zs.c revision 1.79 1 /* $NetBSD: zs.c,v 1.79 2000/06/04 19:15:03 cgd Exp $ */
2
3 /*-
4 * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Zilog Z8530 Dual UART driver (machine-dependent part)
41 *
42 * Runs two serial lines per chip using slave drivers.
43 * Plain tty/async lines use the zs_async slave.
44 * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
45 */
46
47 #include "opt_ddb.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/conf.h>
52 #include <sys/device.h>
53 #include <sys/file.h>
54 #include <sys/ioctl.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/tty.h>
58 #include <sys/time.h>
59 #include <sys/syslog.h>
60
61 #include <machine/bsd_openprom.h>
62 #include <machine/autoconf.h>
63 #include <machine/conf.h>
64 #include <machine/cpu.h>
65 #include <machine/eeprom.h>
66 #include <machine/psl.h>
67 #include <machine/z8530var.h>
68
69 #include <dev/cons.h>
70 #include <dev/ic/z8530reg.h>
71
72 #include <sparc/sparc/vaddrs.h>
73 #include <sparc/sparc/auxreg.h>
74 #include <sparc/sparc/auxiotwo.h>
75 #include <sparc/dev/cons.h>
76
77 #include "kbd.h" /* NKBD */
78 #include "zs.h" /* NZS */
79
80 /* Make life easier for the initialized arrays here. */
81 #if NZS < 3
82 #undef NZS
83 #define NZS 3
84 #endif
85
86 /*
87 * Some warts needed by z8530tty.c -
88 * The default parity REALLY needs to be the same as the PROM uses,
89 * or you can not see messages done with printf during boot-up...
90 */
91 int zs_def_cflag = (CREAD | CS8 | HUPCL);
92 int zs_major = 12;
93
94 /*
95 * The Sun provides a 4.9152 MHz clock to the ZS chips.
96 */
97 #define PCLK (9600 * 512) /* PCLK pin input clock rate */
98
99 /*
100 * Select software interrupt bit based on TTY ipl.
101 */
102 #if PIL_TTY == 1
103 # define IE_ZSSOFT IE_L1
104 #elif PIL_TTY == 4
105 # define IE_ZSSOFT IE_L4
106 #elif PIL_TTY == 6
107 # define IE_ZSSOFT IE_L6
108 #else
109 # error "no suitable software interrupt bit"
110 #endif
111
112 #define ZS_DELAY() (CPU_ISSUN4C ? (0) : delay(2))
113
114 /* The layout of this is hardware-dependent (padding, order). */
115 struct zschan {
116 volatile u_char zc_csr; /* ctrl,status, and indirect access */
117 u_char zc_xxx0;
118 volatile u_char zc_data; /* data */
119 u_char zc_xxx1;
120 };
121 struct zsdevice {
122 /* Yes, they are backwards. */
123 struct zschan zs_chan_b;
124 struct zschan zs_chan_a;
125 };
126
127 /* ZS channel used as the console device (if any) */
128 void *zs_conschan_get, *zs_conschan_put;
129
130 static u_char zs_init_reg[16] = {
131 0, /* 0: CMD (reset, etc.) */
132 0, /* 1: No interrupts yet. */
133 0, /* 2: IVECT */
134 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
135 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
136 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
137 0, /* 6: TXSYNC/SYNCLO */
138 0, /* 7: RXSYNC/SYNCHI */
139 0, /* 8: alias for data port */
140 ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR,
141 0, /*10: Misc. TX/RX control bits */
142 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
143 ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */
144 0, /*13: BAUDHI (default=9600) */
145 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
146 ZSWR15_BREAK_IE,
147 };
148
149 /* Console ops */
150 static int zscngetc __P((dev_t));
151 static void zscnputc __P((dev_t, int));
152 static void zscnpollc __P((dev_t, int));
153
154 struct consdev zs_consdev = {
155 NULL,
156 NULL,
157 zscngetc,
158 zscnputc,
159 zscnpollc,
160 NULL,
161 };
162
163
164 /****************************************************************
165 * Autoconfig
166 ****************************************************************/
167
168 /* Definition of the driver for autoconfig. */
169 static int zs_match_mainbus __P((struct device *, struct cfdata *, void *));
170 static int zs_match_obio __P((struct device *, struct cfdata *, void *));
171 static void zs_attach_mainbus __P((struct device *, struct device *, void *));
172 static void zs_attach_obio __P((struct device *, struct device *, void *));
173
174
175 static void zs_attach __P((struct zsc_softc *, struct zsdevice *, int));
176 static int zs_print __P((void *, const char *name));
177
178 struct cfattach zs_mainbus_ca = {
179 sizeof(struct zsc_softc), zs_match_mainbus, zs_attach_mainbus
180 };
181
182 struct cfattach zs_obio_ca = {
183 sizeof(struct zsc_softc), zs_match_obio, zs_attach_obio
184 };
185
186 extern struct cfdriver zs_cd;
187
188 /* Interrupt handlers. */
189 static int zshard __P((void *));
190 static int zssoft __P((void *));
191 static struct intrhand levelsoft = { zssoft };
192
193 static int zs_get_speed __P((struct zs_chanstate *));
194
195 /* Console device support */
196 static int zs_console_flags __P((int, int, int));
197
198 /* Power management hooks */
199 int zs_enable __P((struct zs_chanstate *));
200 void zs_disable __P((struct zs_chanstate *));
201
202
203 /*
204 * Is the zs chip present?
205 */
206 static int
207 zs_match_mainbus(parent, cf, aux)
208 struct device *parent;
209 struct cfdata *cf;
210 void *aux;
211 {
212 struct mainbus_attach_args *ma = aux;
213
214 if (strcmp(cf->cf_driver->cd_name, ma->ma_name) != 0)
215 return (0);
216
217 return (1);
218 }
219
220 static int
221 zs_match_obio(parent, cf, aux)
222 struct device *parent;
223 struct cfdata *cf;
224 void *aux;
225 {
226 union obio_attach_args *uoba = aux;
227 struct obio4_attach_args *oba;
228
229 if (uoba->uoba_isobio4 == 0) {
230 struct sbus_attach_args *sa = &uoba->uoba_sbus;
231
232 if (strcmp(cf->cf_driver->cd_name, sa->sa_name) != 0)
233 return (0);
234
235 return (1);
236 }
237
238 oba = &uoba->uoba_oba4;
239 return (bus_space_probe(oba->oba_bustag, 0, oba->oba_paddr,
240 1, 0, 0, NULL, NULL));
241 }
242
243 static void
244 zs_attach_mainbus(parent, self, aux)
245 struct device *parent;
246 struct device *self;
247 void *aux;
248 {
249 struct zsc_softc *zsc = (void *) self;
250 struct mainbus_attach_args *ma = aux;
251
252 zsc->zsc_bustag = ma->ma_bustag;
253 zsc->zsc_dmatag = ma->ma_dmatag;
254 zsc->zsc_promunit = getpropint(ma->ma_node, "slave", -2);
255 zsc->zsc_node = ma->ma_node;
256
257 /*
258 * For machines with zs on mainbus (all sun4c models), we expect
259 * the device registers to be mapped by the PROM.
260 */
261 zs_attach(zsc, ma->ma_promvaddr, ma->ma_pri);
262 }
263
264 static void
265 zs_attach_obio(parent, self, aux)
266 struct device *parent;
267 struct device *self;
268 void *aux;
269 {
270 struct zsc_softc *zsc = (void *) self;
271 union obio_attach_args *uoba = aux;
272
273 if (uoba->uoba_isobio4 == 0) {
274 struct sbus_attach_args *sa = &uoba->uoba_sbus;
275 void *va;
276 struct zs_chanstate *cs;
277 int channel;
278
279 if (sa->sa_nintr == 0) {
280 printf(" no interrupt lines\n");
281 return;
282 }
283
284 /*
285 * Some sun4m models (Javastations) may not map the zs device.
286 */
287 if (sa->sa_npromvaddrs > 0)
288 va = (void *)sa->sa_promvaddr;
289 else {
290 bus_space_handle_t bh;
291
292 if (sbus_bus_map(sa->sa_bustag,
293 sa->sa_slot,
294 sa->sa_offset,
295 sa->sa_size,
296 BUS_SPACE_MAP_LINEAR,
297 0, &bh) != 0) {
298 printf(" cannot map zs registers\n");
299 return;
300 }
301 va = (void *)bh;
302 }
303
304 /*
305 * Check if power state can be set, e.g. Tadpole 3GX
306 */
307 if (getpropint(sa->sa_node, "pwr-on-auxio2", 0))
308 {
309 printf (" powered via auxio2");
310 for (channel = 0; channel < 2; channel++) {
311 cs = &zsc->zsc_cs_store[channel];
312 cs->enable = zs_enable;
313 cs->disable = zs_disable;
314 }
315 }
316
317 zsc->zsc_bustag = sa->sa_bustag;
318 zsc->zsc_dmatag = sa->sa_dmatag;
319 zsc->zsc_promunit = getpropint(sa->sa_node, "slave", -2);
320 zsc->zsc_node = sa->sa_node;
321 zs_attach(zsc, va, sa->sa_pri);
322 } else {
323 struct obio4_attach_args *oba = &uoba->uoba_oba4;
324 bus_space_handle_t bh;
325 bus_addr_t paddr = oba->oba_paddr;
326
327 /*
328 * As for zs on mainbus, we require a PROM mapping.
329 */
330 if (bus_space_map(oba->oba_bustag,
331 paddr,
332 sizeof(struct zsdevice),
333 BUS_SPACE_MAP_LINEAR | OBIO_BUS_MAP_USE_ROM,
334 &bh) != 0) {
335 printf(" cannot map zs registers\n");
336 return;
337 }
338 zsc->zsc_bustag = oba->oba_bustag;
339 zsc->zsc_dmatag = oba->oba_dmatag;
340 /* Find prom unit by physical address */
341 zsc->zsc_promunit =
342 (paddr == 0xf1000000) ? 0 :
343 (paddr == 0xf0000000) ? 1 :
344 (paddr == 0xe0000000) ? 2 : -2;
345
346 zs_attach(zsc, (void *)bh, oba->oba_pri);
347 }
348 }
349 /*
350 * Attach a found zs.
351 *
352 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
353 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
354 */
355 static void
356 zs_attach(zsc, zsd, pri)
357 struct zsc_softc *zsc;
358 struct zsdevice *zsd;
359 int pri;
360 {
361 struct zsc_attach_args zsc_args;
362 struct zs_chanstate *cs;
363 int s, channel;
364 static int didintr, prevpri;
365
366 if (zsd == NULL) {
367 printf("configuration incomplete\n");
368 return;
369 }
370
371 printf(" softpri %d\n", PIL_TTY);
372
373 /*
374 * Initialize software state for each channel.
375 */
376 for (channel = 0; channel < 2; channel++) {
377 struct zschan *zc;
378
379 zsc_args.channel = channel;
380 cs = &zsc->zsc_cs_store[channel];
381 zsc->zsc_cs[channel] = cs;
382
383 cs->cs_channel = channel;
384 cs->cs_private = NULL;
385 cs->cs_ops = &zsops_null;
386 cs->cs_brg_clk = PCLK / 16;
387
388 zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b;
389
390 zsc_args.hwflags = zs_console_flags(zsc->zsc_promunit,
391 zsc->zsc_node,
392 channel);
393
394 if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) {
395 zsc_args.hwflags |= ZS_HWFLAG_USE_CONSDEV;
396 zsc_args.consdev = &zs_consdev;
397 }
398
399 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
400 zs_conschan_get = zc;
401 }
402 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
403 zs_conschan_put = zc;
404 }
405 /* Childs need to set cn_dev, etc */
406
407 cs->cs_reg_csr = &zc->zc_csr;
408 cs->cs_reg_data = &zc->zc_data;
409
410 bcopy(zs_init_reg, cs->cs_creg, 16);
411 bcopy(zs_init_reg, cs->cs_preg, 16);
412
413 /* XXX: Consult PROM properties for this?! */
414 cs->cs_defspeed = zs_get_speed(cs);
415 cs->cs_defcflag = zs_def_cflag;
416
417 /* Make these correspond to cs_defcflag (-crtscts) */
418 cs->cs_rr0_dcd = ZSRR0_DCD;
419 cs->cs_rr0_cts = 0;
420 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
421 cs->cs_wr5_rts = 0;
422
423 /*
424 * Clear the master interrupt enable.
425 * The INTENA is common to both channels,
426 * so just do it on the A channel.
427 */
428 if (channel == 0) {
429 zs_write_reg(cs, 9, 0);
430 }
431
432 /*
433 * Look for a child driver for this channel.
434 * The child attach will setup the hardware.
435 */
436 if (!config_found(&zsc->zsc_dev, (void *)&zsc_args, zs_print)) {
437 /* No sub-driver. Just reset it. */
438 u_char reset = (channel == 0) ?
439 ZSWR9_A_RESET : ZSWR9_B_RESET;
440 s = splzs();
441 zs_write_reg(cs, 9, reset);
442 splx(s);
443 }
444 }
445
446 /*
447 * Now safe to install interrupt handlers. Note the arguments
448 * to the interrupt handlers aren't used. Note, we only do this
449 * once since both SCCs interrupt at the same level and vector.
450 */
451 if (!didintr) {
452 didintr = 1;
453 prevpri = pri;
454 bus_intr_establish(zsc->zsc_bustag, pri, 0, zshard, NULL);
455 intr_establish(PIL_TTY, &levelsoft);
456 } else if (pri != prevpri)
457 panic("broken zs interrupt scheme");
458
459 evcnt_attach_dynamic(&zsc->zsc_intrcnt, EVCNT_TYPE_INTR, NULL,
460 zsc->zsc_dev.dv_xname, "intr");
461
462 /*
463 * Set the master interrupt enable and interrupt vector.
464 * (common to both channels, do it on A)
465 */
466 cs = zsc->zsc_cs[0];
467 s = splhigh();
468 /* interrupt vector */
469 zs_write_reg(cs, 2, zs_init_reg[2]);
470 /* master interrupt control (enable) */
471 zs_write_reg(cs, 9, zs_init_reg[9]);
472 splx(s);
473
474 #if 0
475 /*
476 * XXX: L1A hack - We would like to be able to break into
477 * the debugger during the rest of autoconfiguration, so
478 * lower interrupts just enough to let zs interrupts in.
479 * This is done after both zs devices are attached.
480 */
481 if (zsc->zsc_promunit == 1) {
482 printf("zs1: enabling zs interrupts\n");
483 (void)splfd(); /* XXX: splzs - 1 */
484 }
485 #endif
486 }
487
488 static int
489 zs_print(aux, name)
490 void *aux;
491 const char *name;
492 {
493 struct zsc_attach_args *args = aux;
494
495 if (name != NULL)
496 printf("%s: ", name);
497
498 if (args->channel != -1)
499 printf(" channel %d", args->channel);
500
501 return (UNCONF);
502 }
503
504 static volatile int zssoftpending;
505
506 /*
507 * Our ZS chips all share a common, autovectored interrupt,
508 * so we have to look at all of them on each interrupt.
509 */
510 static int
511 zshard(arg)
512 void *arg;
513 {
514 struct zsc_softc *zsc;
515 int unit, rr3, rval, softreq;
516
517 rval = softreq = 0;
518 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
519 struct zs_chanstate *cs;
520
521 zsc = zs_cd.cd_devs[unit];
522 if (zsc == NULL)
523 continue;
524 rr3 = zsc_intr_hard(zsc);
525 /* Count up the interrupts. */
526 if (rr3) {
527 rval |= rr3;
528 zsc->zsc_intrcnt.ev_count++;
529 }
530 if ((cs = zsc->zsc_cs[0]) != NULL)
531 softreq |= cs->cs_softreq;
532 if ((cs = zsc->zsc_cs[1]) != NULL)
533 softreq |= cs->cs_softreq;
534 }
535
536 /* We are at splzs here, so no need to lock. */
537 if (softreq && (zssoftpending == 0)) {
538 zssoftpending = IE_ZSSOFT;
539 #if defined(SUN4M)
540 if (CPU_ISSUN4M)
541 raise(0, PIL_TTY);
542 else
543 #endif
544 ienab_bis(IE_ZSSOFT);
545 }
546 return (rval);
547 }
548
549 /*
550 * Similar scheme as for zshard (look at all of them)
551 */
552 static int
553 zssoft(arg)
554 void *arg;
555 {
556 struct zsc_softc *zsc;
557 int s, unit;
558
559 /* This is not the only ISR on this IPL. */
560 if (zssoftpending == 0)
561 return (0);
562
563 /*
564 * The soft intr. bit will be set by zshard only if
565 * the variable zssoftpending is zero. The order of
566 * these next two statements prevents our clearing
567 * the soft intr bit just after zshard has set it.
568 */
569 /* ienab_bic(IE_ZSSOFT); */
570 zssoftpending = 0;
571
572 /* Make sure we call the tty layer at spltty. */
573 s = spltty();
574 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
575 zsc = zs_cd.cd_devs[unit];
576 if (zsc == NULL)
577 continue;
578 (void)zsc_intr_soft(zsc);
579 }
580 splx(s);
581 return (1);
582 }
583
584
585 /*
586 * Compute the current baud rate given a ZS channel.
587 */
588 static int
589 zs_get_speed(cs)
590 struct zs_chanstate *cs;
591 {
592 int tconst;
593
594 tconst = zs_read_reg(cs, 12);
595 tconst |= zs_read_reg(cs, 13) << 8;
596 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
597 }
598
599 /*
600 * MD functions for setting the baud rate and control modes.
601 */
602 int
603 zs_set_speed(cs, bps)
604 struct zs_chanstate *cs;
605 int bps; /* bits per second */
606 {
607 int tconst, real_bps;
608
609 if (bps == 0)
610 return (0);
611
612 #ifdef DIAGNOSTIC
613 if (cs->cs_brg_clk == 0)
614 panic("zs_set_speed");
615 #endif
616
617 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
618 if (tconst < 0)
619 return (EINVAL);
620
621 /* Convert back to make sure we can do it. */
622 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
623
624 /* XXX - Allow some tolerance here? */
625 if (real_bps != bps)
626 return (EINVAL);
627
628 cs->cs_preg[12] = tconst;
629 cs->cs_preg[13] = tconst >> 8;
630
631 /* Caller will stuff the pending registers. */
632 return (0);
633 }
634
635 int
636 zs_set_modes(cs, cflag)
637 struct zs_chanstate *cs;
638 int cflag; /* bits per second */
639 {
640 int s;
641
642 /*
643 * Output hardware flow control on the chip is horrendous:
644 * if carrier detect drops, the receiver is disabled, and if
645 * CTS drops, the transmitter is stoped IN MID CHARACTER!
646 * Therefore, NEVER set the HFC bit, and instead use the
647 * status interrupt to detect CTS changes.
648 */
649 s = splzs();
650 cs->cs_rr0_pps = 0;
651 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
652 cs->cs_rr0_dcd = 0;
653 if ((cflag & MDMBUF) == 0)
654 cs->cs_rr0_pps = ZSRR0_DCD;
655 } else
656 cs->cs_rr0_dcd = ZSRR0_DCD;
657 if ((cflag & CRTSCTS) != 0) {
658 cs->cs_wr5_dtr = ZSWR5_DTR;
659 cs->cs_wr5_rts = ZSWR5_RTS;
660 cs->cs_rr0_cts = ZSRR0_CTS;
661 } else if ((cflag & CDTRCTS) != 0) {
662 cs->cs_wr5_dtr = 0;
663 cs->cs_wr5_rts = ZSWR5_DTR;
664 cs->cs_rr0_cts = ZSRR0_CTS;
665 } else if ((cflag & MDMBUF) != 0) {
666 cs->cs_wr5_dtr = 0;
667 cs->cs_wr5_rts = ZSWR5_DTR;
668 cs->cs_rr0_cts = ZSRR0_DCD;
669 } else {
670 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
671 cs->cs_wr5_rts = 0;
672 cs->cs_rr0_cts = 0;
673 }
674 splx(s);
675
676 /* Caller will stuff the pending registers. */
677 return (0);
678 }
679
680
681 /*
682 * Read or write the chip with suitable delays.
683 */
684
685 u_char
686 zs_read_reg(cs, reg)
687 struct zs_chanstate *cs;
688 u_char reg;
689 {
690 u_char val;
691
692 *cs->cs_reg_csr = reg;
693 ZS_DELAY();
694 val = *cs->cs_reg_csr;
695 ZS_DELAY();
696 return (val);
697 }
698
699 void
700 zs_write_reg(cs, reg, val)
701 struct zs_chanstate *cs;
702 u_char reg, val;
703 {
704 *cs->cs_reg_csr = reg;
705 ZS_DELAY();
706 *cs->cs_reg_csr = val;
707 ZS_DELAY();
708 }
709
710 u_char
711 zs_read_csr(cs)
712 struct zs_chanstate *cs;
713 {
714 u_char val;
715
716 val = *cs->cs_reg_csr;
717 ZS_DELAY();
718 return (val);
719 }
720
721 void
722 zs_write_csr(cs, val)
723 struct zs_chanstate *cs;
724 u_char val;
725 {
726 *cs->cs_reg_csr = val;
727 ZS_DELAY();
728 }
729
730 u_char
731 zs_read_data(cs)
732 struct zs_chanstate *cs;
733 {
734 u_char val;
735
736 val = *cs->cs_reg_data;
737 ZS_DELAY();
738 return (val);
739 }
740
741 void zs_write_data(cs, val)
742 struct zs_chanstate *cs;
743 u_char val;
744 {
745 *cs->cs_reg_data = val;
746 ZS_DELAY();
747 }
748
749 /****************************************************************
750 * Console support functions (Sun specific!)
751 * Note: this code is allowed to know about the layout of
752 * the chip registers, and uses that to keep things simple.
753 * XXX - I think I like the mvme167 code better. -gwr
754 ****************************************************************/
755
756 /*
757 * Handle user request to enter kernel debugger.
758 */
759 void
760 zs_abort(cs)
761 struct zs_chanstate *cs;
762 {
763 struct zschan *zc = zs_conschan_get;
764 int rr0;
765
766 /* Wait for end of break to avoid PROM abort. */
767 /* XXX - Limit the wait? */
768 do {
769 rr0 = zc->zc_csr;
770 ZS_DELAY();
771 } while (rr0 & ZSRR0_BREAK);
772
773 #if defined(KGDB)
774 zskgdb(cs);
775 #elif defined(DDB)
776 Debugger();
777 #else
778 printf("stopping on keyboard abort\n");
779 callrom();
780 #endif
781 }
782
783 static int zs_getc __P((void *arg));
784 static void zs_putc __P((void *arg, int c));
785
786 /*
787 * Polled input char.
788 */
789 int
790 zs_getc(arg)
791 void *arg;
792 {
793 struct zschan *zc = arg;
794 int s, c, rr0;
795
796 s = splhigh();
797 /* Wait for a character to arrive. */
798 do {
799 rr0 = zc->zc_csr;
800 ZS_DELAY();
801 } while ((rr0 & ZSRR0_RX_READY) == 0);
802
803 c = zc->zc_data;
804 ZS_DELAY();
805 splx(s);
806
807 /*
808 * This is used by the kd driver to read scan codes,
809 * so don't translate '\r' ==> '\n' here...
810 */
811 return (c);
812 }
813
814 /*
815 * Polled output char.
816 */
817 void
818 zs_putc(arg, c)
819 void *arg;
820 int c;
821 {
822 struct zschan *zc = arg;
823 int s, rr0;
824
825 s = splhigh();
826
827 /* Wait for transmitter to become ready. */
828 do {
829 rr0 = zc->zc_csr;
830 ZS_DELAY();
831 } while ((rr0 & ZSRR0_TX_READY) == 0);
832
833 /*
834 * Send the next character.
835 * Now you'd think that this could be followed by a ZS_DELAY()
836 * just like all the other chip accesses, but it turns out that
837 * the `transmit-ready' interrupt isn't de-asserted until
838 * some period of time after the register write completes
839 * (more than a couple instructions). So to avoid stray
840 * interrupts we put in the 2us delay regardless of cpu model.
841 */
842 zc->zc_data = c;
843 delay(2);
844
845 splx(s);
846 }
847
848 /*****************************************************************/
849 /*
850 * Polled console input putchar.
851 */
852 int
853 zscngetc(dev)
854 dev_t dev;
855 {
856 return (zs_getc(zs_conschan_get));
857 }
858
859 /*
860 * Polled console output putchar.
861 */
862 void
863 zscnputc(dev, c)
864 dev_t dev;
865 int c;
866 {
867 zs_putc(zs_conschan_put, c);
868 }
869
870 void
871 zscnpollc(dev, on)
872 dev_t dev;
873 int on;
874 {
875 /* No action needed */
876 }
877
878 int
879 zs_console_flags(promunit, node, channel)
880 int promunit;
881 int node;
882 int channel;
883 {
884 int cookie, flags = 0;
885
886 switch (prom_version()) {
887 case PROM_OLDMON:
888 case PROM_OBP_V0:
889 /*
890 * Use `promunit' and `channel' to derive the PROM
891 * stdio handles that correspond to this device.
892 */
893 if (promunit == 0)
894 cookie = PROMDEV_TTYA + channel;
895 else if (promunit == 1 && channel == 0)
896 cookie = PROMDEV_KBD;
897 else
898 cookie = -1;
899
900 if (cookie == prom_stdin())
901 flags |= ZS_HWFLAG_CONSOLE_INPUT;
902
903 /*
904 * Prevent the keyboard from matching the output device
905 * (note that PROMDEV_KBD == PROMDEV_SCREEN == 0!).
906 */
907 if (cookie != PROMDEV_KBD && cookie == prom_stdout())
908 flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
909
910 break;
911
912 case PROM_OBP_V2:
913 case PROM_OBP_V3:
914 case PROM_OPENFIRM:
915
916 /*
917 * Match the nodes and device arguments prepared by
918 * consinit() against our device node and channel.
919 * (The device argument is the part of the OBP path
920 * following the colon, as in `/obio/zs@0,100000:a')
921 */
922
923 /* Default to channel 0 if there are no explicit prom args */
924 cookie = 0;
925
926 if (node == prom_stdin_node) {
927 if (prom_stdin_args[0] != '\0')
928 /* Translate (a,b) -> (0,1) */
929 cookie = prom_stdin_args[0] - 'a';
930
931 if (channel == cookie)
932 flags |= ZS_HWFLAG_CONSOLE_INPUT;
933 }
934
935 if (node == prom_stdout_node) {
936 if (prom_stdout_args[0] != '\0')
937 /* Translate (a,b) -> (0,1) */
938 cookie = prom_stdout_args[0] - 'a';
939
940 if (channel == cookie)
941 flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
942 }
943
944 break;
945
946 default:
947 break;
948 }
949
950 return (flags);
951 }
952
953 /*
954 * Power management hooks for zsopen() and zsclose().
955 * We use them to power on/off the ports, if necessary.
956 */
957 int
958 zs_enable(cs)
959 struct zs_chanstate *cs;
960 {
961 auxiotwoserialendis (ZS_ENABLE);
962 cs->enabled = 1;
963 return(0);
964 }
965
966 void
967 zs_disable(cs)
968 struct zs_chanstate *cs;
969 {
970 auxiotwoserialendis (ZS_DISABLE);
971 cs->enabled = 0;
972 }
973