zs.c revision 1.79.2.1 1 /* $NetBSD: zs.c,v 1.79.2.1 2000/07/19 02:53:14 mrg Exp $ */
2
3 /*-
4 * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Zilog Z8530 Dual UART driver (machine-dependent part)
41 *
42 * Runs two serial lines per chip using slave drivers.
43 * Plain tty/async lines use the zs_async slave.
44 * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
45 */
46
47 #include "opt_ddb.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/conf.h>
52 #include <sys/device.h>
53 #include <sys/file.h>
54 #include <sys/ioctl.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/tty.h>
58 #include <sys/time.h>
59 #include <sys/syslog.h>
60
61 #include <machine/bsd_openprom.h>
62 #include <machine/autoconf.h>
63 #include <machine/intr.h>
64 #include <machine/conf.h>
65 #include <machine/eeprom.h>
66 #include <machine/psl.h>
67 #include <machine/z8530var.h>
68
69 #include <dev/cons.h>
70 #include <dev/ic/z8530reg.h>
71
72 #include <sparc/sparc/vaddrs.h>
73 #include <sparc/sparc/auxreg.h>
74 #include <sparc/sparc/auxiotwo.h>
75 #include <sparc/dev/cons.h>
76
77 #include "kbd.h" /* NKBD */
78 #include "zs.h" /* NZS */
79
80 /* Make life easier for the initialized arrays here. */
81 #if NZS < 3
82 #undef NZS
83 #define NZS 3
84 #endif
85
86 /*
87 * Some warts needed by z8530tty.c -
88 * The default parity REALLY needs to be the same as the PROM uses,
89 * or you can not see messages done with printf during boot-up...
90 */
91 int zs_def_cflag = (CREAD | CS8 | HUPCL);
92 int zs_major = 12;
93
94 /*
95 * The Sun provides a 4.9152 MHz clock to the ZS chips.
96 */
97 #define PCLK (9600 * 512) /* PCLK pin input clock rate */
98
99 /*
100 * Select software interrupt bit based on TTY ipl.
101 */
102 #if PIL_TTY == 1
103 # define IE_ZSSOFT IE_L1
104 #elif PIL_TTY == 4
105 # define IE_ZSSOFT IE_L4
106 #elif PIL_TTY == 6
107 # define IE_ZSSOFT IE_L6
108 #else
109 # error "no suitable software interrupt bit"
110 #endif
111
112 #define ZS_DELAY() (CPU_ISSUN4C ? (0) : delay(2))
113
114 /* The layout of this is hardware-dependent (padding, order). */
115 struct zschan {
116 volatile u_char zc_csr; /* ctrl,status, and indirect access */
117 u_char zc_xxx0;
118 volatile u_char zc_data; /* data */
119 u_char zc_xxx1;
120 };
121 struct zsdevice {
122 /* Yes, they are backwards. */
123 struct zschan zs_chan_b;
124 struct zschan zs_chan_a;
125 };
126
127 /* ZS channel used as the console device (if any) */
128 void *zs_conschan_get, *zs_conschan_put;
129
130 static u_char zs_init_reg[16] = {
131 0, /* 0: CMD (reset, etc.) */
132 0, /* 1: No interrupts yet. */
133 0, /* 2: IVECT */
134 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
135 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
136 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
137 0, /* 6: TXSYNC/SYNCLO */
138 0, /* 7: RXSYNC/SYNCHI */
139 0, /* 8: alias for data port */
140 ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR,
141 0, /*10: Misc. TX/RX control bits */
142 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
143 ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */
144 0, /*13: BAUDHI (default=9600) */
145 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
146 ZSWR15_BREAK_IE,
147 };
148
149 /* Console ops */
150 static int zscngetc __P((dev_t));
151 static void zscnputc __P((dev_t, int));
152 static void zscnpollc __P((dev_t, int));
153
154 struct consdev zs_consdev = {
155 NULL,
156 NULL,
157 zscngetc,
158 zscnputc,
159 zscnpollc,
160 NULL,
161 };
162
163
164 /****************************************************************
165 * Autoconfig
166 ****************************************************************/
167
168 /* Definition of the driver for autoconfig. */
169 static int zs_match_mainbus __P((struct device *, struct cfdata *, void *));
170 static int zs_match_obio __P((struct device *, struct cfdata *, void *));
171 static void zs_attach_mainbus __P((struct device *, struct device *, void *));
172 static void zs_attach_obio __P((struct device *, struct device *, void *));
173
174
175 static void zs_attach __P((struct zsc_softc *, struct zsdevice *, int));
176 static int zs_print __P((void *, const char *name));
177
178 struct cfattach zs_mainbus_ca = {
179 sizeof(struct zsc_softc), zs_match_mainbus, zs_attach_mainbus
180 };
181
182 struct cfattach zs_obio_ca = {
183 sizeof(struct zsc_softc), zs_match_obio, zs_attach_obio
184 };
185
186 extern struct cfdriver zs_cd;
187
188 /* Interrupt handlers. */
189 static int zshard __P((void *));
190 static int zssoft __P((void *));
191
192 static int zs_get_speed __P((struct zs_chanstate *));
193
194 /* Console device support */
195 static int zs_console_flags __P((int, int, int));
196
197 /* Power management hooks */
198 int zs_enable __P((struct zs_chanstate *));
199 void zs_disable __P((struct zs_chanstate *));
200
201
202 /*
203 * Is the zs chip present?
204 */
205 static int
206 zs_match_mainbus(parent, cf, aux)
207 struct device *parent;
208 struct cfdata *cf;
209 void *aux;
210 {
211 struct mainbus_attach_args *ma = aux;
212
213 if (strcmp(cf->cf_driver->cd_name, ma->ma_name) != 0)
214 return (0);
215
216 return (1);
217 }
218
219 static int
220 zs_match_obio(parent, cf, aux)
221 struct device *parent;
222 struct cfdata *cf;
223 void *aux;
224 {
225 union obio_attach_args *uoba = aux;
226 struct obio4_attach_args *oba;
227
228 if (uoba->uoba_isobio4 == 0) {
229 struct sbus_attach_args *sa = &uoba->uoba_sbus;
230
231 if (strcmp(cf->cf_driver->cd_name, sa->sa_name) != 0)
232 return (0);
233
234 return (1);
235 }
236
237 oba = &uoba->uoba_oba4;
238 return (bus_space_probe(oba->oba_bustag, 0, oba->oba_paddr,
239 1, 0, 0, NULL, NULL));
240 }
241
242 static void
243 zs_attach_mainbus(parent, self, aux)
244 struct device *parent;
245 struct device *self;
246 void *aux;
247 {
248 struct zsc_softc *zsc = (void *) self;
249 struct mainbus_attach_args *ma = aux;
250
251 zsc->zsc_bustag = ma->ma_bustag;
252 zsc->zsc_dmatag = ma->ma_dmatag;
253 zsc->zsc_promunit = getpropint(ma->ma_node, "slave", -2);
254 zsc->zsc_node = ma->ma_node;
255
256 /*
257 * For machines with zs on mainbus (all sun4c models), we expect
258 * the device registers to be mapped by the PROM.
259 */
260 zs_attach(zsc, ma->ma_promvaddr, ma->ma_pri);
261 }
262
263 static void
264 zs_attach_obio(parent, self, aux)
265 struct device *parent;
266 struct device *self;
267 void *aux;
268 {
269 struct zsc_softc *zsc = (void *) self;
270 union obio_attach_args *uoba = aux;
271
272 if (uoba->uoba_isobio4 == 0) {
273 struct sbus_attach_args *sa = &uoba->uoba_sbus;
274 void *va;
275 struct zs_chanstate *cs;
276 int channel;
277
278 if (sa->sa_nintr == 0) {
279 printf(" no interrupt lines\n");
280 return;
281 }
282
283 /*
284 * Some sun4m models (Javastations) may not map the zs device.
285 */
286 if (sa->sa_npromvaddrs > 0)
287 va = (void *)sa->sa_promvaddr;
288 else {
289 bus_space_handle_t bh;
290
291 if (sbus_bus_map(sa->sa_bustag,
292 sa->sa_slot,
293 sa->sa_offset,
294 sa->sa_size,
295 BUS_SPACE_MAP_LINEAR,
296 0, &bh) != 0) {
297 printf(" cannot map zs registers\n");
298 return;
299 }
300 va = (void *)bh;
301 }
302
303 /*
304 * Check if power state can be set, e.g. Tadpole 3GX
305 */
306 if (getpropint(sa->sa_node, "pwr-on-auxio2", 0))
307 {
308 printf (" powered via auxio2");
309 for (channel = 0; channel < 2; channel++) {
310 cs = &zsc->zsc_cs_store[channel];
311 cs->enable = zs_enable;
312 cs->disable = zs_disable;
313 }
314 }
315
316 zsc->zsc_bustag = sa->sa_bustag;
317 zsc->zsc_dmatag = sa->sa_dmatag;
318 zsc->zsc_promunit = getpropint(sa->sa_node, "slave", -2);
319 zsc->zsc_node = sa->sa_node;
320 zs_attach(zsc, va, sa->sa_pri);
321 } else {
322 struct obio4_attach_args *oba = &uoba->uoba_oba4;
323 bus_space_handle_t bh;
324 bus_addr_t paddr = oba->oba_paddr;
325
326 /*
327 * As for zs on mainbus, we require a PROM mapping.
328 */
329 if (bus_space_map(oba->oba_bustag,
330 paddr,
331 sizeof(struct zsdevice),
332 BUS_SPACE_MAP_LINEAR | OBIO_BUS_MAP_USE_ROM,
333 &bh) != 0) {
334 printf(" cannot map zs registers\n");
335 return;
336 }
337 zsc->zsc_bustag = oba->oba_bustag;
338 zsc->zsc_dmatag = oba->oba_dmatag;
339 /* Find prom unit by physical address */
340 zsc->zsc_promunit =
341 (paddr == 0xf1000000) ? 0 :
342 (paddr == 0xf0000000) ? 1 :
343 (paddr == 0xe0000000) ? 2 : -2;
344
345 zs_attach(zsc, (void *)bh, oba->oba_pri);
346 }
347 }
348 /*
349 * Attach a found zs.
350 *
351 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
352 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
353 */
354 static void
355 zs_attach(zsc, zsd, pri)
356 struct zsc_softc *zsc;
357 struct zsdevice *zsd;
358 int pri;
359 {
360 struct zsc_attach_args zsc_args;
361 struct zs_chanstate *cs;
362 int s, channel;
363 static int didintr, prevpri;
364
365 if (zsd == NULL) {
366 printf("configuration incomplete\n");
367 return;
368 }
369
370 printf(" softpri %d\n", PIL_TTY);
371
372 /*
373 * Initialize software state for each channel.
374 */
375 for (channel = 0; channel < 2; channel++) {
376 struct zschan *zc;
377
378 zsc_args.channel = channel;
379 cs = &zsc->zsc_cs_store[channel];
380 zsc->zsc_cs[channel] = cs;
381
382 cs->cs_channel = channel;
383 cs->cs_private = NULL;
384 cs->cs_ops = &zsops_null;
385 cs->cs_brg_clk = PCLK / 16;
386
387 zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b;
388
389 zsc_args.hwflags = zs_console_flags(zsc->zsc_promunit,
390 zsc->zsc_node,
391 channel);
392
393 if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) {
394 zsc_args.hwflags |= ZS_HWFLAG_USE_CONSDEV;
395 zsc_args.consdev = &zs_consdev;
396 }
397
398 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
399 zs_conschan_get = zc;
400 }
401 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
402 zs_conschan_put = zc;
403 }
404 /* Childs need to set cn_dev, etc */
405
406 cs->cs_reg_csr = &zc->zc_csr;
407 cs->cs_reg_data = &zc->zc_data;
408
409 bcopy(zs_init_reg, cs->cs_creg, 16);
410 bcopy(zs_init_reg, cs->cs_preg, 16);
411
412 /* XXX: Consult PROM properties for this?! */
413 cs->cs_defspeed = zs_get_speed(cs);
414 cs->cs_defcflag = zs_def_cflag;
415
416 /* Make these correspond to cs_defcflag (-crtscts) */
417 cs->cs_rr0_dcd = ZSRR0_DCD;
418 cs->cs_rr0_cts = 0;
419 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
420 cs->cs_wr5_rts = 0;
421
422 /*
423 * Clear the master interrupt enable.
424 * The INTENA is common to both channels,
425 * so just do it on the A channel.
426 */
427 if (channel == 0) {
428 zs_write_reg(cs, 9, 0);
429 }
430
431 /*
432 * Look for a child driver for this channel.
433 * The child attach will setup the hardware.
434 */
435 if (!config_found(&zsc->zsc_dev, (void *)&zsc_args, zs_print)) {
436 /* No sub-driver. Just reset it. */
437 u_char reset = (channel == 0) ?
438 ZSWR9_A_RESET : ZSWR9_B_RESET;
439 s = splzs();
440 zs_write_reg(cs, 9, reset);
441 splx(s);
442 }
443 }
444
445 /*
446 * Now safe to install interrupt handlers. Note the arguments
447 * to the interrupt handlers aren't used. Note, we only do this
448 * once since both SCCs interrupt at the same level and vector.
449 */
450 if (!didintr) {
451 didintr = 1;
452 prevpri = pri;
453 bus_intr_establish(zsc->zsc_bustag, pri, IPL_SERIAL, 0,
454 zshard, NULL);
455 bus_intr_establish(zsc->zsc_bustag, PIL_TTY,
456 IPL_SOFTSERIAL,
457 BUS_INTR_ESTABLISH_SOFTINTR,
458 zssoft, NULL);
459 } else if (pri != prevpri)
460 panic("broken zs interrupt scheme");
461
462 evcnt_attach_dynamic(&zsc->zsc_intrcnt, EVCNT_TYPE_INTR, NULL,
463 zsc->zsc_dev.dv_xname, "intr");
464
465 /*
466 * Set the master interrupt enable and interrupt vector.
467 * (common to both channels, do it on A)
468 */
469 cs = zsc->zsc_cs[0];
470 s = splhigh();
471 /* interrupt vector */
472 zs_write_reg(cs, 2, zs_init_reg[2]);
473 /* master interrupt control (enable) */
474 zs_write_reg(cs, 9, zs_init_reg[9]);
475 splx(s);
476
477 #if 0
478 /*
479 * XXX: L1A hack - We would like to be able to break into
480 * the debugger during the rest of autoconfiguration, so
481 * lower interrupts just enough to let zs interrupts in.
482 * This is done after both zs devices are attached.
483 */
484 if (zsc->zsc_promunit == 1) {
485 printf("zs1: enabling zs interrupts\n");
486 (void)splfd(); /* XXX: splzs - 1 */
487 }
488 #endif
489 }
490
491 static int
492 zs_print(aux, name)
493 void *aux;
494 const char *name;
495 {
496 struct zsc_attach_args *args = aux;
497
498 if (name != NULL)
499 printf("%s: ", name);
500
501 if (args->channel != -1)
502 printf(" channel %d", args->channel);
503
504 return (UNCONF);
505 }
506
507 static volatile int zssoftpending;
508
509 /*
510 * Our ZS chips all share a common, autovectored interrupt,
511 * so we have to look at all of them on each interrupt.
512 */
513 static int
514 zshard(arg)
515 void *arg;
516 {
517 struct zsc_softc *zsc;
518 int unit, rr3, rval, softreq;
519
520 rval = softreq = 0;
521 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
522 struct zs_chanstate *cs;
523
524 zsc = zs_cd.cd_devs[unit];
525 if (zsc == NULL)
526 continue;
527 rr3 = zsc_intr_hard(zsc);
528 /* Count up the interrupts. */
529 if (rr3) {
530 rval |= rr3;
531 zsc->zsc_intrcnt.ev_count++;
532 }
533 if ((cs = zsc->zsc_cs[0]) != NULL)
534 softreq |= cs->cs_softreq;
535 if ((cs = zsc->zsc_cs[1]) != NULL)
536 softreq |= cs->cs_softreq;
537 }
538
539 /* We are at splzs here, so no need to lock. */
540 if (softreq && (zssoftpending == 0)) {
541 zssoftpending = IE_ZSSOFT;
542 #if defined(SUN4M)
543 if (CPU_ISSUN4M)
544 raise(0, PIL_TTY);
545 else
546 #endif
547 ienab_bis(IE_ZSSOFT);
548 }
549 return (rval);
550 }
551
552 /*
553 * Similar scheme as for zshard (look at all of them)
554 */
555 static int
556 zssoft(arg)
557 void *arg;
558 {
559 struct zsc_softc *zsc;
560 int s, unit;
561
562 /* This is not the only ISR on this IPL. */
563 if (zssoftpending == 0)
564 return (0);
565
566 /*
567 * The soft intr. bit will be set by zshard only if
568 * the variable zssoftpending is zero. The order of
569 * these next two statements prevents our clearing
570 * the soft intr bit just after zshard has set it.
571 */
572 /* ienab_bic(IE_ZSSOFT); */
573 zssoftpending = 0;
574
575 /* Make sure we call the tty layer at spltty. */
576 s = spltty();
577 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
578 zsc = zs_cd.cd_devs[unit];
579 if (zsc == NULL)
580 continue;
581 (void)zsc_intr_soft(zsc);
582 }
583 splx(s);
584 return (1);
585 }
586
587
588 /*
589 * Compute the current baud rate given a ZS channel.
590 */
591 static int
592 zs_get_speed(cs)
593 struct zs_chanstate *cs;
594 {
595 int tconst;
596
597 tconst = zs_read_reg(cs, 12);
598 tconst |= zs_read_reg(cs, 13) << 8;
599 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
600 }
601
602 /*
603 * MD functions for setting the baud rate and control modes.
604 */
605 int
606 zs_set_speed(cs, bps)
607 struct zs_chanstate *cs;
608 int bps; /* bits per second */
609 {
610 int tconst, real_bps;
611
612 if (bps == 0)
613 return (0);
614
615 #ifdef DIAGNOSTIC
616 if (cs->cs_brg_clk == 0)
617 panic("zs_set_speed");
618 #endif
619
620 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
621 if (tconst < 0)
622 return (EINVAL);
623
624 /* Convert back to make sure we can do it. */
625 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
626
627 /* XXX - Allow some tolerance here? */
628 if (real_bps != bps)
629 return (EINVAL);
630
631 cs->cs_preg[12] = tconst;
632 cs->cs_preg[13] = tconst >> 8;
633
634 /* Caller will stuff the pending registers. */
635 return (0);
636 }
637
638 int
639 zs_set_modes(cs, cflag)
640 struct zs_chanstate *cs;
641 int cflag; /* bits per second */
642 {
643 int s;
644
645 /*
646 * Output hardware flow control on the chip is horrendous:
647 * if carrier detect drops, the receiver is disabled, and if
648 * CTS drops, the transmitter is stoped IN MID CHARACTER!
649 * Therefore, NEVER set the HFC bit, and instead use the
650 * status interrupt to detect CTS changes.
651 */
652 s = splzs();
653 cs->cs_rr0_pps = 0;
654 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
655 cs->cs_rr0_dcd = 0;
656 if ((cflag & MDMBUF) == 0)
657 cs->cs_rr0_pps = ZSRR0_DCD;
658 } else
659 cs->cs_rr0_dcd = ZSRR0_DCD;
660 if ((cflag & CRTSCTS) != 0) {
661 cs->cs_wr5_dtr = ZSWR5_DTR;
662 cs->cs_wr5_rts = ZSWR5_RTS;
663 cs->cs_rr0_cts = ZSRR0_CTS;
664 } else if ((cflag & CDTRCTS) != 0) {
665 cs->cs_wr5_dtr = 0;
666 cs->cs_wr5_rts = ZSWR5_DTR;
667 cs->cs_rr0_cts = ZSRR0_CTS;
668 } else if ((cflag & MDMBUF) != 0) {
669 cs->cs_wr5_dtr = 0;
670 cs->cs_wr5_rts = ZSWR5_DTR;
671 cs->cs_rr0_cts = ZSRR0_DCD;
672 } else {
673 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
674 cs->cs_wr5_rts = 0;
675 cs->cs_rr0_cts = 0;
676 }
677 splx(s);
678
679 /* Caller will stuff the pending registers. */
680 return (0);
681 }
682
683
684 /*
685 * Read or write the chip with suitable delays.
686 */
687
688 u_char
689 zs_read_reg(cs, reg)
690 struct zs_chanstate *cs;
691 u_char reg;
692 {
693 u_char val;
694
695 *cs->cs_reg_csr = reg;
696 ZS_DELAY();
697 val = *cs->cs_reg_csr;
698 ZS_DELAY();
699 return (val);
700 }
701
702 void
703 zs_write_reg(cs, reg, val)
704 struct zs_chanstate *cs;
705 u_char reg, val;
706 {
707 *cs->cs_reg_csr = reg;
708 ZS_DELAY();
709 *cs->cs_reg_csr = val;
710 ZS_DELAY();
711 }
712
713 u_char
714 zs_read_csr(cs)
715 struct zs_chanstate *cs;
716 {
717 u_char val;
718
719 val = *cs->cs_reg_csr;
720 ZS_DELAY();
721 return (val);
722 }
723
724 void
725 zs_write_csr(cs, val)
726 struct zs_chanstate *cs;
727 u_char val;
728 {
729 *cs->cs_reg_csr = val;
730 ZS_DELAY();
731 }
732
733 u_char
734 zs_read_data(cs)
735 struct zs_chanstate *cs;
736 {
737 u_char val;
738
739 val = *cs->cs_reg_data;
740 ZS_DELAY();
741 return (val);
742 }
743
744 void zs_write_data(cs, val)
745 struct zs_chanstate *cs;
746 u_char val;
747 {
748 *cs->cs_reg_data = val;
749 ZS_DELAY();
750 }
751
752 /****************************************************************
753 * Console support functions (Sun specific!)
754 * Note: this code is allowed to know about the layout of
755 * the chip registers, and uses that to keep things simple.
756 * XXX - I think I like the mvme167 code better. -gwr
757 ****************************************************************/
758
759 /*
760 * Handle user request to enter kernel debugger.
761 */
762 void
763 zs_abort(cs)
764 struct zs_chanstate *cs;
765 {
766 struct zschan *zc = zs_conschan_get;
767 int rr0;
768
769 /* Wait for end of break to avoid PROM abort. */
770 /* XXX - Limit the wait? */
771 do {
772 rr0 = zc->zc_csr;
773 ZS_DELAY();
774 } while (rr0 & ZSRR0_BREAK);
775
776 #if defined(KGDB)
777 zskgdb(cs);
778 #elif defined(DDB)
779 Debugger();
780 #else
781 printf("stopping on keyboard abort\n");
782 callrom();
783 #endif
784 }
785
786 static int zs_getc __P((void *arg));
787 static void zs_putc __P((void *arg, int c));
788
789 /*
790 * Polled input char.
791 */
792 int
793 zs_getc(arg)
794 void *arg;
795 {
796 struct zschan *zc = arg;
797 int s, c, rr0;
798
799 s = splhigh();
800 /* Wait for a character to arrive. */
801 do {
802 rr0 = zc->zc_csr;
803 ZS_DELAY();
804 } while ((rr0 & ZSRR0_RX_READY) == 0);
805
806 c = zc->zc_data;
807 ZS_DELAY();
808 splx(s);
809
810 /*
811 * This is used by the kd driver to read scan codes,
812 * so don't translate '\r' ==> '\n' here...
813 */
814 return (c);
815 }
816
817 /*
818 * Polled output char.
819 */
820 void
821 zs_putc(arg, c)
822 void *arg;
823 int c;
824 {
825 struct zschan *zc = arg;
826 int s, rr0;
827
828 s = splhigh();
829
830 /* Wait for transmitter to become ready. */
831 do {
832 rr0 = zc->zc_csr;
833 ZS_DELAY();
834 } while ((rr0 & ZSRR0_TX_READY) == 0);
835
836 /*
837 * Send the next character.
838 * Now you'd think that this could be followed by a ZS_DELAY()
839 * just like all the other chip accesses, but it turns out that
840 * the `transmit-ready' interrupt isn't de-asserted until
841 * some period of time after the register write completes
842 * (more than a couple instructions). So to avoid stray
843 * interrupts we put in the 2us delay regardless of cpu model.
844 */
845 zc->zc_data = c;
846 delay(2);
847
848 splx(s);
849 }
850
851 /*****************************************************************/
852 /*
853 * Polled console input putchar.
854 */
855 int
856 zscngetc(dev)
857 dev_t dev;
858 {
859 return (zs_getc(zs_conschan_get));
860 }
861
862 /*
863 * Polled console output putchar.
864 */
865 void
866 zscnputc(dev, c)
867 dev_t dev;
868 int c;
869 {
870 zs_putc(zs_conschan_put, c);
871 }
872
873 void
874 zscnpollc(dev, on)
875 dev_t dev;
876 int on;
877 {
878 /* No action needed */
879 }
880
881 int
882 zs_console_flags(promunit, node, channel)
883 int promunit;
884 int node;
885 int channel;
886 {
887 int cookie, flags = 0;
888
889 switch (prom_version()) {
890 case PROM_OLDMON:
891 case PROM_OBP_V0:
892 /*
893 * Use `promunit' and `channel' to derive the PROM
894 * stdio handles that correspond to this device.
895 */
896 if (promunit == 0)
897 cookie = PROMDEV_TTYA + channel;
898 else if (promunit == 1 && channel == 0)
899 cookie = PROMDEV_KBD;
900 else
901 cookie = -1;
902
903 if (cookie == prom_stdin())
904 flags |= ZS_HWFLAG_CONSOLE_INPUT;
905
906 /*
907 * Prevent the keyboard from matching the output device
908 * (note that PROMDEV_KBD == PROMDEV_SCREEN == 0!).
909 */
910 if (cookie != PROMDEV_KBD && cookie == prom_stdout())
911 flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
912
913 break;
914
915 case PROM_OBP_V2:
916 case PROM_OBP_V3:
917 case PROM_OPENFIRM:
918
919 /*
920 * Match the nodes and device arguments prepared by
921 * consinit() against our device node and channel.
922 * (The device argument is the part of the OBP path
923 * following the colon, as in `/obio/zs@0,100000:a')
924 */
925
926 /* Default to channel 0 if there are no explicit prom args */
927 cookie = 0;
928
929 if (node == prom_stdin_node) {
930 if (prom_stdin_args[0] != '\0')
931 /* Translate (a,b) -> (0,1) */
932 cookie = prom_stdin_args[0] - 'a';
933
934 if (channel == cookie)
935 flags |= ZS_HWFLAG_CONSOLE_INPUT;
936 }
937
938 if (node == prom_stdout_node) {
939 if (prom_stdout_args[0] != '\0')
940 /* Translate (a,b) -> (0,1) */
941 cookie = prom_stdout_args[0] - 'a';
942
943 if (channel == cookie)
944 flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
945 }
946
947 break;
948
949 default:
950 break;
951 }
952
953 return (flags);
954 }
955
956 /*
957 * Power management hooks for zsopen() and zsclose().
958 * We use them to power on/off the ports, if necessary.
959 */
960 int
961 zs_enable(cs)
962 struct zs_chanstate *cs;
963 {
964 auxiotwoserialendis (ZS_ENABLE);
965 cs->enabled = 1;
966 return(0);
967 }
968
969 void
970 zs_disable(cs)
971 struct zs_chanstate *cs;
972 {
973 auxiotwoserialendis (ZS_DISABLE);
974 cs->enabled = 0;
975 }
976