587
588 /* Convert back to make sure we can do it. */
589 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
590
591 /* XXX - Allow some tolerance here? */
592 if (real_bps != bps)
593 return (EINVAL);
594
595 cs->cs_preg[12] = tconst;
596 cs->cs_preg[13] = tconst >> 8;
597
598 /* Caller will stuff the pending registers. */
599 return (0);
600 }
601
602 int
603 zs_set_modes(cs, cflag)
604 struct zs_chanstate *cs;
605 int cflag; /* bits per second */
606 {
607 int s;
608
609 /*
610 * Output hardware flow control on the chip is horrendous:
611 * if carrier detect drops, the receiver is disabled, and if
612 * CTS drops, the transmitter is stoped IN MID CHARACTER!
613 * Therefore, NEVER set the HFC bit, and instead use the
614 * status interrupt to detect CTS changes.
615 */
616 s = splzs();
617 cs->cs_rr0_pps = 0;
618 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
619 cs->cs_rr0_dcd = 0;
620 if ((cflag & MDMBUF) == 0)
621 cs->cs_rr0_pps = ZSRR0_DCD;
622 } else
623 cs->cs_rr0_dcd = ZSRR0_DCD;
624 if ((cflag & CRTSCTS) != 0) {
625 cs->cs_wr5_dtr = ZSWR5_DTR;
626 cs->cs_wr5_rts = ZSWR5_RTS;
627 cs->cs_rr0_cts = ZSRR0_CTS;
628 } else if ((cflag & CDTRCTS) != 0) {
629 cs->cs_wr5_dtr = 0;
630 cs->cs_wr5_rts = ZSWR5_DTR;
631 cs->cs_rr0_cts = ZSRR0_CTS;
632 } else if ((cflag & MDMBUF) != 0) {
633 cs->cs_wr5_dtr = 0;
634 cs->cs_wr5_rts = ZSWR5_DTR;
635 cs->cs_rr0_cts = ZSRR0_DCD;
636 } else {
637 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
638 cs->cs_wr5_rts = 0;
639 cs->cs_rr0_cts = 0;
640 }
641 splx(s);
642
643 /* Caller will stuff the pending registers. */
644 return (0);
645 }
646
647
648 /*
649 * Read or write the chip with suitable delays.
650 */
651
652 u_char
653 zs_read_reg(cs, reg)
654 struct zs_chanstate *cs;
655 u_char reg;
656 {
657 u_char val;
658
659 *cs->cs_reg_csr = reg;
660 ZS_DELAY();
661 val = *cs->cs_reg_csr;
662 ZS_DELAY();
663 return (val);
664 }
665
666 void
667 zs_write_reg(cs, reg, val)
668 struct zs_chanstate *cs;
669 u_char reg, val;
670 {
671 *cs->cs_reg_csr = reg;
672 ZS_DELAY();
673 *cs->cs_reg_csr = val;
674 ZS_DELAY();
675 }
676
677 u_char
678 zs_read_csr(cs)
679 struct zs_chanstate *cs;
680 {
681 register u_char val;
682
683 val = *cs->cs_reg_csr;
684 ZS_DELAY();
685 return (val);
686 }
687
688 void zs_write_csr(cs, val)
689 struct zs_chanstate *cs;
690 u_char val;
691 {
692 *cs->cs_reg_csr = val;
693 ZS_DELAY();
694 }
695
696 u_char zs_read_data(cs)
697 struct zs_chanstate *cs;
698 {
699 register u_char val;
700
701 val = *cs->cs_reg_data;
702 ZS_DELAY();
703 return (val);
704 }
705
706 void zs_write_data(cs, val)
707 struct zs_chanstate *cs;
708 u_char val;
709 {
710 *cs->cs_reg_data = val;
711 ZS_DELAY();
712 }
713
714 /****************************************************************
715 * Console support functions (Sun specific!)
716 * Note: this code is allowed to know about the layout of
717 * the chip registers, and uses that to keep things simple.
718 * XXX - I think I like the mvme167 code better. -gwr
719 ****************************************************************/
720
721 /*
722 * Handle user request to enter kernel debugger.
723 */
724 void
725 zs_abort(cs)
726 struct zs_chanstate *cs;
727 {
728 register volatile struct zschan *zc = zs_conschan;
729 int rr0;
730
731 /* Wait for end of break to avoid PROM abort. */
732 /* XXX - Limit the wait? */
733 do {
734 rr0 = zc->zc_csr;
735 ZS_DELAY();
736 } while (rr0 & ZSRR0_BREAK);
737
738 #if defined(KGDB)
739 zskgdb(cs);
740 #elif defined(DDB)
741 Debugger();
742 #else
743 printf("stopping on keyboard abort\n");
744 callrom();
745 #endif
746 }
747
748 /*
749 * Polled input char.
750 */
751 int
752 zs_getc(arg)
753 void *arg;
754 {
755 register volatile struct zschan *zc = arg;
756 register int s, c, rr0;
757
758 s = splhigh();
759 /* Wait for a character to arrive. */
760 do {
761 rr0 = zc->zc_csr;
762 ZS_DELAY();
763 } while ((rr0 & ZSRR0_RX_READY) == 0);
764
765 c = zc->zc_data;
766 ZS_DELAY();
767 splx(s);
768
769 /*
770 * This is used by the kd driver to read scan codes,
771 * so don't translate '\r' ==> '\n' here...
772 */
773 return (c);
774 }
775
776 /*
777 * Polled output char.
778 */
779 void
780 zs_putc(arg, c)
781 void *arg;
782 int c;
783 {
784 register volatile struct zschan *zc = arg;
785 register int s, rr0;
786
787 s = splhigh();
788
789 /* Wait for transmitter to become ready. */
790 do {
791 rr0 = zc->zc_csr;
792 ZS_DELAY();
793 } while ((rr0 & ZSRR0_TX_READY) == 0);
794
795 /*
796 * Send the next character.
797 * Now you'd think that this could be followed by a ZS_DELAY()
798 * just like all the other chip accesses, but it turns out that
799 * the `transmit-ready' interrupt isn't de-asserted until
800 * some period of time after the register write completes
801 * (more than a couple instructions). So to avoid stray
802 * interrupts we put in the 2us delay regardless of cpu model.
803 */
804 zc->zc_data = c;
805 delay(2);
806
807 splx(s);
808 }
809
810 /*****************************************************************/
811
812 static void zscninit __P((struct consdev *));
813 static int zscngetc __P((dev_t));
814 static void zscnputc __P((dev_t, int));
815
816 /*
817 * Console table shared by ttya, ttyb
818 */
819 struct consdev consdev_tty = {
820 nullcnprobe,
821 zscninit,
822 zscngetc,
823 zscnputc,
824 nullcnpollc,
825 NULL,
826 };
827
828 static void
829 zscninit(cn)
830 struct consdev *cn;
831 {
832 }
833
834 /*
835 * Polled console input putchar.
836 */
837 static int
838 zscngetc(dev)
839 dev_t dev;
840 {
841 return (zs_getc(zs_conschan));
842 }
843
844 /*
845 * Polled console output putchar.
846 */
847 static void
848 zscnputc(dev, c)
849 dev_t dev;
850 int c;
851 {
852 zs_putc(zs_conschan, c);
853 }
854
855 /*****************************************************************/
856
857 static void prom_cninit __P((struct consdev *));
858 static int prom_cngetc __P((dev_t));
859 static void prom_cnputc __P((dev_t, int));
860
861 /*
862 * The console is set to this one initially,
863 * which lets us use the PROM until consinit()
864 * is called to select a real console.
865 */
866 struct consdev consdev_prom = {
867 nullcnprobe,
868 prom_cninit,
869 prom_cngetc,
870 prom_cnputc,
871 nullcnpollc,
872 };
873
874 /*
875 * The console table pointer is statically initialized
876 * to point to the PROM (output only) table, so that
877 * early calls to printf will work.
878 */
879 struct consdev *cn_tab = &consdev_prom;
880
881 void
882 nullcnprobe(cn)
883 struct consdev *cn;
884 {
885 }
886
887 static void
888 prom_cninit(cn)
889 struct consdev *cn;
890 {
891 }
892
893 /*
894 * PROM console input putchar.
895 * (dummy - this is output only) (WHY?????!)
896 */
897 static int
898 prom_cngetc(dev)
899 dev_t dev;
900 {
901 return (prom_getchar());
902 }
903
904 /*
905 * PROM console output putchar.
906 */
907 static void
908 prom_cnputc(dev, c)
909 dev_t dev;
910 int c;
911 {
912
913 prom_putchar(c);
914 }
915
916 /*****************************************************************/
917
918 extern struct consdev consdev_kd;
919
920 static char *prom_inSrc_name[] = {
921 "keyboard/display",
922 "ttya", "ttyb",
923 "ttyc", "ttyd" };
924
925
926 static int get_serial_promdev __P((int));
927
928 int
929 get_serial_promdev(io)
930 int io;
931 {
932 char *prop, *cp, buffer[128];
933 int node;
934
935 node = findroot();
936 prop = (io == 0) ? "stdin-path" : "stdout-path";
937
938 cp = getpropstringA(node, prop, buffer, sizeof buffer);
939
940 /*
941 * At this point we assume the device path is in the form
942 * ....device@x,y:a for ttya and ...device@x,y:b for ttyb, etc.
943 */
944 if (cp[0] != '\0' && cp[1] != '\0') {
945 while (*cp != '\0')
946 cp++;
947 cp -= 2;
948 } else {
949 /*
950 * If don't have at least a 2 character string at cp, then
951 * we default to using using the string ":a" for ttya.
952 */
953 cp[0] = ':';
954 cp[1] = 'a';
955 cp[2] = '\0';
956 }
957
958 if (cp >= buffer) {
959 /* XXX: only allows tty's a->z, assumes PROMDEV_TTYx contig */
960 if (cp[0] == ':' && cp[1] >= 'a' && cp[1] <= 'z')
961 return (PROMDEV_TTYA + (cp[1] - 'a'));
962 }
963
964 printf("Warning: unparseable %s property\n", prop);
965 return (-1);
966 }
967
968 /*
969 * This function replaces sys/dev/cninit.c
970 * Determine which device is the console using
971 * the PROM "input source" and "output sink".
972 */
973 void
974 consinit()
975 {
976 struct zschan *zc;
977 struct zsdevice *zsd;
978 struct consdev *cn;
979 int channel, promzs_unit, zstty_unit;
980 int inSource, outSink;
981 int node;
982 char *devtype;
983 extern int fbnode;
984
985 switch (prom_version()) {
986 case PROM_OLDMON:
987 case PROM_OBP_V0:
988 /* The stdio handles identify the device type */
989 inSource = prom_stdin();
990 outSink = prom_stdout();
991 break;
992 case PROM_OBP_V2:
993 case PROM_OBP_V3:
994 case PROM_OPENFIRM:
995 /*
996 * We need to probe the PROM device tree.
997 *
998 * Translate the STDIO package instance (`ihandle') -- that
999 * the PROM has already opened for us -- to a device tree
1000 * node (i.e. a `phandle').
1001 */
1002
1003 if ((node = prom_instance_to_package(prom_stdin())) == 0) {
1004 printf("consinit: cannot convert stdin ihandle\n");
1005 inSource = -1;
1006 goto setup_output;
1007 }
1008
1009 if (prom_node_has_property(node, "keyboard")) {
1010 inSource = PROMDEV_KBD;
1011 } else if (strcmp(getpropstring(node, "device_type"),
1012 "serial") == 0) {
1013 inSource = get_serial_promdev(0);
1014 } else {
1015 /* not serial, not keyboard. what is it?!? */
1016 inSource = -1;
1017 }
1018
1019 setup_output:
1020 if ((node = prom_instance_to_package(prom_stdout())) == 0) {
1021 printf("consinit: cannot convert stdout ihandle\n");
1022 outSink = -1;
1023 goto setup_console;
1024 }
1025 devtype = getpropstring(node, "device_type");
1026 if (strcmp(devtype, "display") == 0) {
1027 /* frame buffer output */
1028 outSink = PROMDEV_SCREEN;
1029 fbnode = node;
1030 } else if (strcmp(devtype, "serial") == 0) {
1031 outSink = get_serial_promdev(1);
1032 } else {
1033 /* not screen, not serial. Whatzit? */
1034 outSink = -1;
1035 }
1036 break;
1037
1038 default:
1039 inSource = -1;
1040 outSink = -1;
1041 }
1042
1043 setup_console:
1044 if (inSource != outSink) {
1045 printf("cninit: mismatched PROM output selector\n");
1046 printf("inSource=%x; Sink=%x\n", inSource, outSink);
1047 }
1048
1049 switch (inSource) {
1050 default:
1051 printf("cninit: invalid inSource=0x%x\n", inSource);
1052 prom_abort();
1053 inSource = PROMDEV_KBD;
1054 /* fall through */
1055
1056 case 0: /* keyboard/display */
1057 #if NKBD > 0
1058 promzs_unit = 1; /* XXX - config info! */
1059 channel = 0;
1060 cn = &consdev_kd;
1061 /* Set cn_dev, cn_pri in kd.c */
1062 break;
1063 #else /* NKBD */
1064 printf("cninit: kdb/display not configured\n");
1065 callrom();
1066 inSource = PROMDEV_TTYA;
1067 /* fall through */
1068 #endif /* NKBD */
1069
1070 case PROMDEV_TTYA:
1071 case PROMDEV_TTYB:
1072 zstty_unit = inSource - PROMDEV_TTYA;
1073 promzs_unit = 0; /* XXX - config info! */
1074 channel = zstty_unit & 1;
1075 cn = &consdev_tty;
1076 cn->cn_dev = makedev(zs_major, zstty_unit);
1077 cn->cn_pri = CN_REMOTE;
1078 break;
1079
1080 }
1081 /* Now that inSource has been validated, print it. */
1082 printf("console is %s\n", prom_inSrc_name[inSource]);
1083
1084 zsd = findzs(promzs_unit);
1085 if (zsd == NULL) {
1086 printf("cninit: zs not mapped.\n");
1087 return;
1088 }
1089 zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b;
1090 zs_conschan = zc;
1091 cn_tab = cn;
1092 (*cn->cn_init)(cn);
1093 #ifdef KGDB
1094 zs_kgdb_init();
1095 #endif
1096 }
1097
1098 /*
1099 * Power management hooks for zsopen() and zsclose().
1100 * We use them to power on/off the ports, if necessary.
1101 */
1102 int
1103 zs_enable(cs)
1104 struct zs_chanstate *cs;
1105 {
1106 auxiotwoserialendis (ZS_ENABLE);
1107 cs->enabled = 1;
1108 return(0);
1109 }
1110
1111 void
1112 zs_disable(cs)
1113 struct zs_chanstate *cs;
1114 {
1115 auxiotwoserialendis (ZS_DISABLE);
1116 cs->enabled = 0;
1117 }
1118