zs.c revision 1.85 1 /* $NetBSD: zs.c,v 1.85 2002/03/11 16:27:02 pk Exp $ */
2
3 /*-
4 * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Zilog Z8530 Dual UART driver (machine-dependent part)
41 *
42 * Runs two serial lines per chip using slave drivers.
43 * Plain tty/async lines use the zs_async slave.
44 * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
45 */
46
47 #include "opt_ddb.h"
48 #include "opt_kgdb.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/conf.h>
53 #include <sys/device.h>
54 #include <sys/file.h>
55 #include <sys/ioctl.h>
56 #include <sys/kernel.h>
57 #include <sys/proc.h>
58 #include <sys/tty.h>
59 #include <sys/time.h>
60 #include <sys/syslog.h>
61
62 #include <machine/bsd_openprom.h>
63 #include <machine/autoconf.h>
64 #include <machine/intr.h>
65 #include <machine/conf.h>
66 #include <machine/eeprom.h>
67 #include <machine/psl.h>
68 #include <machine/z8530var.h>
69
70 #include <dev/cons.h>
71 #include <dev/ic/z8530reg.h>
72
73 #include <sparc/sparc/vaddrs.h>
74 #include <sparc/sparc/auxreg.h>
75 #include <sparc/sparc/auxiotwo.h>
76 #include <sparc/dev/cons.h>
77
78 #include "kbd.h" /* NKBD */
79 #include "zs.h" /* NZS */
80
81 /* Make life easier for the initialized arrays here. */
82 #if NZS < 3
83 #undef NZS
84 #define NZS 3
85 #endif
86
87 /*
88 * Some warts needed by z8530tty.c -
89 * The default parity REALLY needs to be the same as the PROM uses,
90 * or you can not see messages done with printf during boot-up...
91 */
92 int zs_def_cflag = (CREAD | CS8 | HUPCL);
93 int zs_major = 12;
94
95 /*
96 * The Sun provides a 4.9152 MHz clock to the ZS chips.
97 */
98 #define PCLK (9600 * 512) /* PCLK pin input clock rate */
99
100 /*
101 * Select software interrupt bit based on TTY ipl.
102 */
103 #if PIL_TTY == 1
104 # define IE_ZSSOFT IE_L1
105 #elif PIL_TTY == 4
106 # define IE_ZSSOFT IE_L4
107 #elif PIL_TTY == 6
108 # define IE_ZSSOFT IE_L6
109 #else
110 # error "no suitable software interrupt bit"
111 #endif
112
113 #define ZS_DELAY() (CPU_ISSUN4C ? (0) : delay(2))
114
115 /* The layout of this is hardware-dependent (padding, order). */
116 struct zschan {
117 volatile u_char zc_csr; /* ctrl,status, and indirect access */
118 u_char zc_xxx0;
119 volatile u_char zc_data; /* data */
120 u_char zc_xxx1;
121 };
122 struct zsdevice {
123 /* Yes, they are backwards. */
124 struct zschan zs_chan_b;
125 struct zschan zs_chan_a;
126 };
127
128 /* ZS channel used as the console device (if any) */
129 void *zs_conschan_get, *zs_conschan_put;
130
131 static u_char zs_init_reg[16] = {
132 0, /* 0: CMD (reset, etc.) */
133 0, /* 1: No interrupts yet. */
134 0, /* 2: IVECT */
135 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
136 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
137 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
138 0, /* 6: TXSYNC/SYNCLO */
139 0, /* 7: RXSYNC/SYNCHI */
140 0, /* 8: alias for data port */
141 ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR,
142 0, /*10: Misc. TX/RX control bits */
143 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
144 ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */
145 0, /*13: BAUDHI (default=9600) */
146 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
147 ZSWR15_BREAK_IE,
148 };
149
150 /* Console ops */
151 static int zscngetc __P((dev_t));
152 static void zscnputc __P((dev_t, int));
153 static void zscnpollc __P((dev_t, int));
154
155 struct consdev zs_consdev = {
156 NULL,
157 NULL,
158 zscngetc,
159 zscnputc,
160 zscnpollc,
161 NULL,
162 };
163
164
165 /****************************************************************
166 * Autoconfig
167 ****************************************************************/
168
169 /* Definition of the driver for autoconfig. */
170 static int zs_match_mainbus __P((struct device *, struct cfdata *, void *));
171 static int zs_match_obio __P((struct device *, struct cfdata *, void *));
172 static void zs_attach_mainbus __P((struct device *, struct device *, void *));
173 static void zs_attach_obio __P((struct device *, struct device *, void *));
174
175
176 static void zs_attach __P((struct zsc_softc *, struct zsdevice *, int));
177 static int zs_print __P((void *, const char *name));
178
179 struct cfattach zs_mainbus_ca = {
180 sizeof(struct zsc_softc), zs_match_mainbus, zs_attach_mainbus
181 };
182
183 struct cfattach zs_obio_ca = {
184 sizeof(struct zsc_softc), zs_match_obio, zs_attach_obio
185 };
186
187 extern struct cfdriver zs_cd;
188
189 /* Interrupt handlers. */
190 static int zshard __P((void *));
191 static int zssoft __P((void *));
192
193 static int zs_get_speed __P((struct zs_chanstate *));
194
195 /* Console device support */
196 static int zs_console_flags __P((int, int, int));
197
198 /* Power management hooks */
199 int zs_enable __P((struct zs_chanstate *));
200 void zs_disable __P((struct zs_chanstate *));
201
202
203 /*
204 * Is the zs chip present?
205 */
206 static int
207 zs_match_mainbus(parent, cf, aux)
208 struct device *parent;
209 struct cfdata *cf;
210 void *aux;
211 {
212 struct mainbus_attach_args *ma = aux;
213
214 if (strcmp(cf->cf_driver->cd_name, ma->ma_name) != 0)
215 return (0);
216
217 return (1);
218 }
219
220 static int
221 zs_match_obio(parent, cf, aux)
222 struct device *parent;
223 struct cfdata *cf;
224 void *aux;
225 {
226 union obio_attach_args *uoba = aux;
227 struct obio4_attach_args *oba;
228
229 if (uoba->uoba_isobio4 == 0) {
230 struct sbus_attach_args *sa = &uoba->uoba_sbus;
231
232 if (strcmp(cf->cf_driver->cd_name, sa->sa_name) != 0)
233 return (0);
234
235 return (1);
236 }
237
238 oba = &uoba->uoba_oba4;
239 return (bus_space_probe(oba->oba_bustag, oba->oba_paddr,
240 1, 0, 0, NULL, NULL));
241 }
242
243 static void
244 zs_attach_mainbus(parent, self, aux)
245 struct device *parent;
246 struct device *self;
247 void *aux;
248 {
249 struct zsc_softc *zsc = (void *) self;
250 struct mainbus_attach_args *ma = aux;
251
252 zsc->zsc_bustag = ma->ma_bustag;
253 zsc->zsc_dmatag = ma->ma_dmatag;
254 zsc->zsc_promunit = PROM_getpropint(ma->ma_node, "slave", -2);
255 zsc->zsc_node = ma->ma_node;
256
257 /*
258 * For machines with zs on mainbus (all sun4c models), we expect
259 * the device registers to be mapped by the PROM.
260 */
261 zs_attach(zsc, ma->ma_promvaddr, ma->ma_pri);
262 }
263
264 static void
265 zs_attach_obio(parent, self, aux)
266 struct device *parent;
267 struct device *self;
268 void *aux;
269 {
270 struct zsc_softc *zsc = (void *) self;
271 union obio_attach_args *uoba = aux;
272
273 if (uoba->uoba_isobio4 == 0) {
274 struct sbus_attach_args *sa = &uoba->uoba_sbus;
275 void *va;
276 struct zs_chanstate *cs;
277 int channel;
278
279 if (sa->sa_nintr == 0) {
280 printf(" no interrupt lines\n");
281 return;
282 }
283
284 /*
285 * Some sun4m models (Javastations) may not map the zs device.
286 */
287 if (sa->sa_npromvaddrs > 0)
288 va = (void *)sa->sa_promvaddr;
289 else {
290 bus_space_handle_t bh;
291
292 if (sbus_bus_map(sa->sa_bustag,
293 sa->sa_slot,
294 sa->sa_offset,
295 sa->sa_size,
296 BUS_SPACE_MAP_LINEAR, &bh) != 0) {
297 printf(" cannot map zs registers\n");
298 return;
299 }
300 va = (void *)bh;
301 }
302
303 /*
304 * Check if power state can be set, e.g. Tadpole 3GX
305 */
306 if (PROM_getpropint(sa->sa_node, "pwr-on-auxio2", 0))
307 {
308 printf (" powered via auxio2");
309 for (channel = 0; channel < 2; channel++) {
310 cs = &zsc->zsc_cs_store[channel];
311 cs->enable = zs_enable;
312 cs->disable = zs_disable;
313 }
314 }
315
316 zsc->zsc_bustag = sa->sa_bustag;
317 zsc->zsc_dmatag = sa->sa_dmatag;
318 zsc->zsc_promunit = PROM_getpropint(sa->sa_node, "slave", -2);
319 zsc->zsc_node = sa->sa_node;
320 zs_attach(zsc, va, sa->sa_pri);
321 } else {
322 struct obio4_attach_args *oba = &uoba->uoba_oba4;
323 bus_space_handle_t bh;
324 bus_addr_t paddr = oba->oba_paddr;
325
326 /*
327 * As for zs on mainbus, we require a PROM mapping.
328 */
329 if (bus_space_map(oba->oba_bustag,
330 paddr,
331 sizeof(struct zsdevice),
332 BUS_SPACE_MAP_LINEAR | OBIO_BUS_MAP_USE_ROM,
333 &bh) != 0) {
334 printf(" cannot map zs registers\n");
335 return;
336 }
337 zsc->zsc_bustag = oba->oba_bustag;
338 zsc->zsc_dmatag = oba->oba_dmatag;
339 /* Find prom unit by physical address */
340 if (cpuinfo.cpu_type == CPUTYP_4_100)
341 /*
342 * On the sun4/100, the top-most 4 bits are zero
343 * on obio addresses; force them to 1's for the
344 * sake of the comparison here.
345 */
346 paddr |= 0xf0000000;
347 zsc->zsc_promunit =
348 (paddr == 0xf1000000) ? 0 :
349 (paddr == 0xf0000000) ? 1 :
350 (paddr == 0xe0000000) ? 2 : -2;
351
352 zs_attach(zsc, (void *)bh, oba->oba_pri);
353 }
354 }
355 /*
356 * Attach a found zs.
357 *
358 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
359 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
360 */
361 static void
362 zs_attach(zsc, zsd, pri)
363 struct zsc_softc *zsc;
364 struct zsdevice *zsd;
365 int pri;
366 {
367 struct zsc_attach_args zsc_args;
368 struct zs_chanstate *cs;
369 int s, channel;
370 static int didintr, prevpri;
371
372 if (zsd == NULL) {
373 printf("configuration incomplete\n");
374 return;
375 }
376
377 printf(" softpri %d\n", PIL_TTY);
378
379 /*
380 * Initialize software state for each channel.
381 */
382 for (channel = 0; channel < 2; channel++) {
383 struct zschan *zc;
384
385 zsc_args.channel = channel;
386 cs = &zsc->zsc_cs_store[channel];
387 zsc->zsc_cs[channel] = cs;
388
389 cs->cs_channel = channel;
390 cs->cs_private = NULL;
391 cs->cs_ops = &zsops_null;
392 cs->cs_brg_clk = PCLK / 16;
393
394 zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b;
395
396 zsc_args.hwflags = zs_console_flags(zsc->zsc_promunit,
397 zsc->zsc_node,
398 channel);
399
400 if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) {
401 zsc_args.hwflags |= ZS_HWFLAG_USE_CONSDEV;
402 zsc_args.consdev = &zs_consdev;
403 }
404
405 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
406 zs_conschan_get = zc;
407 }
408 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
409 zs_conschan_put = zc;
410 }
411 /* Childs need to set cn_dev, etc */
412
413 cs->cs_reg_csr = &zc->zc_csr;
414 cs->cs_reg_data = &zc->zc_data;
415
416 bcopy(zs_init_reg, cs->cs_creg, 16);
417 bcopy(zs_init_reg, cs->cs_preg, 16);
418
419 /* XXX: Consult PROM properties for this?! */
420 cs->cs_defspeed = zs_get_speed(cs);
421 cs->cs_defcflag = zs_def_cflag;
422
423 /* Make these correspond to cs_defcflag (-crtscts) */
424 cs->cs_rr0_dcd = ZSRR0_DCD;
425 cs->cs_rr0_cts = 0;
426 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
427 cs->cs_wr5_rts = 0;
428
429 /*
430 * Clear the master interrupt enable.
431 * The INTENA is common to both channels,
432 * so just do it on the A channel.
433 */
434 if (channel == 0) {
435 zs_write_reg(cs, 9, 0);
436 }
437
438 /*
439 * Look for a child driver for this channel.
440 * The child attach will setup the hardware.
441 */
442 if (!config_found(&zsc->zsc_dev, (void *)&zsc_args, zs_print)) {
443 /* No sub-driver. Just reset it. */
444 u_char reset = (channel == 0) ?
445 ZSWR9_A_RESET : ZSWR9_B_RESET;
446 s = splzs();
447 zs_write_reg(cs, 9, reset);
448 splx(s);
449 }
450 }
451
452 /*
453 * Now safe to install interrupt handlers. Note the arguments
454 * to the interrupt handlers aren't used. Note, we only do this
455 * once since both SCCs interrupt at the same level and vector.
456 */
457 if (!didintr) {
458 didintr = 1;
459 prevpri = pri;
460 bus_intr_establish(zsc->zsc_bustag, pri, IPL_SERIAL, 0,
461 zshard, NULL);
462 bus_intr_establish(zsc->zsc_bustag, PIL_TTY,
463 IPL_SOFTSERIAL,
464 BUS_INTR_ESTABLISH_SOFTINTR,
465 zssoft, NULL);
466 } else if (pri != prevpri)
467 panic("broken zs interrupt scheme");
468
469 evcnt_attach_dynamic(&zsc->zsc_intrcnt, EVCNT_TYPE_INTR, NULL,
470 zsc->zsc_dev.dv_xname, "intr");
471
472 /*
473 * Set the master interrupt enable and interrupt vector.
474 * (common to both channels, do it on A)
475 */
476 cs = zsc->zsc_cs[0];
477 s = splhigh();
478 /* interrupt vector */
479 zs_write_reg(cs, 2, zs_init_reg[2]);
480 /* master interrupt control (enable) */
481 zs_write_reg(cs, 9, zs_init_reg[9]);
482 splx(s);
483
484 #if 0
485 /*
486 * XXX: L1A hack - We would like to be able to break into
487 * the debugger during the rest of autoconfiguration, so
488 * lower interrupts just enough to let zs interrupts in.
489 * This is done after both zs devices are attached.
490 */
491 if (zsc->zsc_promunit == 1) {
492 printf("zs1: enabling zs interrupts\n");
493 (void)splfd(); /* XXX: splzs - 1 */
494 }
495 #endif
496 }
497
498 static int
499 zs_print(aux, name)
500 void *aux;
501 const char *name;
502 {
503 struct zsc_attach_args *args = aux;
504
505 if (name != NULL)
506 printf("%s: ", name);
507
508 if (args->channel != -1)
509 printf(" channel %d", args->channel);
510
511 return (UNCONF);
512 }
513
514 static volatile int zssoftpending;
515
516 /*
517 * Our ZS chips all share a common, autovectored interrupt,
518 * so we have to look at all of them on each interrupt.
519 */
520 static int
521 zshard(arg)
522 void *arg;
523 {
524 struct zsc_softc *zsc;
525 int unit, rr3, rval, softreq;
526
527 rval = softreq = 0;
528 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
529 struct zs_chanstate *cs;
530
531 zsc = zs_cd.cd_devs[unit];
532 if (zsc == NULL)
533 continue;
534 rr3 = zsc_intr_hard(zsc);
535 /* Count up the interrupts. */
536 if (rr3) {
537 rval |= rr3;
538 zsc->zsc_intrcnt.ev_count++;
539 }
540 if ((cs = zsc->zsc_cs[0]) != NULL)
541 softreq |= cs->cs_softreq;
542 if ((cs = zsc->zsc_cs[1]) != NULL)
543 softreq |= cs->cs_softreq;
544 }
545
546 /* We are at splzs here, so no need to lock. */
547 if (softreq && (zssoftpending == 0)) {
548 zssoftpending = IE_ZSSOFT;
549 #if defined(SUN4M)
550 if (CPU_ISSUN4M)
551 raise(0, PIL_TTY);
552 else
553 #endif
554 ienab_bis(IE_ZSSOFT);
555 }
556 return (rval);
557 }
558
559 /*
560 * Similar scheme as for zshard (look at all of them)
561 */
562 static int
563 zssoft(arg)
564 void *arg;
565 {
566 struct zsc_softc *zsc;
567 int s, unit;
568
569 /* This is not the only ISR on this IPL. */
570 if (zssoftpending == 0)
571 return (0);
572
573 /*
574 * The soft intr. bit will be set by zshard only if
575 * the variable zssoftpending is zero. The order of
576 * these next two statements prevents our clearing
577 * the soft intr bit just after zshard has set it.
578 */
579 /* ienab_bic(IE_ZSSOFT); */
580 zssoftpending = 0;
581
582 /* Make sure we call the tty layer at spltty. */
583 s = spltty();
584 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
585 zsc = zs_cd.cd_devs[unit];
586 if (zsc == NULL)
587 continue;
588 (void)zsc_intr_soft(zsc);
589 }
590 splx(s);
591 return (1);
592 }
593
594
595 /*
596 * Compute the current baud rate given a ZS channel.
597 */
598 static int
599 zs_get_speed(cs)
600 struct zs_chanstate *cs;
601 {
602 int tconst;
603
604 tconst = zs_read_reg(cs, 12);
605 tconst |= zs_read_reg(cs, 13) << 8;
606 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
607 }
608
609 /*
610 * MD functions for setting the baud rate and control modes.
611 */
612 int
613 zs_set_speed(cs, bps)
614 struct zs_chanstate *cs;
615 int bps; /* bits per second */
616 {
617 int tconst, real_bps;
618
619 if (bps == 0)
620 return (0);
621
622 #ifdef DIAGNOSTIC
623 if (cs->cs_brg_clk == 0)
624 panic("zs_set_speed");
625 #endif
626
627 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
628 if (tconst < 0)
629 return (EINVAL);
630
631 /* Convert back to make sure we can do it. */
632 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
633
634 /* XXX - Allow some tolerance here? */
635 if (real_bps != bps)
636 return (EINVAL);
637
638 cs->cs_preg[12] = tconst;
639 cs->cs_preg[13] = tconst >> 8;
640
641 /* Caller will stuff the pending registers. */
642 return (0);
643 }
644
645 int
646 zs_set_modes(cs, cflag)
647 struct zs_chanstate *cs;
648 int cflag; /* bits per second */
649 {
650 int s;
651
652 /*
653 * Output hardware flow control on the chip is horrendous:
654 * if carrier detect drops, the receiver is disabled, and if
655 * CTS drops, the transmitter is stoped IN MID CHARACTER!
656 * Therefore, NEVER set the HFC bit, and instead use the
657 * status interrupt to detect CTS changes.
658 */
659 s = splzs();
660 cs->cs_rr0_pps = 0;
661 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
662 cs->cs_rr0_dcd = 0;
663 if ((cflag & MDMBUF) == 0)
664 cs->cs_rr0_pps = ZSRR0_DCD;
665 } else
666 cs->cs_rr0_dcd = ZSRR0_DCD;
667 if ((cflag & CRTSCTS) != 0) {
668 cs->cs_wr5_dtr = ZSWR5_DTR;
669 cs->cs_wr5_rts = ZSWR5_RTS;
670 cs->cs_rr0_cts = ZSRR0_CTS;
671 } else if ((cflag & CDTRCTS) != 0) {
672 cs->cs_wr5_dtr = 0;
673 cs->cs_wr5_rts = ZSWR5_DTR;
674 cs->cs_rr0_cts = ZSRR0_CTS;
675 } else if ((cflag & MDMBUF) != 0) {
676 cs->cs_wr5_dtr = 0;
677 cs->cs_wr5_rts = ZSWR5_DTR;
678 cs->cs_rr0_cts = ZSRR0_DCD;
679 } else {
680 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
681 cs->cs_wr5_rts = 0;
682 cs->cs_rr0_cts = 0;
683 }
684 splx(s);
685
686 /* Caller will stuff the pending registers. */
687 return (0);
688 }
689
690
691 /*
692 * Read or write the chip with suitable delays.
693 */
694
695 u_char
696 zs_read_reg(cs, reg)
697 struct zs_chanstate *cs;
698 u_char reg;
699 {
700 u_char val;
701
702 *cs->cs_reg_csr = reg;
703 ZS_DELAY();
704 val = *cs->cs_reg_csr;
705 ZS_DELAY();
706 return (val);
707 }
708
709 void
710 zs_write_reg(cs, reg, val)
711 struct zs_chanstate *cs;
712 u_char reg, val;
713 {
714 *cs->cs_reg_csr = reg;
715 ZS_DELAY();
716 *cs->cs_reg_csr = val;
717 ZS_DELAY();
718 }
719
720 u_char
721 zs_read_csr(cs)
722 struct zs_chanstate *cs;
723 {
724 u_char val;
725
726 val = *cs->cs_reg_csr;
727 ZS_DELAY();
728 return (val);
729 }
730
731 void
732 zs_write_csr(cs, val)
733 struct zs_chanstate *cs;
734 u_char val;
735 {
736 *cs->cs_reg_csr = val;
737 ZS_DELAY();
738 }
739
740 u_char
741 zs_read_data(cs)
742 struct zs_chanstate *cs;
743 {
744 u_char val;
745
746 val = *cs->cs_reg_data;
747 ZS_DELAY();
748 return (val);
749 }
750
751 void zs_write_data(cs, val)
752 struct zs_chanstate *cs;
753 u_char val;
754 {
755 *cs->cs_reg_data = val;
756 ZS_DELAY();
757 }
758
759 /****************************************************************
760 * Console support functions (Sun specific!)
761 * Note: this code is allowed to know about the layout of
762 * the chip registers, and uses that to keep things simple.
763 * XXX - I think I like the mvme167 code better. -gwr
764 ****************************************************************/
765
766 /*
767 * Handle user request to enter kernel debugger.
768 */
769 void
770 zs_abort(cs)
771 struct zs_chanstate *cs;
772 {
773 struct zschan *zc = zs_conschan_get;
774 int rr0;
775
776 /* Wait for end of break to avoid PROM abort. */
777 /* XXX - Limit the wait? */
778 do {
779 rr0 = zc->zc_csr;
780 ZS_DELAY();
781 } while (rr0 & ZSRR0_BREAK);
782
783 #if defined(KGDB)
784 zskgdb(cs);
785 #elif defined(DDB)
786 Debugger();
787 #else
788 printf("stopping on keyboard abort\n");
789 callrom();
790 #endif
791 }
792
793 int zs_getc __P((void *arg));
794 void zs_putc __P((void *arg, int c));
795
796 /*
797 * Polled input char.
798 */
799 int
800 zs_getc(arg)
801 void *arg;
802 {
803 struct zschan *zc = arg;
804 int s, c, rr0;
805
806 s = splhigh();
807 /* Wait for a character to arrive. */
808 do {
809 rr0 = zc->zc_csr;
810 ZS_DELAY();
811 } while ((rr0 & ZSRR0_RX_READY) == 0);
812
813 c = zc->zc_data;
814 ZS_DELAY();
815 splx(s);
816
817 /*
818 * This is used by the kd driver to read scan codes,
819 * so don't translate '\r' ==> '\n' here...
820 */
821 return (c);
822 }
823
824 /*
825 * Polled output char.
826 */
827 void
828 zs_putc(arg, c)
829 void *arg;
830 int c;
831 {
832 struct zschan *zc = arg;
833 int s, rr0;
834
835 s = splhigh();
836
837 /* Wait for transmitter to become ready. */
838 do {
839 rr0 = zc->zc_csr;
840 ZS_DELAY();
841 } while ((rr0 & ZSRR0_TX_READY) == 0);
842
843 /*
844 * Send the next character.
845 * Now you'd think that this could be followed by a ZS_DELAY()
846 * just like all the other chip accesses, but it turns out that
847 * the `transmit-ready' interrupt isn't de-asserted until
848 * some period of time after the register write completes
849 * (more than a couple instructions). So to avoid stray
850 * interrupts we put in the 2us delay regardless of cpu model.
851 */
852 zc->zc_data = c;
853 delay(2);
854
855 splx(s);
856 }
857
858 /*****************************************************************/
859 /*
860 * Polled console input putchar.
861 */
862 int
863 zscngetc(dev)
864 dev_t dev;
865 {
866 return (zs_getc(zs_conschan_get));
867 }
868
869 /*
870 * Polled console output putchar.
871 */
872 void
873 zscnputc(dev, c)
874 dev_t dev;
875 int c;
876 {
877 zs_putc(zs_conschan_put, c);
878 }
879
880 void
881 zscnpollc(dev, on)
882 dev_t dev;
883 int on;
884 {
885 /* No action needed */
886 }
887
888 int
889 zs_console_flags(promunit, node, channel)
890 int promunit;
891 int node;
892 int channel;
893 {
894 int cookie, flags = 0;
895
896 switch (prom_version()) {
897 case PROM_OLDMON:
898 case PROM_OBP_V0:
899 /*
900 * Use `promunit' and `channel' to derive the PROM
901 * stdio handles that correspond to this device.
902 */
903 if (promunit == 0)
904 cookie = PROMDEV_TTYA + channel;
905 else if (promunit == 1 && channel == 0)
906 cookie = PROMDEV_KBD;
907 else
908 cookie = -1;
909
910 if (cookie == prom_stdin())
911 flags |= ZS_HWFLAG_CONSOLE_INPUT;
912
913 /*
914 * Prevent the keyboard from matching the output device
915 * (note that PROMDEV_KBD == PROMDEV_SCREEN == 0!).
916 */
917 if (cookie != PROMDEV_KBD && cookie == prom_stdout())
918 flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
919
920 break;
921
922 case PROM_OBP_V2:
923 case PROM_OBP_V3:
924 case PROM_OPENFIRM:
925
926 /*
927 * Match the nodes and device arguments prepared by
928 * consinit() against our device node and channel.
929 * (The device argument is the part of the OBP path
930 * following the colon, as in `/obio/zs@0,100000:a')
931 */
932
933 /* Default to channel 0 if there are no explicit prom args */
934 cookie = 0;
935
936 if (node == prom_stdin_node) {
937 if (prom_stdin_args[0] != '\0')
938 /* Translate (a,b) -> (0,1) */
939 cookie = prom_stdin_args[0] - 'a';
940
941 if (channel == cookie)
942 flags |= ZS_HWFLAG_CONSOLE_INPUT;
943 }
944
945 if (node == prom_stdout_node) {
946 if (prom_stdout_args[0] != '\0')
947 /* Translate (a,b) -> (0,1) */
948 cookie = prom_stdout_args[0] - 'a';
949
950 if (channel == cookie)
951 flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
952 }
953
954 break;
955
956 default:
957 break;
958 }
959
960 return (flags);
961 }
962
963 /*
964 * Power management hooks for zsopen() and zsclose().
965 * We use them to power on/off the ports, if necessary.
966 */
967 int
968 zs_enable(cs)
969 struct zs_chanstate *cs;
970 {
971 auxiotwoserialendis (ZS_ENABLE);
972 cs->enabled = 1;
973 return(0);
974 }
975
976 void
977 zs_disable(cs)
978 struct zs_chanstate *cs;
979 {
980 auxiotwoserialendis (ZS_DISABLE);
981 cs->enabled = 0;
982 }
983