zs.c revision 1.77 1 /* $NetBSD: zs.c,v 1.77 2000/03/19 14:58:02 pk Exp $ */
2
3 /*-
4 * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Zilog Z8530 Dual UART driver (machine-dependent part)
41 *
42 * Runs two serial lines per chip using slave drivers.
43 * Plain tty/async lines use the zs_async slave.
44 * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
45 */
46
47 #include "opt_ddb.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/conf.h>
52 #include <sys/device.h>
53 #include <sys/file.h>
54 #include <sys/ioctl.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/tty.h>
58 #include <sys/time.h>
59 #include <sys/syslog.h>
60
61 #include <machine/bsd_openprom.h>
62 #include <machine/autoconf.h>
63 #include <machine/conf.h>
64 #include <machine/cpu.h>
65 #include <machine/eeprom.h>
66 #include <machine/psl.h>
67 #include <machine/z8530var.h>
68
69 #include <dev/cons.h>
70 #include <dev/ic/z8530reg.h>
71
72 #include <sparc/sparc/vaddrs.h>
73 #include <sparc/sparc/auxreg.h>
74 #include <sparc/sparc/auxiotwo.h>
75 #include <sparc/dev/cons.h>
76
77 #include "kbd.h" /* NKBD */
78 #include "zs.h" /* NZS */
79
80 /* Make life easier for the initialized arrays here. */
81 #if NZS < 3
82 #undef NZS
83 #define NZS 3
84 #endif
85
86 /*
87 * Some warts needed by z8530tty.c -
88 * The default parity REALLY needs to be the same as the PROM uses,
89 * or you can not see messages done with printf during boot-up...
90 */
91 int zs_def_cflag = (CREAD | CS8 | HUPCL);
92 int zs_major = 12;
93
94 /*
95 * The Sun provides a 4.9152 MHz clock to the ZS chips.
96 */
97 #define PCLK (9600 * 512) /* PCLK pin input clock rate */
98
99 /*
100 * Select software interrupt bit based on TTY ipl.
101 */
102 #if PIL_TTY == 1
103 # define IE_ZSSOFT IE_L1
104 #elif PIL_TTY == 4
105 # define IE_ZSSOFT IE_L4
106 #elif PIL_TTY == 6
107 # define IE_ZSSOFT IE_L6
108 #else
109 # error "no suitable software interrupt bit"
110 #endif
111
112 #define ZS_DELAY() (CPU_ISSUN4C ? (0) : delay(2))
113
114 /* The layout of this is hardware-dependent (padding, order). */
115 struct zschan {
116 volatile u_char zc_csr; /* ctrl,status, and indirect access */
117 u_char zc_xxx0;
118 volatile u_char zc_data; /* data */
119 u_char zc_xxx1;
120 };
121 struct zsdevice {
122 /* Yes, they are backwards. */
123 struct zschan zs_chan_b;
124 struct zschan zs_chan_a;
125 };
126
127 /* ZS channel used as the console device (if any) */
128 void *zs_conschan_get, *zs_conschan_put;
129
130 static u_char zs_init_reg[16] = {
131 0, /* 0: CMD (reset, etc.) */
132 0, /* 1: No interrupts yet. */
133 0, /* 2: IVECT */
134 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
135 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
136 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
137 0, /* 6: TXSYNC/SYNCLO */
138 0, /* 7: RXSYNC/SYNCHI */
139 0, /* 8: alias for data port */
140 ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR,
141 0, /*10: Misc. TX/RX control bits */
142 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
143 ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */
144 0, /*13: BAUDHI (default=9600) */
145 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
146 ZSWR15_BREAK_IE,
147 };
148
149 /* Console ops */
150 static int zscngetc __P((dev_t));
151 static void zscnputc __P((dev_t, int));
152 static void zscnpollc __P((dev_t, int));
153
154 struct consdev zs_consdev = {
155 NULL,
156 NULL,
157 zscngetc,
158 zscnputc,
159 zscnpollc,
160 NULL,
161 };
162
163
164 /****************************************************************
165 * Autoconfig
166 ****************************************************************/
167
168 /* Definition of the driver for autoconfig. */
169 static int zs_match_mainbus __P((struct device *, struct cfdata *, void *));
170 static int zs_match_obio __P((struct device *, struct cfdata *, void *));
171 static void zs_attach_mainbus __P((struct device *, struct device *, void *));
172 static void zs_attach_obio __P((struct device *, struct device *, void *));
173
174
175 static void zs_attach __P((struct zsc_softc *, struct zsdevice *, int));
176 static int zs_print __P((void *, const char *name));
177
178 struct cfattach zs_mainbus_ca = {
179 sizeof(struct zsc_softc), zs_match_mainbus, zs_attach_mainbus
180 };
181
182 struct cfattach zs_obio_ca = {
183 sizeof(struct zsc_softc), zs_match_obio, zs_attach_obio
184 };
185
186 extern struct cfdriver zs_cd;
187
188 /* Interrupt handlers. */
189 static int zshard __P((void *));
190 static int zssoft __P((void *));
191 static struct intrhand levelsoft = { zssoft };
192
193 static int zs_get_speed __P((struct zs_chanstate *));
194
195 /* Console device support */
196 static int zs_console_flags __P((int, int, int));
197
198 /* Power management hooks */
199 int zs_enable __P((struct zs_chanstate *));
200 void zs_disable __P((struct zs_chanstate *));
201
202
203 /*
204 * Is the zs chip present?
205 */
206 static int
207 zs_match_mainbus(parent, cf, aux)
208 struct device *parent;
209 struct cfdata *cf;
210 void *aux;
211 {
212 struct mainbus_attach_args *ma = aux;
213
214 if (strcmp(cf->cf_driver->cd_name, ma->ma_name) != 0)
215 return (0);
216
217 return (1);
218 }
219
220 static int
221 zs_match_obio(parent, cf, aux)
222 struct device *parent;
223 struct cfdata *cf;
224 void *aux;
225 {
226 union obio_attach_args *uoba = aux;
227 struct obio4_attach_args *oba;
228
229 if (uoba->uoba_isobio4 == 0) {
230 struct sbus_attach_args *sa = &uoba->uoba_sbus;
231
232 if (strcmp(cf->cf_driver->cd_name, sa->sa_name) != 0)
233 return (0);
234
235 return (1);
236 }
237
238 oba = &uoba->uoba_oba4;
239 return (bus_space_probe(oba->oba_bustag, 0, oba->oba_paddr,
240 1, 0, 0, NULL, NULL));
241 }
242
243 static void
244 zs_attach_mainbus(parent, self, aux)
245 struct device *parent;
246 struct device *self;
247 void *aux;
248 {
249 struct zsc_softc *zsc = (void *) self;
250 struct mainbus_attach_args *ma = aux;
251
252 zsc->zsc_bustag = ma->ma_bustag;
253 zsc->zsc_dmatag = ma->ma_dmatag;
254 zsc->zsc_promunit = getpropint(ma->ma_node, "slave", -2);
255 zsc->zsc_node = ma->ma_node;
256
257 /*
258 * For machines with zs on mainbus (all sun4c models), we expect
259 * the device registers to be mapped by the PROM.
260 */
261 zs_attach(zsc, ma->ma_promvaddr, ma->ma_pri);
262 }
263
264 static void
265 zs_attach_obio(parent, self, aux)
266 struct device *parent;
267 struct device *self;
268 void *aux;
269 {
270 struct zsc_softc *zsc = (void *) self;
271 union obio_attach_args *uoba = aux;
272
273 if (uoba->uoba_isobio4 == 0) {
274 struct sbus_attach_args *sa = &uoba->uoba_sbus;
275 void *va;
276 struct zs_chanstate *cs;
277 int channel;
278
279 if (sa->sa_nintr == 0) {
280 printf(" no interrupt lines\n");
281 return;
282 }
283
284 /*
285 * Some sun4m models (Javastations) may not map the zs device.
286 */
287 if (sa->sa_npromvaddrs > 0)
288 va = (void *)sa->sa_promvaddr;
289 else {
290 bus_space_handle_t bh;
291
292 if (sbus_bus_map(sa->sa_bustag,
293 sa->sa_slot,
294 sa->sa_offset,
295 sa->sa_size,
296 BUS_SPACE_MAP_LINEAR,
297 0, &bh) != 0) {
298 printf(" cannot map zs registers\n");
299 return;
300 }
301 va = (void *)bh;
302 }
303
304 /*
305 * Check if power state can be set, e.g. Tadpole 3GX
306 */
307 if (getpropint(sa->sa_node, "pwr-on-auxio2", 0))
308 {
309 printf (" powered via auxio2");
310 for (channel = 0; channel < 2; channel++) {
311 cs = &zsc->zsc_cs_store[channel];
312 cs->enable = zs_enable;
313 cs->disable = zs_disable;
314 }
315 }
316
317 zsc->zsc_bustag = sa->sa_bustag;
318 zsc->zsc_dmatag = sa->sa_dmatag;
319 zsc->zsc_promunit = getpropint(sa->sa_node, "slave", -2);
320 zsc->zsc_node = sa->sa_node;
321 zs_attach(zsc, va, sa->sa_pri);
322 } else {
323 struct obio4_attach_args *oba = &uoba->uoba_oba4;
324 bus_space_handle_t bh;
325 bus_addr_t paddr = oba->oba_paddr;
326
327 /*
328 * As for zs on mainbus, we require a PROM mapping.
329 */
330 if (bus_space_map(oba->oba_bustag,
331 paddr,
332 sizeof(struct zsdevice),
333 BUS_SPACE_MAP_LINEAR | OBIO_BUS_MAP_USE_ROM,
334 &bh) != 0) {
335 printf(" cannot map zs registers\n");
336 return;
337 }
338 zsc->zsc_bustag = oba->oba_bustag;
339 zsc->zsc_dmatag = oba->oba_dmatag;
340 /* Find prom unit by physical address */
341 zsc->zsc_promunit =
342 (paddr == 0xf1000000) ? 0 :
343 (paddr == 0xf0000000) ? 1 :
344 (paddr == 0xe0000000) ? 2 : -2;
345
346 zs_attach(zsc, (void *)bh, oba->oba_pri);
347 }
348 }
349 /*
350 * Attach a found zs.
351 *
352 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
353 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
354 */
355 static void
356 zs_attach(zsc, zsd, pri)
357 struct zsc_softc *zsc;
358 struct zsdevice *zsd;
359 int pri;
360 {
361 struct zsc_attach_args zsc_args;
362 struct zs_chanstate *cs;
363 int s, channel;
364 static int didintr, prevpri;
365
366 if (zsd == NULL) {
367 printf("configuration incomplete\n");
368 return;
369 }
370
371 printf(" softpri %d\n", PIL_TTY);
372
373 /*
374 * Initialize software state for each channel.
375 */
376 for (channel = 0; channel < 2; channel++) {
377 struct zschan *zc;
378
379 zsc_args.channel = channel;
380 cs = &zsc->zsc_cs_store[channel];
381 zsc->zsc_cs[channel] = cs;
382
383 cs->cs_channel = channel;
384 cs->cs_private = NULL;
385 cs->cs_ops = &zsops_null;
386 cs->cs_brg_clk = PCLK / 16;
387
388 zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b;
389
390 zsc_args.hwflags = zs_console_flags(zsc->zsc_promunit,
391 zsc->zsc_node,
392 channel);
393
394 if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) {
395 zsc_args.hwflags |= ZS_HWFLAG_USE_CONSDEV;
396 zsc_args.consdev = &zs_consdev;
397 }
398
399 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
400 zs_conschan_get = zc;
401 }
402 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
403 zs_conschan_put = zc;
404 }
405 /* Childs need to set cn_dev, etc */
406
407 cs->cs_reg_csr = &zc->zc_csr;
408 cs->cs_reg_data = &zc->zc_data;
409
410 bcopy(zs_init_reg, cs->cs_creg, 16);
411 bcopy(zs_init_reg, cs->cs_preg, 16);
412
413 /* XXX: Consult PROM properties for this?! */
414 cs->cs_defspeed = zs_get_speed(cs);
415 cs->cs_defcflag = zs_def_cflag;
416
417 /* Make these correspond to cs_defcflag (-crtscts) */
418 cs->cs_rr0_dcd = ZSRR0_DCD;
419 cs->cs_rr0_cts = 0;
420 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
421 cs->cs_wr5_rts = 0;
422
423 /*
424 * Clear the master interrupt enable.
425 * The INTENA is common to both channels,
426 * so just do it on the A channel.
427 */
428 if (channel == 0) {
429 zs_write_reg(cs, 9, 0);
430 }
431
432 /*
433 * Look for a child driver for this channel.
434 * The child attach will setup the hardware.
435 */
436 if (!config_found(&zsc->zsc_dev, (void *)&zsc_args, zs_print)) {
437 /* No sub-driver. Just reset it. */
438 u_char reset = (channel == 0) ?
439 ZSWR9_A_RESET : ZSWR9_B_RESET;
440 s = splzs();
441 zs_write_reg(cs, 9, reset);
442 splx(s);
443 }
444 }
445
446 /*
447 * Now safe to install interrupt handlers. Note the arguments
448 * to the interrupt handlers aren't used. Note, we only do this
449 * once since both SCCs interrupt at the same level and vector.
450 */
451 if (!didintr) {
452 didintr = 1;
453 prevpri = pri;
454 bus_intr_establish(zsc->zsc_bustag, pri, 0, zshard, NULL);
455 intr_establish(PIL_TTY, &levelsoft);
456 } else if (pri != prevpri)
457 panic("broken zs interrupt scheme");
458
459 evcnt_attach(&zsc->zsc_dev, "intr", &zsc->zsc_intrcnt);
460
461 /*
462 * Set the master interrupt enable and interrupt vector.
463 * (common to both channels, do it on A)
464 */
465 cs = zsc->zsc_cs[0];
466 s = splhigh();
467 /* interrupt vector */
468 zs_write_reg(cs, 2, zs_init_reg[2]);
469 /* master interrupt control (enable) */
470 zs_write_reg(cs, 9, zs_init_reg[9]);
471 splx(s);
472
473 #if 0
474 /*
475 * XXX: L1A hack - We would like to be able to break into
476 * the debugger during the rest of autoconfiguration, so
477 * lower interrupts just enough to let zs interrupts in.
478 * This is done after both zs devices are attached.
479 */
480 if (zsc->zsc_promunit == 1) {
481 printf("zs1: enabling zs interrupts\n");
482 (void)splfd(); /* XXX: splzs - 1 */
483 }
484 #endif
485 }
486
487 static int
488 zs_print(aux, name)
489 void *aux;
490 const char *name;
491 {
492 struct zsc_attach_args *args = aux;
493
494 if (name != NULL)
495 printf("%s: ", name);
496
497 if (args->channel != -1)
498 printf(" channel %d", args->channel);
499
500 return (UNCONF);
501 }
502
503 static volatile int zssoftpending;
504
505 /*
506 * Our ZS chips all share a common, autovectored interrupt,
507 * so we have to look at all of them on each interrupt.
508 */
509 static int
510 zshard(arg)
511 void *arg;
512 {
513 struct zsc_softc *zsc;
514 int unit, rr3, rval, softreq;
515
516 rval = softreq = 0;
517 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
518 struct zs_chanstate *cs;
519
520 zsc = zs_cd.cd_devs[unit];
521 if (zsc == NULL)
522 continue;
523 rr3 = zsc_intr_hard(zsc);
524 /* Count up the interrupts. */
525 if (rr3) {
526 rval |= rr3;
527 zsc->zsc_intrcnt.ev_count++;
528 }
529 if ((cs = zsc->zsc_cs[0]) != NULL)
530 softreq |= cs->cs_softreq;
531 if ((cs = zsc->zsc_cs[1]) != NULL)
532 softreq |= cs->cs_softreq;
533 }
534
535 /* We are at splzs here, so no need to lock. */
536 if (softreq && (zssoftpending == 0)) {
537 zssoftpending = IE_ZSSOFT;
538 #if defined(SUN4M)
539 if (CPU_ISSUN4M)
540 raise(0, PIL_TTY);
541 else
542 #endif
543 ienab_bis(IE_ZSSOFT);
544 }
545 return (rval);
546 }
547
548 /*
549 * Similar scheme as for zshard (look at all of them)
550 */
551 static int
552 zssoft(arg)
553 void *arg;
554 {
555 struct zsc_softc *zsc;
556 int s, unit;
557
558 /* This is not the only ISR on this IPL. */
559 if (zssoftpending == 0)
560 return (0);
561
562 /*
563 * The soft intr. bit will be set by zshard only if
564 * the variable zssoftpending is zero. The order of
565 * these next two statements prevents our clearing
566 * the soft intr bit just after zshard has set it.
567 */
568 /* ienab_bic(IE_ZSSOFT); */
569 zssoftpending = 0;
570
571 /* Make sure we call the tty layer at spltty. */
572 s = spltty();
573 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
574 zsc = zs_cd.cd_devs[unit];
575 if (zsc == NULL)
576 continue;
577 (void)zsc_intr_soft(zsc);
578 }
579 splx(s);
580 return (1);
581 }
582
583
584 /*
585 * Compute the current baud rate given a ZS channel.
586 */
587 static int
588 zs_get_speed(cs)
589 struct zs_chanstate *cs;
590 {
591 int tconst;
592
593 tconst = zs_read_reg(cs, 12);
594 tconst |= zs_read_reg(cs, 13) << 8;
595 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
596 }
597
598 /*
599 * MD functions for setting the baud rate and control modes.
600 */
601 int
602 zs_set_speed(cs, bps)
603 struct zs_chanstate *cs;
604 int bps; /* bits per second */
605 {
606 int tconst, real_bps;
607
608 if (bps == 0)
609 return (0);
610
611 #ifdef DIAGNOSTIC
612 if (cs->cs_brg_clk == 0)
613 panic("zs_set_speed");
614 #endif
615
616 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
617 if (tconst < 0)
618 return (EINVAL);
619
620 /* Convert back to make sure we can do it. */
621 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
622
623 /* XXX - Allow some tolerance here? */
624 if (real_bps != bps)
625 return (EINVAL);
626
627 cs->cs_preg[12] = tconst;
628 cs->cs_preg[13] = tconst >> 8;
629
630 /* Caller will stuff the pending registers. */
631 return (0);
632 }
633
634 int
635 zs_set_modes(cs, cflag)
636 struct zs_chanstate *cs;
637 int cflag; /* bits per second */
638 {
639 int s;
640
641 /*
642 * Output hardware flow control on the chip is horrendous:
643 * if carrier detect drops, the receiver is disabled, and if
644 * CTS drops, the transmitter is stoped IN MID CHARACTER!
645 * Therefore, NEVER set the HFC bit, and instead use the
646 * status interrupt to detect CTS changes.
647 */
648 s = splzs();
649 cs->cs_rr0_pps = 0;
650 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
651 cs->cs_rr0_dcd = 0;
652 if ((cflag & MDMBUF) == 0)
653 cs->cs_rr0_pps = ZSRR0_DCD;
654 } else
655 cs->cs_rr0_dcd = ZSRR0_DCD;
656 if ((cflag & CRTSCTS) != 0) {
657 cs->cs_wr5_dtr = ZSWR5_DTR;
658 cs->cs_wr5_rts = ZSWR5_RTS;
659 cs->cs_rr0_cts = ZSRR0_CTS;
660 } else if ((cflag & CDTRCTS) != 0) {
661 cs->cs_wr5_dtr = 0;
662 cs->cs_wr5_rts = ZSWR5_DTR;
663 cs->cs_rr0_cts = ZSRR0_CTS;
664 } else if ((cflag & MDMBUF) != 0) {
665 cs->cs_wr5_dtr = 0;
666 cs->cs_wr5_rts = ZSWR5_DTR;
667 cs->cs_rr0_cts = ZSRR0_DCD;
668 } else {
669 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
670 cs->cs_wr5_rts = 0;
671 cs->cs_rr0_cts = 0;
672 }
673 splx(s);
674
675 /* Caller will stuff the pending registers. */
676 return (0);
677 }
678
679
680 /*
681 * Read or write the chip with suitable delays.
682 */
683
684 u_char
685 zs_read_reg(cs, reg)
686 struct zs_chanstate *cs;
687 u_char reg;
688 {
689 u_char val;
690
691 *cs->cs_reg_csr = reg;
692 ZS_DELAY();
693 val = *cs->cs_reg_csr;
694 ZS_DELAY();
695 return (val);
696 }
697
698 void
699 zs_write_reg(cs, reg, val)
700 struct zs_chanstate *cs;
701 u_char reg, val;
702 {
703 *cs->cs_reg_csr = reg;
704 ZS_DELAY();
705 *cs->cs_reg_csr = val;
706 ZS_DELAY();
707 }
708
709 u_char
710 zs_read_csr(cs)
711 struct zs_chanstate *cs;
712 {
713 u_char val;
714
715 val = *cs->cs_reg_csr;
716 ZS_DELAY();
717 return (val);
718 }
719
720 void
721 zs_write_csr(cs, val)
722 struct zs_chanstate *cs;
723 u_char val;
724 {
725 *cs->cs_reg_csr = val;
726 ZS_DELAY();
727 }
728
729 u_char
730 zs_read_data(cs)
731 struct zs_chanstate *cs;
732 {
733 u_char val;
734
735 val = *cs->cs_reg_data;
736 ZS_DELAY();
737 return (val);
738 }
739
740 void zs_write_data(cs, val)
741 struct zs_chanstate *cs;
742 u_char val;
743 {
744 *cs->cs_reg_data = val;
745 ZS_DELAY();
746 }
747
748 /****************************************************************
749 * Console support functions (Sun specific!)
750 * Note: this code is allowed to know about the layout of
751 * the chip registers, and uses that to keep things simple.
752 * XXX - I think I like the mvme167 code better. -gwr
753 ****************************************************************/
754
755 /*
756 * Handle user request to enter kernel debugger.
757 */
758 void
759 zs_abort(cs)
760 struct zs_chanstate *cs;
761 {
762 struct zschan *zc = zs_conschan_get;
763 int rr0;
764
765 /* Wait for end of break to avoid PROM abort. */
766 /* XXX - Limit the wait? */
767 do {
768 rr0 = zc->zc_csr;
769 ZS_DELAY();
770 } while (rr0 & ZSRR0_BREAK);
771
772 #if defined(KGDB)
773 zskgdb(cs);
774 #elif defined(DDB)
775 Debugger();
776 #else
777 printf("stopping on keyboard abort\n");
778 callrom();
779 #endif
780 }
781
782 static int zs_getc __P((void *arg));
783 static void zs_putc __P((void *arg, int c));
784
785 /*
786 * Polled input char.
787 */
788 int
789 zs_getc(arg)
790 void *arg;
791 {
792 struct zschan *zc = arg;
793 int s, c, rr0;
794
795 s = splhigh();
796 /* Wait for a character to arrive. */
797 do {
798 rr0 = zc->zc_csr;
799 ZS_DELAY();
800 } while ((rr0 & ZSRR0_RX_READY) == 0);
801
802 c = zc->zc_data;
803 ZS_DELAY();
804 splx(s);
805
806 /*
807 * This is used by the kd driver to read scan codes,
808 * so don't translate '\r' ==> '\n' here...
809 */
810 return (c);
811 }
812
813 /*
814 * Polled output char.
815 */
816 void
817 zs_putc(arg, c)
818 void *arg;
819 int c;
820 {
821 struct zschan *zc = arg;
822 int s, rr0;
823
824 s = splhigh();
825
826 /* Wait for transmitter to become ready. */
827 do {
828 rr0 = zc->zc_csr;
829 ZS_DELAY();
830 } while ((rr0 & ZSRR0_TX_READY) == 0);
831
832 /*
833 * Send the next character.
834 * Now you'd think that this could be followed by a ZS_DELAY()
835 * just like all the other chip accesses, but it turns out that
836 * the `transmit-ready' interrupt isn't de-asserted until
837 * some period of time after the register write completes
838 * (more than a couple instructions). So to avoid stray
839 * interrupts we put in the 2us delay regardless of cpu model.
840 */
841 zc->zc_data = c;
842 delay(2);
843
844 splx(s);
845 }
846
847 /*****************************************************************/
848 /*
849 * Polled console input putchar.
850 */
851 int
852 zscngetc(dev)
853 dev_t dev;
854 {
855 return (zs_getc(zs_conschan_get));
856 }
857
858 /*
859 * Polled console output putchar.
860 */
861 void
862 zscnputc(dev, c)
863 dev_t dev;
864 int c;
865 {
866 zs_putc(zs_conschan_put, c);
867 }
868
869 void
870 zscnpollc(dev, on)
871 dev_t dev;
872 int on;
873 {
874 /* No action needed */
875 }
876
877 int
878 zs_console_flags(promunit, node, channel)
879 int promunit;
880 int node;
881 int channel;
882 {
883 int cookie, flags = 0;
884
885 switch (prom_version()) {
886 case PROM_OLDMON:
887 case PROM_OBP_V0:
888 /*
889 * Use `promunit' and `channel' to derive the PROM
890 * stdio handles that correspond to this device.
891 */
892 if (promunit == 0)
893 cookie = PROMDEV_TTYA + channel;
894 else if (promunit == 1 && channel == 0)
895 cookie = PROMDEV_KBD;
896 else
897 cookie = -1;
898
899 if (cookie == prom_stdin())
900 flags |= ZS_HWFLAG_CONSOLE_INPUT;
901
902 /*
903 * Prevent the keyboard from matching the output device
904 * (note that PROMDEV_KBD == PROMDEV_SCREEN == 0!).
905 */
906 if (cookie != PROMDEV_KBD && cookie == prom_stdout())
907 flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
908
909 break;
910
911 case PROM_OBP_V2:
912 case PROM_OBP_V3:
913 case PROM_OPENFIRM:
914
915 /*
916 * Match the nodes and device arguments prepared by
917 * consinit() against our device node and channel.
918 * (The device argument is the part of the OBP path
919 * following the colon, as in `/obio/zs@0,100000:a')
920 */
921
922 /* Default to channel 0 if there are no explicit prom args */
923 cookie = 0;
924
925 if (node == prom_stdin_node) {
926 if (prom_stdin_args[0] != '\0')
927 /* Translate (a,b) -> (0,1) */
928 cookie = prom_stdin_args[0] - 'a';
929
930 if (channel == cookie)
931 flags |= ZS_HWFLAG_CONSOLE_INPUT;
932 }
933
934 if (node == prom_stdout_node) {
935 if (prom_stdout_args[0] != '\0')
936 /* Translate (a,b) -> (0,1) */
937 cookie = prom_stdout_args[0] - 'a';
938
939 if (channel == cookie)
940 flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
941 }
942
943 break;
944
945 default:
946 break;
947 }
948
949 prom_printf("zs_console flags: %x\n", flags);
950 return (flags);
951 }
952
953 /*
954 * Power management hooks for zsopen() and zsclose().
955 * We use them to power on/off the ports, if necessary.
956 */
957 int
958 zs_enable(cs)
959 struct zs_chanstate *cs;
960 {
961 auxiotwoserialendis (ZS_ENABLE);
962 cs->enabled = 1;
963 return(0);
964 }
965
966 void
967 zs_disable(cs)
968 struct zs_chanstate *cs;
969 {
970 auxiotwoserialendis (ZS_DISABLE);
971 cs->enabled = 0;
972 }
973