zs.c revision 1.82 1 /* $NetBSD: zs.c,v 1.82 2001/05/26 10:23:47 pk Exp $ */
2
3 /*-
4 * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Zilog Z8530 Dual UART driver (machine-dependent part)
41 *
42 * Runs two serial lines per chip using slave drivers.
43 * Plain tty/async lines use the zs_async slave.
44 * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
45 */
46
47 #include "opt_ddb.h"
48 #include "opt_kgdb.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/conf.h>
53 #include <sys/device.h>
54 #include <sys/file.h>
55 #include <sys/ioctl.h>
56 #include <sys/kernel.h>
57 #include <sys/proc.h>
58 #include <sys/tty.h>
59 #include <sys/time.h>
60 #include <sys/syslog.h>
61
62 #include <machine/bsd_openprom.h>
63 #include <machine/autoconf.h>
64 #include <machine/intr.h>
65 #include <machine/conf.h>
66 #include <machine/eeprom.h>
67 #include <machine/psl.h>
68 #include <machine/z8530var.h>
69
70 #include <dev/cons.h>
71 #include <dev/ic/z8530reg.h>
72
73 #include <sparc/sparc/vaddrs.h>
74 #include <sparc/sparc/auxreg.h>
75 #include <sparc/sparc/auxiotwo.h>
76 #include <sparc/dev/cons.h>
77
78 #include "kbd.h" /* NKBD */
79 #include "zs.h" /* NZS */
80
81 /* Make life easier for the initialized arrays here. */
82 #if NZS < 3
83 #undef NZS
84 #define NZS 3
85 #endif
86
87 /*
88 * Some warts needed by z8530tty.c -
89 * The default parity REALLY needs to be the same as the PROM uses,
90 * or you can not see messages done with printf during boot-up...
91 */
92 int zs_def_cflag = (CREAD | CS8 | HUPCL);
93 int zs_major = 12;
94
95 /*
96 * The Sun provides a 4.9152 MHz clock to the ZS chips.
97 */
98 #define PCLK (9600 * 512) /* PCLK pin input clock rate */
99
100 /*
101 * Select software interrupt bit based on TTY ipl.
102 */
103 #if PIL_TTY == 1
104 # define IE_ZSSOFT IE_L1
105 #elif PIL_TTY == 4
106 # define IE_ZSSOFT IE_L4
107 #elif PIL_TTY == 6
108 # define IE_ZSSOFT IE_L6
109 #else
110 # error "no suitable software interrupt bit"
111 #endif
112
113 #define ZS_DELAY() (CPU_ISSUN4C ? (0) : delay(2))
114
115 /* The layout of this is hardware-dependent (padding, order). */
116 struct zschan {
117 volatile u_char zc_csr; /* ctrl,status, and indirect access */
118 u_char zc_xxx0;
119 volatile u_char zc_data; /* data */
120 u_char zc_xxx1;
121 };
122 struct zsdevice {
123 /* Yes, they are backwards. */
124 struct zschan zs_chan_b;
125 struct zschan zs_chan_a;
126 };
127
128 /* ZS channel used as the console device (if any) */
129 void *zs_conschan_get, *zs_conschan_put;
130
131 static u_char zs_init_reg[16] = {
132 0, /* 0: CMD (reset, etc.) */
133 0, /* 1: No interrupts yet. */
134 0, /* 2: IVECT */
135 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
136 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
137 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
138 0, /* 6: TXSYNC/SYNCLO */
139 0, /* 7: RXSYNC/SYNCHI */
140 0, /* 8: alias for data port */
141 ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR,
142 0, /*10: Misc. TX/RX control bits */
143 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
144 ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */
145 0, /*13: BAUDHI (default=9600) */
146 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
147 ZSWR15_BREAK_IE,
148 };
149
150 /* Console ops */
151 static int zscngetc __P((dev_t));
152 static void zscnputc __P((dev_t, int));
153 static void zscnpollc __P((dev_t, int));
154
155 struct consdev zs_consdev = {
156 NULL,
157 NULL,
158 zscngetc,
159 zscnputc,
160 zscnpollc,
161 NULL,
162 };
163
164
165 /****************************************************************
166 * Autoconfig
167 ****************************************************************/
168
169 /* Definition of the driver for autoconfig. */
170 static int zs_match_mainbus __P((struct device *, struct cfdata *, void *));
171 static int zs_match_obio __P((struct device *, struct cfdata *, void *));
172 static void zs_attach_mainbus __P((struct device *, struct device *, void *));
173 static void zs_attach_obio __P((struct device *, struct device *, void *));
174
175
176 static void zs_attach __P((struct zsc_softc *, struct zsdevice *, int));
177 static int zs_print __P((void *, const char *name));
178
179 struct cfattach zs_mainbus_ca = {
180 sizeof(struct zsc_softc), zs_match_mainbus, zs_attach_mainbus
181 };
182
183 struct cfattach zs_obio_ca = {
184 sizeof(struct zsc_softc), zs_match_obio, zs_attach_obio
185 };
186
187 extern struct cfdriver zs_cd;
188
189 /* Interrupt handlers. */
190 static int zshard __P((void *));
191 static int zssoft __P((void *));
192
193 static int zs_get_speed __P((struct zs_chanstate *));
194
195 /* Console device support */
196 static int zs_console_flags __P((int, int, int));
197
198 /* Power management hooks */
199 int zs_enable __P((struct zs_chanstate *));
200 void zs_disable __P((struct zs_chanstate *));
201
202
203 /*
204 * Is the zs chip present?
205 */
206 static int
207 zs_match_mainbus(parent, cf, aux)
208 struct device *parent;
209 struct cfdata *cf;
210 void *aux;
211 {
212 struct mainbus_attach_args *ma = aux;
213
214 if (strcmp(cf->cf_driver->cd_name, ma->ma_name) != 0)
215 return (0);
216
217 return (1);
218 }
219
220 static int
221 zs_match_obio(parent, cf, aux)
222 struct device *parent;
223 struct cfdata *cf;
224 void *aux;
225 {
226 union obio_attach_args *uoba = aux;
227 struct obio4_attach_args *oba;
228
229 if (uoba->uoba_isobio4 == 0) {
230 struct sbus_attach_args *sa = &uoba->uoba_sbus;
231
232 if (strcmp(cf->cf_driver->cd_name, sa->sa_name) != 0)
233 return (0);
234
235 return (1);
236 }
237
238 oba = &uoba->uoba_oba4;
239 return (bus_space_probe(oba->oba_bustag, 0, oba->oba_paddr,
240 1, 0, 0, NULL, NULL));
241 }
242
243 static void
244 zs_attach_mainbus(parent, self, aux)
245 struct device *parent;
246 struct device *self;
247 void *aux;
248 {
249 struct zsc_softc *zsc = (void *) self;
250 struct mainbus_attach_args *ma = aux;
251
252 zsc->zsc_bustag = ma->ma_bustag;
253 zsc->zsc_dmatag = ma->ma_dmatag;
254 zsc->zsc_promunit = getpropint(ma->ma_node, "slave", -2);
255 zsc->zsc_node = ma->ma_node;
256
257 /*
258 * For machines with zs on mainbus (all sun4c models), we expect
259 * the device registers to be mapped by the PROM.
260 */
261 zs_attach(zsc, ma->ma_promvaddr, ma->ma_pri);
262 }
263
264 static void
265 zs_attach_obio(parent, self, aux)
266 struct device *parent;
267 struct device *self;
268 void *aux;
269 {
270 struct zsc_softc *zsc = (void *) self;
271 union obio_attach_args *uoba = aux;
272
273 if (uoba->uoba_isobio4 == 0) {
274 struct sbus_attach_args *sa = &uoba->uoba_sbus;
275 void *va;
276 struct zs_chanstate *cs;
277 int channel;
278
279 if (sa->sa_nintr == 0) {
280 printf(" no interrupt lines\n");
281 return;
282 }
283
284 /*
285 * Some sun4m models (Javastations) may not map the zs device.
286 */
287 if (sa->sa_npromvaddrs > 0)
288 va = (void *)sa->sa_promvaddr;
289 else {
290 bus_space_handle_t bh;
291
292 if (sbus_bus_map(sa->sa_bustag,
293 sa->sa_slot,
294 sa->sa_offset,
295 sa->sa_size,
296 BUS_SPACE_MAP_LINEAR,
297 0, &bh) != 0) {
298 printf(" cannot map zs registers\n");
299 return;
300 }
301 va = (void *)bh;
302 }
303
304 /*
305 * Check if power state can be set, e.g. Tadpole 3GX
306 */
307 if (getpropint(sa->sa_node, "pwr-on-auxio2", 0))
308 {
309 printf (" powered via auxio2");
310 for (channel = 0; channel < 2; channel++) {
311 cs = &zsc->zsc_cs_store[channel];
312 cs->enable = zs_enable;
313 cs->disable = zs_disable;
314 }
315 }
316
317 zsc->zsc_bustag = sa->sa_bustag;
318 zsc->zsc_dmatag = sa->sa_dmatag;
319 zsc->zsc_promunit = getpropint(sa->sa_node, "slave", -2);
320 zsc->zsc_node = sa->sa_node;
321 zs_attach(zsc, va, sa->sa_pri);
322 } else {
323 struct obio4_attach_args *oba = &uoba->uoba_oba4;
324 bus_space_handle_t bh;
325 bus_addr_t paddr = oba->oba_paddr;
326
327 /*
328 * As for zs on mainbus, we require a PROM mapping.
329 */
330 if (bus_space_map(oba->oba_bustag,
331 paddr,
332 sizeof(struct zsdevice),
333 BUS_SPACE_MAP_LINEAR | OBIO_BUS_MAP_USE_ROM,
334 &bh) != 0) {
335 printf(" cannot map zs registers\n");
336 return;
337 }
338 zsc->zsc_bustag = oba->oba_bustag;
339 zsc->zsc_dmatag = oba->oba_dmatag;
340 /* Find prom unit by physical address */
341 if (cpuinfo.cpu_type == CPUTYP_4_100)
342 /*
343 * On the sun4/100, the top-most 4 bits are zero
344 * on obio addresses; force them to 1's for the
345 * sake of the comparison here.
346 */
347 paddr |= 0xf0000000;
348 zsc->zsc_promunit =
349 (paddr == 0xf1000000) ? 0 :
350 (paddr == 0xf0000000) ? 1 :
351 (paddr == 0xe0000000) ? 2 : -2;
352
353 zs_attach(zsc, (void *)bh, oba->oba_pri);
354 }
355 }
356 /*
357 * Attach a found zs.
358 *
359 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
360 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
361 */
362 static void
363 zs_attach(zsc, zsd, pri)
364 struct zsc_softc *zsc;
365 struct zsdevice *zsd;
366 int pri;
367 {
368 struct zsc_attach_args zsc_args;
369 struct zs_chanstate *cs;
370 int s, channel;
371 static int didintr, prevpri;
372
373 if (zsd == NULL) {
374 printf("configuration incomplete\n");
375 return;
376 }
377
378 printf(" softpri %d\n", PIL_TTY);
379
380 /*
381 * Initialize software state for each channel.
382 */
383 for (channel = 0; channel < 2; channel++) {
384 struct zschan *zc;
385
386 zsc_args.channel = channel;
387 cs = &zsc->zsc_cs_store[channel];
388 zsc->zsc_cs[channel] = cs;
389
390 cs->cs_channel = channel;
391 cs->cs_private = NULL;
392 cs->cs_ops = &zsops_null;
393 cs->cs_brg_clk = PCLK / 16;
394
395 zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b;
396
397 zsc_args.hwflags = zs_console_flags(zsc->zsc_promunit,
398 zsc->zsc_node,
399 channel);
400
401 if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) {
402 zsc_args.hwflags |= ZS_HWFLAG_USE_CONSDEV;
403 zsc_args.consdev = &zs_consdev;
404 }
405
406 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
407 zs_conschan_get = zc;
408 }
409 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
410 zs_conschan_put = zc;
411 }
412 /* Childs need to set cn_dev, etc */
413
414 cs->cs_reg_csr = &zc->zc_csr;
415 cs->cs_reg_data = &zc->zc_data;
416
417 bcopy(zs_init_reg, cs->cs_creg, 16);
418 bcopy(zs_init_reg, cs->cs_preg, 16);
419
420 /* XXX: Consult PROM properties for this?! */
421 cs->cs_defspeed = zs_get_speed(cs);
422 cs->cs_defcflag = zs_def_cflag;
423
424 /* Make these correspond to cs_defcflag (-crtscts) */
425 cs->cs_rr0_dcd = ZSRR0_DCD;
426 cs->cs_rr0_cts = 0;
427 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
428 cs->cs_wr5_rts = 0;
429
430 /*
431 * Clear the master interrupt enable.
432 * The INTENA is common to both channels,
433 * so just do it on the A channel.
434 */
435 if (channel == 0) {
436 zs_write_reg(cs, 9, 0);
437 }
438
439 /*
440 * Look for a child driver for this channel.
441 * The child attach will setup the hardware.
442 */
443 if (!config_found(&zsc->zsc_dev, (void *)&zsc_args, zs_print)) {
444 /* No sub-driver. Just reset it. */
445 u_char reset = (channel == 0) ?
446 ZSWR9_A_RESET : ZSWR9_B_RESET;
447 s = splzs();
448 zs_write_reg(cs, 9, reset);
449 splx(s);
450 }
451 }
452
453 /*
454 * Now safe to install interrupt handlers. Note the arguments
455 * to the interrupt handlers aren't used. Note, we only do this
456 * once since both SCCs interrupt at the same level and vector.
457 */
458 if (!didintr) {
459 didintr = 1;
460 prevpri = pri;
461 bus_intr_establish(zsc->zsc_bustag, pri, IPL_SERIAL, 0,
462 zshard, NULL);
463 bus_intr_establish(zsc->zsc_bustag, PIL_TTY,
464 IPL_SOFTSERIAL,
465 BUS_INTR_ESTABLISH_SOFTINTR,
466 zssoft, NULL);
467 } else if (pri != prevpri)
468 panic("broken zs interrupt scheme");
469
470 evcnt_attach_dynamic(&zsc->zsc_intrcnt, EVCNT_TYPE_INTR, NULL,
471 zsc->zsc_dev.dv_xname, "intr");
472
473 /*
474 * Set the master interrupt enable and interrupt vector.
475 * (common to both channels, do it on A)
476 */
477 cs = zsc->zsc_cs[0];
478 s = splhigh();
479 /* interrupt vector */
480 zs_write_reg(cs, 2, zs_init_reg[2]);
481 /* master interrupt control (enable) */
482 zs_write_reg(cs, 9, zs_init_reg[9]);
483 splx(s);
484
485 #if 0
486 /*
487 * XXX: L1A hack - We would like to be able to break into
488 * the debugger during the rest of autoconfiguration, so
489 * lower interrupts just enough to let zs interrupts in.
490 * This is done after both zs devices are attached.
491 */
492 if (zsc->zsc_promunit == 1) {
493 printf("zs1: enabling zs interrupts\n");
494 (void)splfd(); /* XXX: splzs - 1 */
495 }
496 #endif
497 }
498
499 static int
500 zs_print(aux, name)
501 void *aux;
502 const char *name;
503 {
504 struct zsc_attach_args *args = aux;
505
506 if (name != NULL)
507 printf("%s: ", name);
508
509 if (args->channel != -1)
510 printf(" channel %d", args->channel);
511
512 return (UNCONF);
513 }
514
515 static volatile int zssoftpending;
516
517 /*
518 * Our ZS chips all share a common, autovectored interrupt,
519 * so we have to look at all of them on each interrupt.
520 */
521 static int
522 zshard(arg)
523 void *arg;
524 {
525 struct zsc_softc *zsc;
526 int unit, rr3, rval, softreq;
527
528 rval = softreq = 0;
529 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
530 struct zs_chanstate *cs;
531
532 zsc = zs_cd.cd_devs[unit];
533 if (zsc == NULL)
534 continue;
535 rr3 = zsc_intr_hard(zsc);
536 /* Count up the interrupts. */
537 if (rr3) {
538 rval |= rr3;
539 zsc->zsc_intrcnt.ev_count++;
540 }
541 if ((cs = zsc->zsc_cs[0]) != NULL)
542 softreq |= cs->cs_softreq;
543 if ((cs = zsc->zsc_cs[1]) != NULL)
544 softreq |= cs->cs_softreq;
545 }
546
547 /* We are at splzs here, so no need to lock. */
548 if (softreq && (zssoftpending == 0)) {
549 zssoftpending = IE_ZSSOFT;
550 #if defined(SUN4M)
551 if (CPU_ISSUN4M)
552 raise(0, PIL_TTY);
553 else
554 #endif
555 ienab_bis(IE_ZSSOFT);
556 }
557 return (rval);
558 }
559
560 /*
561 * Similar scheme as for zshard (look at all of them)
562 */
563 static int
564 zssoft(arg)
565 void *arg;
566 {
567 struct zsc_softc *zsc;
568 int s, unit;
569
570 /* This is not the only ISR on this IPL. */
571 if (zssoftpending == 0)
572 return (0);
573
574 /*
575 * The soft intr. bit will be set by zshard only if
576 * the variable zssoftpending is zero. The order of
577 * these next two statements prevents our clearing
578 * the soft intr bit just after zshard has set it.
579 */
580 /* ienab_bic(IE_ZSSOFT); */
581 zssoftpending = 0;
582
583 /* Make sure we call the tty layer at spltty. */
584 s = spltty();
585 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
586 zsc = zs_cd.cd_devs[unit];
587 if (zsc == NULL)
588 continue;
589 (void)zsc_intr_soft(zsc);
590 }
591 splx(s);
592 return (1);
593 }
594
595
596 /*
597 * Compute the current baud rate given a ZS channel.
598 */
599 static int
600 zs_get_speed(cs)
601 struct zs_chanstate *cs;
602 {
603 int tconst;
604
605 tconst = zs_read_reg(cs, 12);
606 tconst |= zs_read_reg(cs, 13) << 8;
607 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
608 }
609
610 /*
611 * MD functions for setting the baud rate and control modes.
612 */
613 int
614 zs_set_speed(cs, bps)
615 struct zs_chanstate *cs;
616 int bps; /* bits per second */
617 {
618 int tconst, real_bps;
619
620 if (bps == 0)
621 return (0);
622
623 #ifdef DIAGNOSTIC
624 if (cs->cs_brg_clk == 0)
625 panic("zs_set_speed");
626 #endif
627
628 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
629 if (tconst < 0)
630 return (EINVAL);
631
632 /* Convert back to make sure we can do it. */
633 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
634
635 /* XXX - Allow some tolerance here? */
636 if (real_bps != bps)
637 return (EINVAL);
638
639 cs->cs_preg[12] = tconst;
640 cs->cs_preg[13] = tconst >> 8;
641
642 /* Caller will stuff the pending registers. */
643 return (0);
644 }
645
646 int
647 zs_set_modes(cs, cflag)
648 struct zs_chanstate *cs;
649 int cflag; /* bits per second */
650 {
651 int s;
652
653 /*
654 * Output hardware flow control on the chip is horrendous:
655 * if carrier detect drops, the receiver is disabled, and if
656 * CTS drops, the transmitter is stoped IN MID CHARACTER!
657 * Therefore, NEVER set the HFC bit, and instead use the
658 * status interrupt to detect CTS changes.
659 */
660 s = splzs();
661 cs->cs_rr0_pps = 0;
662 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
663 cs->cs_rr0_dcd = 0;
664 if ((cflag & MDMBUF) == 0)
665 cs->cs_rr0_pps = ZSRR0_DCD;
666 } else
667 cs->cs_rr0_dcd = ZSRR0_DCD;
668 if ((cflag & CRTSCTS) != 0) {
669 cs->cs_wr5_dtr = ZSWR5_DTR;
670 cs->cs_wr5_rts = ZSWR5_RTS;
671 cs->cs_rr0_cts = ZSRR0_CTS;
672 } else if ((cflag & CDTRCTS) != 0) {
673 cs->cs_wr5_dtr = 0;
674 cs->cs_wr5_rts = ZSWR5_DTR;
675 cs->cs_rr0_cts = ZSRR0_CTS;
676 } else if ((cflag & MDMBUF) != 0) {
677 cs->cs_wr5_dtr = 0;
678 cs->cs_wr5_rts = ZSWR5_DTR;
679 cs->cs_rr0_cts = ZSRR0_DCD;
680 } else {
681 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
682 cs->cs_wr5_rts = 0;
683 cs->cs_rr0_cts = 0;
684 }
685 splx(s);
686
687 /* Caller will stuff the pending registers. */
688 return (0);
689 }
690
691
692 /*
693 * Read or write the chip with suitable delays.
694 */
695
696 u_char
697 zs_read_reg(cs, reg)
698 struct zs_chanstate *cs;
699 u_char reg;
700 {
701 u_char val;
702
703 *cs->cs_reg_csr = reg;
704 ZS_DELAY();
705 val = *cs->cs_reg_csr;
706 ZS_DELAY();
707 return (val);
708 }
709
710 void
711 zs_write_reg(cs, reg, val)
712 struct zs_chanstate *cs;
713 u_char reg, val;
714 {
715 *cs->cs_reg_csr = reg;
716 ZS_DELAY();
717 *cs->cs_reg_csr = val;
718 ZS_DELAY();
719 }
720
721 u_char
722 zs_read_csr(cs)
723 struct zs_chanstate *cs;
724 {
725 u_char val;
726
727 val = *cs->cs_reg_csr;
728 ZS_DELAY();
729 return (val);
730 }
731
732 void
733 zs_write_csr(cs, val)
734 struct zs_chanstate *cs;
735 u_char val;
736 {
737 *cs->cs_reg_csr = val;
738 ZS_DELAY();
739 }
740
741 u_char
742 zs_read_data(cs)
743 struct zs_chanstate *cs;
744 {
745 u_char val;
746
747 val = *cs->cs_reg_data;
748 ZS_DELAY();
749 return (val);
750 }
751
752 void zs_write_data(cs, val)
753 struct zs_chanstate *cs;
754 u_char val;
755 {
756 *cs->cs_reg_data = val;
757 ZS_DELAY();
758 }
759
760 /****************************************************************
761 * Console support functions (Sun specific!)
762 * Note: this code is allowed to know about the layout of
763 * the chip registers, and uses that to keep things simple.
764 * XXX - I think I like the mvme167 code better. -gwr
765 ****************************************************************/
766
767 /*
768 * Handle user request to enter kernel debugger.
769 */
770 void
771 zs_abort(cs)
772 struct zs_chanstate *cs;
773 {
774 struct zschan *zc = zs_conschan_get;
775 int rr0;
776
777 /* Wait for end of break to avoid PROM abort. */
778 /* XXX - Limit the wait? */
779 do {
780 rr0 = zc->zc_csr;
781 ZS_DELAY();
782 } while (rr0 & ZSRR0_BREAK);
783
784 #if defined(KGDB)
785 zskgdb(cs);
786 #elif defined(DDB)
787 Debugger();
788 #else
789 printf("stopping on keyboard abort\n");
790 callrom();
791 #endif
792 }
793
794 static int zs_getc __P((void *arg));
795 static void zs_putc __P((void *arg, int c));
796
797 /*
798 * Polled input char.
799 */
800 int
801 zs_getc(arg)
802 void *arg;
803 {
804 struct zschan *zc = arg;
805 int s, c, rr0;
806
807 s = splhigh();
808 /* Wait for a character to arrive. */
809 do {
810 rr0 = zc->zc_csr;
811 ZS_DELAY();
812 } while ((rr0 & ZSRR0_RX_READY) == 0);
813
814 c = zc->zc_data;
815 ZS_DELAY();
816 splx(s);
817
818 /*
819 * This is used by the kd driver to read scan codes,
820 * so don't translate '\r' ==> '\n' here...
821 */
822 return (c);
823 }
824
825 /*
826 * Polled output char.
827 */
828 void
829 zs_putc(arg, c)
830 void *arg;
831 int c;
832 {
833 struct zschan *zc = arg;
834 int s, rr0;
835
836 s = splhigh();
837
838 /* Wait for transmitter to become ready. */
839 do {
840 rr0 = zc->zc_csr;
841 ZS_DELAY();
842 } while ((rr0 & ZSRR0_TX_READY) == 0);
843
844 /*
845 * Send the next character.
846 * Now you'd think that this could be followed by a ZS_DELAY()
847 * just like all the other chip accesses, but it turns out that
848 * the `transmit-ready' interrupt isn't de-asserted until
849 * some period of time after the register write completes
850 * (more than a couple instructions). So to avoid stray
851 * interrupts we put in the 2us delay regardless of cpu model.
852 */
853 zc->zc_data = c;
854 delay(2);
855
856 splx(s);
857 }
858
859 /*****************************************************************/
860 /*
861 * Polled console input putchar.
862 */
863 int
864 zscngetc(dev)
865 dev_t dev;
866 {
867 return (zs_getc(zs_conschan_get));
868 }
869
870 /*
871 * Polled console output putchar.
872 */
873 void
874 zscnputc(dev, c)
875 dev_t dev;
876 int c;
877 {
878 zs_putc(zs_conschan_put, c);
879 }
880
881 void
882 zscnpollc(dev, on)
883 dev_t dev;
884 int on;
885 {
886 /* No action needed */
887 }
888
889 int
890 zs_console_flags(promunit, node, channel)
891 int promunit;
892 int node;
893 int channel;
894 {
895 int cookie, flags = 0;
896
897 switch (prom_version()) {
898 case PROM_OLDMON:
899 case PROM_OBP_V0:
900 /*
901 * Use `promunit' and `channel' to derive the PROM
902 * stdio handles that correspond to this device.
903 */
904 if (promunit == 0)
905 cookie = PROMDEV_TTYA + channel;
906 else if (promunit == 1 && channel == 0)
907 cookie = PROMDEV_KBD;
908 else
909 cookie = -1;
910
911 if (cookie == prom_stdin())
912 flags |= ZS_HWFLAG_CONSOLE_INPUT;
913
914 /*
915 * Prevent the keyboard from matching the output device
916 * (note that PROMDEV_KBD == PROMDEV_SCREEN == 0!).
917 */
918 if (cookie != PROMDEV_KBD && cookie == prom_stdout())
919 flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
920
921 break;
922
923 case PROM_OBP_V2:
924 case PROM_OBP_V3:
925 case PROM_OPENFIRM:
926
927 /*
928 * Match the nodes and device arguments prepared by
929 * consinit() against our device node and channel.
930 * (The device argument is the part of the OBP path
931 * following the colon, as in `/obio/zs@0,100000:a')
932 */
933
934 /* Default to channel 0 if there are no explicit prom args */
935 cookie = 0;
936
937 if (node == prom_stdin_node) {
938 if (prom_stdin_args[0] != '\0')
939 /* Translate (a,b) -> (0,1) */
940 cookie = prom_stdin_args[0] - 'a';
941
942 if (channel == cookie)
943 flags |= ZS_HWFLAG_CONSOLE_INPUT;
944 }
945
946 if (node == prom_stdout_node) {
947 if (prom_stdout_args[0] != '\0')
948 /* Translate (a,b) -> (0,1) */
949 cookie = prom_stdout_args[0] - 'a';
950
951 if (channel == cookie)
952 flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
953 }
954
955 break;
956
957 default:
958 break;
959 }
960
961 return (flags);
962 }
963
964 /*
965 * Power management hooks for zsopen() and zsclose().
966 * We use them to power on/off the ports, if necessary.
967 */
968 int
969 zs_enable(cs)
970 struct zs_chanstate *cs;
971 {
972 auxiotwoserialendis (ZS_ENABLE);
973 cs->enabled = 1;
974 return(0);
975 }
976
977 void
978 zs_disable(cs)
979 struct zs_chanstate *cs;
980 {
981 auxiotwoserialendis (ZS_DISABLE);
982 cs->enabled = 0;
983 }
984