zs.c revision 1.76 1 /* $NetBSD: zs.c,v 1.76 2000/03/19 13:22:14 pk Exp $ */
2
3 /*-
4 * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Zilog Z8530 Dual UART driver (machine-dependent part)
41 *
42 * Runs two serial lines per chip using slave drivers.
43 * Plain tty/async lines use the zs_async slave.
44 * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
45 */
46
47 #include "opt_ddb.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/conf.h>
52 #include <sys/device.h>
53 #include <sys/file.h>
54 #include <sys/ioctl.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/tty.h>
58 #include <sys/time.h>
59 #include <sys/syslog.h>
60
61 #include <machine/bsd_openprom.h>
62 #include <machine/autoconf.h>
63 #include <machine/conf.h>
64 #include <machine/cpu.h>
65 #include <machine/eeprom.h>
66 #include <machine/psl.h>
67 #include <machine/z8530var.h>
68
69 #include <dev/cons.h>
70 #include <dev/ic/z8530reg.h>
71
72 #include <sparc/sparc/vaddrs.h>
73 #include <sparc/sparc/auxreg.h>
74 #include <sparc/sparc/auxiotwo.h>
75 #include <sparc/dev/cons.h>
76
77 #include "kbd.h" /* NKBD */
78 #include "zs.h" /* NZS */
79
80 /* Make life easier for the initialized arrays here. */
81 #if NZS < 3
82 #undef NZS
83 #define NZS 3
84 #endif
85
86 /*
87 * Some warts needed by z8530tty.c -
88 * The default parity REALLY needs to be the same as the PROM uses,
89 * or you can not see messages done with printf during boot-up...
90 */
91 int zs_def_cflag = (CREAD | CS8 | HUPCL);
92 int zs_major = 12;
93
94 /*
95 * The Sun provides a 4.9152 MHz clock to the ZS chips.
96 */
97 #define PCLK (9600 * 512) /* PCLK pin input clock rate */
98
99 /*
100 * Select software interrupt bit based on TTY ipl.
101 */
102 #if PIL_TTY == 1
103 # define IE_ZSSOFT IE_L1
104 #elif PIL_TTY == 4
105 # define IE_ZSSOFT IE_L4
106 #elif PIL_TTY == 6
107 # define IE_ZSSOFT IE_L6
108 #else
109 # error "no suitable software interrupt bit"
110 #endif
111
112 #define ZS_DELAY() (CPU_ISSUN4C ? (0) : delay(2))
113
114 /* The layout of this is hardware-dependent (padding, order). */
115 struct zschan {
116 volatile u_char zc_csr; /* ctrl,status, and indirect access */
117 u_char zc_xxx0;
118 volatile u_char zc_data; /* data */
119 u_char zc_xxx1;
120 };
121 struct zsdevice {
122 /* Yes, they are backwards. */
123 struct zschan zs_chan_b;
124 struct zschan zs_chan_a;
125 };
126
127 /* ZS channel used as the console device (if any) */
128 void *zs_conschan_get, *zs_conschan_put;
129
130 /* Default speed for each channel */
131 static int zs_defspeed[NZS][2] = {
132 { 9600, /* ttya */
133 9600 }, /* ttyb */
134 { 1200, /* keyboard */
135 1200 }, /* mouse */
136 { 9600, /* ttyc */
137 9600 }, /* ttyd */
138 };
139
140 static u_char zs_init_reg[16] = {
141 0, /* 0: CMD (reset, etc.) */
142 0, /* 1: No interrupts yet. */
143 0, /* 2: IVECT */
144 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
145 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
146 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
147 0, /* 6: TXSYNC/SYNCLO */
148 0, /* 7: RXSYNC/SYNCHI */
149 0, /* 8: alias for data port */
150 ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR,
151 0, /*10: Misc. TX/RX control bits */
152 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
153 ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */
154 0, /*13: BAUDHI (default=9600) */
155 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
156 ZSWR15_BREAK_IE,
157 };
158
159 /* Console ops */
160 static int zscngetc __P((dev_t));
161 static void zscnputc __P((dev_t, int));
162 static void zscnpollc __P((dev_t, int));
163
164 struct consdev zs_consdev = {
165 NULL,
166 NULL,
167 zscngetc,
168 zscnputc,
169 zscnpollc,
170 NULL,
171 };
172
173
174 /****************************************************************
175 * Autoconfig
176 ****************************************************************/
177
178 /* Definition of the driver for autoconfig. */
179 static int zs_match_mainbus __P((struct device *, struct cfdata *, void *));
180 static int zs_match_obio __P((struct device *, struct cfdata *, void *));
181 static void zs_attach_mainbus __P((struct device *, struct device *, void *));
182 static void zs_attach_obio __P((struct device *, struct device *, void *));
183
184
185 static void zs_attach __P((struct zsc_softc *, struct zsdevice *, int));
186 static int zs_print __P((void *, const char *name));
187
188 struct cfattach zs_mainbus_ca = {
189 sizeof(struct zsc_softc), zs_match_mainbus, zs_attach_mainbus
190 };
191
192 struct cfattach zs_obio_ca = {
193 sizeof(struct zsc_softc), zs_match_obio, zs_attach_obio
194 };
195
196 extern struct cfdriver zs_cd;
197
198 /* Interrupt handlers. */
199 static int zshard __P((void *));
200 static int zssoft __P((void *));
201 static struct intrhand levelsoft = { zssoft };
202
203 static int zs_get_speed __P((struct zs_chanstate *));
204
205 /* Console device support */
206 static int zs_console_flags __P((int, int, int));
207
208 /* Power management hooks */
209 int zs_enable __P((struct zs_chanstate *));
210 void zs_disable __P((struct zs_chanstate *));
211
212
213 /*
214 * Is the zs chip present?
215 */
216 static int
217 zs_match_mainbus(parent, cf, aux)
218 struct device *parent;
219 struct cfdata *cf;
220 void *aux;
221 {
222 struct mainbus_attach_args *ma = aux;
223
224 if (strcmp(cf->cf_driver->cd_name, ma->ma_name) != 0)
225 return (0);
226
227 return (1);
228 }
229
230 static int
231 zs_match_obio(parent, cf, aux)
232 struct device *parent;
233 struct cfdata *cf;
234 void *aux;
235 {
236 union obio_attach_args *uoba = aux;
237 struct obio4_attach_args *oba;
238
239 if (uoba->uoba_isobio4 == 0) {
240 struct sbus_attach_args *sa = &uoba->uoba_sbus;
241
242 if (strcmp(cf->cf_driver->cd_name, sa->sa_name) != 0)
243 return (0);
244
245 return (1);
246 }
247
248 oba = &uoba->uoba_oba4;
249 return (bus_space_probe(oba->oba_bustag, 0, oba->oba_paddr,
250 1, 0, 0, NULL, NULL));
251 }
252
253 static void
254 zs_attach_mainbus(parent, self, aux)
255 struct device *parent;
256 struct device *self;
257 void *aux;
258 {
259 struct zsc_softc *zsc = (void *) self;
260 struct mainbus_attach_args *ma = aux;
261
262 zsc->zsc_bustag = ma->ma_bustag;
263 zsc->zsc_dmatag = ma->ma_dmatag;
264 zsc->zsc_promunit = getpropint(ma->ma_node, "slave", -2);
265 zsc->zsc_node = ma->ma_node;
266
267 /*
268 * For machines with zs on mainbus (all sun4c models), we expect
269 * the device registers to be mapped by the PROM.
270 */
271 zs_attach(zsc, ma->ma_promvaddr, ma->ma_pri);
272 }
273
274 static void
275 zs_attach_obio(parent, self, aux)
276 struct device *parent;
277 struct device *self;
278 void *aux;
279 {
280 struct zsc_softc *zsc = (void *) self;
281 union obio_attach_args *uoba = aux;
282
283 if (uoba->uoba_isobio4 == 0) {
284 struct sbus_attach_args *sa = &uoba->uoba_sbus;
285 void *va;
286 struct zs_chanstate *cs;
287 int channel;
288
289 if (sa->sa_nintr == 0) {
290 printf(" no interrupt lines\n");
291 return;
292 }
293
294 /*
295 * Some sun4m models (Javastations) may not map the zs device.
296 */
297 if (sa->sa_npromvaddrs > 0)
298 va = (void *)sa->sa_promvaddr;
299 else {
300 bus_space_handle_t bh;
301
302 if (sbus_bus_map(sa->sa_bustag,
303 sa->sa_slot,
304 sa->sa_offset,
305 sa->sa_size,
306 BUS_SPACE_MAP_LINEAR,
307 0, &bh) != 0) {
308 printf(" cannot map zs registers\n");
309 return;
310 }
311 va = (void *)bh;
312 }
313
314 /*
315 * Check if power state can be set, e.g. Tadpole 3GX
316 */
317 if (getpropint(sa->sa_node, "pwr-on-auxio2", 0))
318 {
319 printf (" powered via auxio2");
320 for (channel = 0; channel < 2; channel++) {
321 cs = &zsc->zsc_cs_store[channel];
322 cs->enable = zs_enable;
323 cs->disable = zs_disable;
324 }
325 }
326
327 zsc->zsc_bustag = sa->sa_bustag;
328 zsc->zsc_dmatag = sa->sa_dmatag;
329 zsc->zsc_promunit = getpropint(sa->sa_node, "slave", -2);
330 zsc->zsc_node = sa->sa_node;
331 zs_attach(zsc, va, sa->sa_pri);
332 } else {
333 struct obio4_attach_args *oba = &uoba->uoba_oba4;
334 bus_space_handle_t bh;
335 bus_addr_t paddr = oba->oba_paddr;
336
337 /*
338 * As for zs on mainbus, we require a PROM mapping.
339 */
340 if (bus_space_map(oba->oba_bustag,
341 paddr,
342 sizeof(struct zsdevice),
343 BUS_SPACE_MAP_LINEAR | OBIO_BUS_MAP_USE_ROM,
344 &bh) != 0) {
345 printf(" cannot map zs registers\n");
346 return;
347 }
348 zsc->zsc_bustag = oba->oba_bustag;
349 zsc->zsc_dmatag = oba->oba_dmatag;
350 /* Find prom unit by physical address */
351 zsc->zsc_promunit =
352 (paddr == 0xf1000000) ? 0 :
353 (paddr == 0xf0000000) ? 1 :
354 (paddr == 0xe0000000) ? 2 : -2;
355
356 zs_attach(zsc, (void *)bh, oba->oba_pri);
357 }
358 }
359 /*
360 * Attach a found zs.
361 *
362 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
363 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
364 */
365 static void
366 zs_attach(zsc, zsd, pri)
367 struct zsc_softc *zsc;
368 struct zsdevice *zsd;
369 int pri;
370 {
371 struct zsc_attach_args zsc_args;
372 struct zs_chanstate *cs;
373 int s, channel;
374 static int didintr, prevpri;
375
376 if (zsd == NULL) {
377 printf("configuration incomplete\n");
378 return;
379 }
380
381 printf(" softpri %d\n", PIL_TTY);
382
383 /*
384 * Initialize software state for each channel.
385 */
386 for (channel = 0; channel < 2; channel++) {
387 struct zschan *zc;
388
389 zsc_args.channel = channel;
390 cs = &zsc->zsc_cs_store[channel];
391 zsc->zsc_cs[channel] = cs;
392
393 cs->cs_channel = channel;
394 cs->cs_private = NULL;
395 cs->cs_ops = &zsops_null;
396 cs->cs_brg_clk = PCLK / 16;
397
398 zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b;
399
400 zsc_args.hwflags = zs_console_flags(zsc->zsc_promunit,
401 zsc->zsc_node,
402 channel);
403
404 if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) {
405 zsc_args.hwflags |= ZS_HWFLAG_USE_CONSDEV;
406 zsc_args.consdev = &zs_consdev;
407 }
408
409 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
410 zs_conschan_get = zc;
411 }
412 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
413 zs_conschan_put = zc;
414 }
415 /* Childs need to set cn_dev, etc */
416
417 cs->cs_reg_csr = &zc->zc_csr;
418 cs->cs_reg_data = &zc->zc_data;
419
420 bcopy(zs_init_reg, cs->cs_creg, 16);
421 bcopy(zs_init_reg, cs->cs_preg, 16);
422
423 /* XXX: Get these from the PROM properties! */
424 /* XXX: See the mvme167 code. Better. */
425 if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE)
426 cs->cs_defspeed = zs_get_speed(cs);
427 else
428 cs->cs_defspeed = zs_defspeed[zsc->zsc_promunit][channel];
429 cs->cs_defcflag = zs_def_cflag;
430
431 /* Make these correspond to cs_defcflag (-crtscts) */
432 cs->cs_rr0_dcd = ZSRR0_DCD;
433 cs->cs_rr0_cts = 0;
434 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
435 cs->cs_wr5_rts = 0;
436
437 /*
438 * Clear the master interrupt enable.
439 * The INTENA is common to both channels,
440 * so just do it on the A channel.
441 */
442 if (channel == 0) {
443 zs_write_reg(cs, 9, 0);
444 }
445
446 /*
447 * Look for a child driver for this channel.
448 * The child attach will setup the hardware.
449 */
450 if (!config_found(&zsc->zsc_dev, (void *)&zsc_args, zs_print)) {
451 /* No sub-driver. Just reset it. */
452 u_char reset = (channel == 0) ?
453 ZSWR9_A_RESET : ZSWR9_B_RESET;
454 s = splzs();
455 zs_write_reg(cs, 9, reset);
456 splx(s);
457 }
458 }
459
460 /*
461 * Now safe to install interrupt handlers. Note the arguments
462 * to the interrupt handlers aren't used. Note, we only do this
463 * once since both SCCs interrupt at the same level and vector.
464 */
465 if (!didintr) {
466 didintr = 1;
467 prevpri = pri;
468 bus_intr_establish(zsc->zsc_bustag, pri, 0, zshard, NULL);
469 intr_establish(PIL_TTY, &levelsoft);
470 } else if (pri != prevpri)
471 panic("broken zs interrupt scheme");
472
473 evcnt_attach(&zsc->zsc_dev, "intr", &zsc->zsc_intrcnt);
474
475 /*
476 * Set the master interrupt enable and interrupt vector.
477 * (common to both channels, do it on A)
478 */
479 cs = zsc->zsc_cs[0];
480 s = splhigh();
481 /* interrupt vector */
482 zs_write_reg(cs, 2, zs_init_reg[2]);
483 /* master interrupt control (enable) */
484 zs_write_reg(cs, 9, zs_init_reg[9]);
485 splx(s);
486
487 #if 0
488 /*
489 * XXX: L1A hack - We would like to be able to break into
490 * the debugger during the rest of autoconfiguration, so
491 * lower interrupts just enough to let zs interrupts in.
492 * This is done after both zs devices are attached.
493 */
494 if (zsc->zsc_promunit == 1) {
495 printf("zs1: enabling zs interrupts\n");
496 (void)splfd(); /* XXX: splzs - 1 */
497 }
498 #endif
499 }
500
501 static int
502 zs_print(aux, name)
503 void *aux;
504 const char *name;
505 {
506 struct zsc_attach_args *args = aux;
507
508 if (name != NULL)
509 printf("%s: ", name);
510
511 if (args->channel != -1)
512 printf(" channel %d", args->channel);
513
514 return (UNCONF);
515 }
516
517 static volatile int zssoftpending;
518
519 /*
520 * Our ZS chips all share a common, autovectored interrupt,
521 * so we have to look at all of them on each interrupt.
522 */
523 static int
524 zshard(arg)
525 void *arg;
526 {
527 struct zsc_softc *zsc;
528 int unit, rr3, rval, softreq;
529
530 rval = softreq = 0;
531 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
532 struct zs_chanstate *cs;
533
534 zsc = zs_cd.cd_devs[unit];
535 if (zsc == NULL)
536 continue;
537 rr3 = zsc_intr_hard(zsc);
538 /* Count up the interrupts. */
539 if (rr3) {
540 rval |= rr3;
541 zsc->zsc_intrcnt.ev_count++;
542 }
543 if ((cs = zsc->zsc_cs[0]) != NULL)
544 softreq |= cs->cs_softreq;
545 if ((cs = zsc->zsc_cs[1]) != NULL)
546 softreq |= cs->cs_softreq;
547 }
548
549 /* We are at splzs here, so no need to lock. */
550 if (softreq && (zssoftpending == 0)) {
551 zssoftpending = IE_ZSSOFT;
552 #if defined(SUN4M)
553 if (CPU_ISSUN4M)
554 raise(0, PIL_TTY);
555 else
556 #endif
557 ienab_bis(IE_ZSSOFT);
558 }
559 return (rval);
560 }
561
562 /*
563 * Similar scheme as for zshard (look at all of them)
564 */
565 static int
566 zssoft(arg)
567 void *arg;
568 {
569 struct zsc_softc *zsc;
570 int s, unit;
571
572 /* This is not the only ISR on this IPL. */
573 if (zssoftpending == 0)
574 return (0);
575
576 /*
577 * The soft intr. bit will be set by zshard only if
578 * the variable zssoftpending is zero. The order of
579 * these next two statements prevents our clearing
580 * the soft intr bit just after zshard has set it.
581 */
582 /* ienab_bic(IE_ZSSOFT); */
583 zssoftpending = 0;
584
585 /* Make sure we call the tty layer at spltty. */
586 s = spltty();
587 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
588 zsc = zs_cd.cd_devs[unit];
589 if (zsc == NULL)
590 continue;
591 (void)zsc_intr_soft(zsc);
592 }
593 splx(s);
594 return (1);
595 }
596
597
598 /*
599 * Compute the current baud rate given a ZS channel.
600 */
601 static int
602 zs_get_speed(cs)
603 struct zs_chanstate *cs;
604 {
605 int tconst;
606
607 tconst = zs_read_reg(cs, 12);
608 tconst |= zs_read_reg(cs, 13) << 8;
609 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
610 }
611
612 /*
613 * MD functions for setting the baud rate and control modes.
614 */
615 int
616 zs_set_speed(cs, bps)
617 struct zs_chanstate *cs;
618 int bps; /* bits per second */
619 {
620 int tconst, real_bps;
621
622 if (bps == 0)
623 return (0);
624
625 #ifdef DIAGNOSTIC
626 if (cs->cs_brg_clk == 0)
627 panic("zs_set_speed");
628 #endif
629
630 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
631 if (tconst < 0)
632 return (EINVAL);
633
634 /* Convert back to make sure we can do it. */
635 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
636
637 /* XXX - Allow some tolerance here? */
638 if (real_bps != bps)
639 return (EINVAL);
640
641 cs->cs_preg[12] = tconst;
642 cs->cs_preg[13] = tconst >> 8;
643
644 /* Caller will stuff the pending registers. */
645 return (0);
646 }
647
648 int
649 zs_set_modes(cs, cflag)
650 struct zs_chanstate *cs;
651 int cflag; /* bits per second */
652 {
653 int s;
654
655 /*
656 * Output hardware flow control on the chip is horrendous:
657 * if carrier detect drops, the receiver is disabled, and if
658 * CTS drops, the transmitter is stoped IN MID CHARACTER!
659 * Therefore, NEVER set the HFC bit, and instead use the
660 * status interrupt to detect CTS changes.
661 */
662 s = splzs();
663 cs->cs_rr0_pps = 0;
664 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
665 cs->cs_rr0_dcd = 0;
666 if ((cflag & MDMBUF) == 0)
667 cs->cs_rr0_pps = ZSRR0_DCD;
668 } else
669 cs->cs_rr0_dcd = ZSRR0_DCD;
670 if ((cflag & CRTSCTS) != 0) {
671 cs->cs_wr5_dtr = ZSWR5_DTR;
672 cs->cs_wr5_rts = ZSWR5_RTS;
673 cs->cs_rr0_cts = ZSRR0_CTS;
674 } else if ((cflag & CDTRCTS) != 0) {
675 cs->cs_wr5_dtr = 0;
676 cs->cs_wr5_rts = ZSWR5_DTR;
677 cs->cs_rr0_cts = ZSRR0_CTS;
678 } else if ((cflag & MDMBUF) != 0) {
679 cs->cs_wr5_dtr = 0;
680 cs->cs_wr5_rts = ZSWR5_DTR;
681 cs->cs_rr0_cts = ZSRR0_DCD;
682 } else {
683 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
684 cs->cs_wr5_rts = 0;
685 cs->cs_rr0_cts = 0;
686 }
687 splx(s);
688
689 /* Caller will stuff the pending registers. */
690 return (0);
691 }
692
693
694 /*
695 * Read or write the chip with suitable delays.
696 */
697
698 u_char
699 zs_read_reg(cs, reg)
700 struct zs_chanstate *cs;
701 u_char reg;
702 {
703 u_char val;
704
705 *cs->cs_reg_csr = reg;
706 ZS_DELAY();
707 val = *cs->cs_reg_csr;
708 ZS_DELAY();
709 return (val);
710 }
711
712 void
713 zs_write_reg(cs, reg, val)
714 struct zs_chanstate *cs;
715 u_char reg, val;
716 {
717 *cs->cs_reg_csr = reg;
718 ZS_DELAY();
719 *cs->cs_reg_csr = val;
720 ZS_DELAY();
721 }
722
723 u_char
724 zs_read_csr(cs)
725 struct zs_chanstate *cs;
726 {
727 u_char val;
728
729 val = *cs->cs_reg_csr;
730 ZS_DELAY();
731 return (val);
732 }
733
734 void
735 zs_write_csr(cs, val)
736 struct zs_chanstate *cs;
737 u_char val;
738 {
739 *cs->cs_reg_csr = val;
740 ZS_DELAY();
741 }
742
743 u_char
744 zs_read_data(cs)
745 struct zs_chanstate *cs;
746 {
747 u_char val;
748
749 val = *cs->cs_reg_data;
750 ZS_DELAY();
751 return (val);
752 }
753
754 void zs_write_data(cs, val)
755 struct zs_chanstate *cs;
756 u_char val;
757 {
758 *cs->cs_reg_data = val;
759 ZS_DELAY();
760 }
761
762 /****************************************************************
763 * Console support functions (Sun specific!)
764 * Note: this code is allowed to know about the layout of
765 * the chip registers, and uses that to keep things simple.
766 * XXX - I think I like the mvme167 code better. -gwr
767 ****************************************************************/
768
769 /*
770 * Handle user request to enter kernel debugger.
771 */
772 void
773 zs_abort(cs)
774 struct zs_chanstate *cs;
775 {
776 struct zschan *zc = zs_conschan_get;
777 int rr0;
778
779 /* Wait for end of break to avoid PROM abort. */
780 /* XXX - Limit the wait? */
781 do {
782 rr0 = zc->zc_csr;
783 ZS_DELAY();
784 } while (rr0 & ZSRR0_BREAK);
785
786 #if defined(KGDB)
787 zskgdb(cs);
788 #elif defined(DDB)
789 Debugger();
790 #else
791 printf("stopping on keyboard abort\n");
792 callrom();
793 #endif
794 }
795
796 static int zs_getc __P((void *arg));
797 static void zs_putc __P((void *arg, int c));
798
799 /*
800 * Polled input char.
801 */
802 int
803 zs_getc(arg)
804 void *arg;
805 {
806 struct zschan *zc = arg;
807 int s, c, rr0;
808
809 s = splhigh();
810 /* Wait for a character to arrive. */
811 do {
812 rr0 = zc->zc_csr;
813 ZS_DELAY();
814 } while ((rr0 & ZSRR0_RX_READY) == 0);
815
816 c = zc->zc_data;
817 ZS_DELAY();
818 splx(s);
819
820 /*
821 * This is used by the kd driver to read scan codes,
822 * so don't translate '\r' ==> '\n' here...
823 */
824 return (c);
825 }
826
827 /*
828 * Polled output char.
829 */
830 void
831 zs_putc(arg, c)
832 void *arg;
833 int c;
834 {
835 struct zschan *zc = arg;
836 int s, rr0;
837
838 s = splhigh();
839
840 /* Wait for transmitter to become ready. */
841 do {
842 rr0 = zc->zc_csr;
843 ZS_DELAY();
844 } while ((rr0 & ZSRR0_TX_READY) == 0);
845
846 /*
847 * Send the next character.
848 * Now you'd think that this could be followed by a ZS_DELAY()
849 * just like all the other chip accesses, but it turns out that
850 * the `transmit-ready' interrupt isn't de-asserted until
851 * some period of time after the register write completes
852 * (more than a couple instructions). So to avoid stray
853 * interrupts we put in the 2us delay regardless of cpu model.
854 */
855 zc->zc_data = c;
856 delay(2);
857
858 splx(s);
859 }
860
861 /*****************************************************************/
862 /*
863 * Polled console input putchar.
864 */
865 int
866 zscngetc(dev)
867 dev_t dev;
868 {
869 return (zs_getc(zs_conschan_get));
870 }
871
872 /*
873 * Polled console output putchar.
874 */
875 void
876 zscnputc(dev, c)
877 dev_t dev;
878 int c;
879 {
880 zs_putc(zs_conschan_put, c);
881 }
882
883 void
884 zscnpollc(dev, on)
885 dev_t dev;
886 int on;
887 {
888 /* No action needed */
889 }
890
891 int
892 zs_console_flags(promunit, node, channel)
893 int promunit;
894 int node;
895 int channel;
896 {
897 int cookie, flags = 0;
898
899 switch (prom_version()) {
900 case PROM_OLDMON:
901 case PROM_OBP_V0:
902 /*
903 * Use `promunit' and `channel' to derive the PROM
904 * stdio handles that correspond to this device.
905 */
906 if (promunit == 0)
907 cookie = PROMDEV_TTYA + channel;
908 else if (promunit == 1 && channel == 0)
909 cookie = PROMDEV_KBD;
910 else
911 cookie = -1;
912
913 if (cookie == prom_stdin())
914 flags |= ZS_HWFLAG_CONSOLE_INPUT;
915
916 /*
917 * Prevent the keyboard from matching the output device
918 * (note that PROMDEV_KBD == PROMDEV_SCREEN == 0!).
919 */
920 if (cookie != PROMDEV_KBD && cookie == prom_stdout())
921 flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
922
923 break;
924
925 case PROM_OBP_V2:
926 case PROM_OBP_V3:
927 case PROM_OPENFIRM:
928
929 /*
930 * Match the nodes and device arguments prepared by
931 * consinit() against our device node and channel.
932 * (The device argument is the part of the OBP path
933 * following the colon, as in `/obio/zs@0,100000:a')
934 */
935
936 /* Default to channel 0 if there are no explicit prom args */
937 cookie = 0;
938
939 if (node == prom_stdin_node) {
940 if (prom_stdin_args[0] != '\0')
941 /* Translate (a,b) -> (0,1) */
942 cookie = prom_stdin_args[0] - 'a';
943
944 if (channel == cookie)
945 flags |= ZS_HWFLAG_CONSOLE_INPUT;
946 }
947
948 if (node == prom_stdout_node) {
949 if (prom_stdout_args[0] != '\0')
950 /* Translate (a,b) -> (0,1) */
951 cookie = prom_stdout_args[0] - 'a';
952
953 if (channel == cookie)
954 flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
955 }
956
957 break;
958
959 default:
960 break;
961 }
962
963 prom_printf("zs_console flags: %x\n", flags);
964 return (flags);
965 }
966
967 /*
968 * Power management hooks for zsopen() and zsclose().
969 * We use them to power on/off the ports, if necessary.
970 */
971 int
972 zs_enable(cs)
973 struct zs_chanstate *cs;
974 {
975 auxiotwoserialendis (ZS_ENABLE);
976 cs->enabled = 1;
977 return(0);
978 }
979
980 void
981 zs_disable(cs)
982 struct zs_chanstate *cs;
983 {
984 auxiotwoserialendis (ZS_DISABLE);
985 cs->enabled = 0;
986 }
987