zs.c revision 1.85.6.1 1 /* $NetBSD: zs.c,v 1.85.6.1 2002/12/07 21:55:32 he Exp $ */
2
3 /*-
4 * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Zilog Z8530 Dual UART driver (machine-dependent part)
41 *
42 * Runs two serial lines per chip using slave drivers.
43 * Plain tty/async lines use the zs_async slave.
44 * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
45 */
46
47 #include "opt_ddb.h"
48 #include "opt_kgdb.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/conf.h>
53 #include <sys/device.h>
54 #include <sys/file.h>
55 #include <sys/ioctl.h>
56 #include <sys/kernel.h>
57 #include <sys/proc.h>
58 #include <sys/tty.h>
59 #include <sys/time.h>
60 #include <sys/syslog.h>
61
62 #include <machine/bsd_openprom.h>
63 #include <machine/autoconf.h>
64 #include <machine/intr.h>
65 #include <machine/conf.h>
66 #include <machine/eeprom.h>
67 #include <machine/psl.h>
68 #include <machine/z8530var.h>
69
70 #include <dev/cons.h>
71 #include <dev/ic/z8530reg.h>
72
73 #include <sparc/sparc/vaddrs.h>
74 #include <sparc/sparc/auxreg.h>
75 #include <sparc/sparc/auxiotwo.h>
76 #include <sparc/dev/cons.h>
77
78 #include "kbd.h" /* NKBD */
79 #include "zs.h" /* NZS */
80
81 /* Make life easier for the initialized arrays here. */
82 #if NZS < 3
83 #undef NZS
84 #define NZS 3
85 #endif
86
87 /*
88 * Some warts needed by z8530tty.c -
89 * The default parity REALLY needs to be the same as the PROM uses,
90 * or you can not see messages done with printf during boot-up...
91 */
92 int zs_def_cflag = (CREAD | CS8 | HUPCL);
93 int zs_major = 12;
94
95 /*
96 * The Sun provides a 4.9152 MHz clock to the ZS chips.
97 */
98 #define PCLK (9600 * 512) /* PCLK pin input clock rate */
99
100 /*
101 * Select software interrupt bit based on TTY ipl.
102 */
103 #if PIL_TTY == 1
104 # define IE_ZSSOFT IE_L1
105 #elif PIL_TTY == 4
106 # define IE_ZSSOFT IE_L4
107 #elif PIL_TTY == 6
108 # define IE_ZSSOFT IE_L6
109 #else
110 # error "no suitable software interrupt bit"
111 #endif
112
113 #define ZS_DELAY() (CPU_ISSUN4C ? (0) : delay(2))
114
115 /* The layout of this is hardware-dependent (padding, order). */
116 struct zschan {
117 volatile u_char zc_csr; /* ctrl,status, and indirect access */
118 u_char zc_xxx0;
119 volatile u_char zc_data; /* data */
120 u_char zc_xxx1;
121 };
122 struct zsdevice {
123 /* Yes, they are backwards. */
124 struct zschan zs_chan_b;
125 struct zschan zs_chan_a;
126 };
127
128 /* ZS channel used as the console device (if any) */
129 void *zs_conschan_get, *zs_conschan_put;
130
131 static u_char zs_init_reg[16] = {
132 0, /* 0: CMD (reset, etc.) */
133 0, /* 1: No interrupts yet. */
134 0, /* 2: IVECT */
135 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
136 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
137 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
138 0, /* 6: TXSYNC/SYNCLO */
139 0, /* 7: RXSYNC/SYNCHI */
140 0, /* 8: alias for data port */
141 ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR,
142 0, /*10: Misc. TX/RX control bits */
143 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
144 ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */
145 0, /*13: BAUDHI (default=9600) */
146 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
147 ZSWR15_BREAK_IE,
148 };
149
150 /* Console ops */
151 static int zscngetc __P((dev_t));
152 static void zscnputc __P((dev_t, int));
153 static void zscnpollc __P((dev_t, int));
154
155 struct consdev zs_consdev = {
156 NULL,
157 NULL,
158 zscngetc,
159 zscnputc,
160 zscnpollc,
161 NULL,
162 };
163
164
165 /****************************************************************
166 * Autoconfig
167 ****************************************************************/
168
169 /* Definition of the driver for autoconfig. */
170 static int zs_match_mainbus __P((struct device *, struct cfdata *, void *));
171 static int zs_match_obio __P((struct device *, struct cfdata *, void *));
172 static void zs_attach_mainbus __P((struct device *, struct device *, void *));
173 static void zs_attach_obio __P((struct device *, struct device *, void *));
174
175
176 static void zs_attach __P((struct zsc_softc *, struct zsdevice *, int));
177 static int zs_print __P((void *, const char *name));
178
179 struct cfattach zs_mainbus_ca = {
180 sizeof(struct zsc_softc), zs_match_mainbus, zs_attach_mainbus
181 };
182
183 struct cfattach zs_obio_ca = {
184 sizeof(struct zsc_softc), zs_match_obio, zs_attach_obio
185 };
186
187 extern struct cfdriver zs_cd;
188
189 /* Interrupt handlers. */
190 static int zshard __P((void *));
191 static int zssoft __P((void *));
192
193 static int zs_get_speed __P((struct zs_chanstate *));
194
195 /* Console device support */
196 static int zs_console_flags __P((int, int, int));
197
198 /* Power management hooks */
199 int zs_enable __P((struct zs_chanstate *));
200 void zs_disable __P((struct zs_chanstate *));
201
202
203 /*
204 * Is the zs chip present?
205 */
206 static int
207 zs_match_mainbus(parent, cf, aux)
208 struct device *parent;
209 struct cfdata *cf;
210 void *aux;
211 {
212 struct mainbus_attach_args *ma = aux;
213
214 if (strcmp(cf->cf_driver->cd_name, ma->ma_name) != 0)
215 return (0);
216
217 return (1);
218 }
219
220 static int
221 zs_match_obio(parent, cf, aux)
222 struct device *parent;
223 struct cfdata *cf;
224 void *aux;
225 {
226 union obio_attach_args *uoba = aux;
227 struct obio4_attach_args *oba;
228
229 if (uoba->uoba_isobio4 == 0) {
230 struct sbus_attach_args *sa = &uoba->uoba_sbus;
231
232 if (strcmp(cf->cf_driver->cd_name, sa->sa_name) != 0)
233 return (0);
234
235 return (1);
236 }
237
238 oba = &uoba->uoba_oba4;
239 return (bus_space_probe(oba->oba_bustag, oba->oba_paddr,
240 1, 0, 0, NULL, NULL));
241 }
242
243 static void
244 zs_attach_mainbus(parent, self, aux)
245 struct device *parent;
246 struct device *self;
247 void *aux;
248 {
249 struct zsc_softc *zsc = (void *) self;
250 struct mainbus_attach_args *ma = aux;
251
252 zsc->zsc_bustag = ma->ma_bustag;
253 zsc->zsc_dmatag = ma->ma_dmatag;
254 zsc->zsc_promunit = PROM_getpropint(ma->ma_node, "slave", -2);
255 zsc->zsc_node = ma->ma_node;
256
257 /*
258 * For machines with zs on mainbus (all sun4c models), we expect
259 * the device registers to be mapped by the PROM.
260 */
261 zs_attach(zsc, ma->ma_promvaddr, ma->ma_pri);
262 }
263
264 static void
265 zs_attach_obio(parent, self, aux)
266 struct device *parent;
267 struct device *self;
268 void *aux;
269 {
270 struct zsc_softc *zsc = (void *) self;
271 union obio_attach_args *uoba = aux;
272
273 if (uoba->uoba_isobio4 == 0) {
274 struct sbus_attach_args *sa = &uoba->uoba_sbus;
275 void *va;
276 struct zs_chanstate *cs;
277 int channel;
278
279 if (sa->sa_nintr == 0) {
280 printf(" no interrupt lines\n");
281 return;
282 }
283
284 /*
285 * Some sun4m models (Javastations) may not map the zs device.
286 */
287 if (sa->sa_npromvaddrs > 0)
288 va = (void *)sa->sa_promvaddr;
289 else {
290 bus_space_handle_t bh;
291
292 if (sbus_bus_map(sa->sa_bustag,
293 sa->sa_slot,
294 sa->sa_offset,
295 sa->sa_size,
296 BUS_SPACE_MAP_LINEAR, &bh) != 0) {
297 printf(" cannot map zs registers\n");
298 return;
299 }
300 va = (void *)bh;
301 }
302
303 /*
304 * Check if power state can be set, e.g. Tadpole 3GX
305 */
306 if (PROM_getpropint(sa->sa_node, "pwr-on-auxio2", 0))
307 {
308 printf (" powered via auxio2");
309 for (channel = 0; channel < 2; channel++) {
310 cs = &zsc->zsc_cs_store[channel];
311 cs->enable = zs_enable;
312 cs->disable = zs_disable;
313 }
314 }
315
316 zsc->zsc_bustag = sa->sa_bustag;
317 zsc->zsc_dmatag = sa->sa_dmatag;
318 zsc->zsc_promunit = PROM_getpropint(sa->sa_node, "slave", -2);
319 zsc->zsc_node = sa->sa_node;
320 zs_attach(zsc, va, sa->sa_pri);
321 } else {
322 struct obio4_attach_args *oba = &uoba->uoba_oba4;
323 bus_space_handle_t bh;
324 bus_addr_t paddr = oba->oba_paddr;
325
326 /*
327 * As for zs on mainbus, we require a PROM mapping.
328 */
329 if (bus_space_map(oba->oba_bustag,
330 paddr,
331 sizeof(struct zsdevice),
332 BUS_SPACE_MAP_LINEAR | OBIO_BUS_MAP_USE_ROM,
333 &bh) != 0) {
334 printf(" cannot map zs registers\n");
335 return;
336 }
337 zsc->zsc_bustag = oba->oba_bustag;
338 zsc->zsc_dmatag = oba->oba_dmatag;
339 /*
340 * Find prom unit by physical address
341 * We're just comparing the address (not the iospace) here
342 */
343 paddr = BUS_ADDR_PADDR(paddr);
344 if (cpuinfo.cpu_type == CPUTYP_4_100)
345 /*
346 * On the sun4/100, the top-most 4 bits are zero
347 * on obio addresses; force them to 1's for the
348 * sake of the comparison here.
349 */
350 paddr |= 0xf0000000;
351 zsc->zsc_promunit =
352 (paddr == 0xf1000000) ? 0 :
353 (paddr == 0xf0000000) ? 1 :
354 (paddr == 0xe0000000) ? 2 : -2;
355
356 zs_attach(zsc, (void *)bh, oba->oba_pri);
357 }
358 }
359 /*
360 * Attach a found zs.
361 *
362 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
363 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
364 */
365 static void
366 zs_attach(zsc, zsd, pri)
367 struct zsc_softc *zsc;
368 struct zsdevice *zsd;
369 int pri;
370 {
371 struct zsc_attach_args zsc_args;
372 struct zs_chanstate *cs;
373 int s, channel;
374 static int didintr, prevpri;
375
376 if (zsd == NULL) {
377 printf("configuration incomplete\n");
378 return;
379 }
380
381 printf(" softpri %d\n", PIL_TTY);
382
383 /*
384 * Initialize software state for each channel.
385 */
386 for (channel = 0; channel < 2; channel++) {
387 struct zschan *zc;
388
389 zsc_args.channel = channel;
390 cs = &zsc->zsc_cs_store[channel];
391 zsc->zsc_cs[channel] = cs;
392
393 cs->cs_channel = channel;
394 cs->cs_private = NULL;
395 cs->cs_ops = &zsops_null;
396 cs->cs_brg_clk = PCLK / 16;
397
398 zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b;
399
400 zsc_args.hwflags = zs_console_flags(zsc->zsc_promunit,
401 zsc->zsc_node,
402 channel);
403
404 if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) {
405 zsc_args.hwflags |= ZS_HWFLAG_USE_CONSDEV;
406 zsc_args.consdev = &zs_consdev;
407 }
408
409 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
410 zs_conschan_get = zc;
411 }
412 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
413 zs_conschan_put = zc;
414 }
415 /* Childs need to set cn_dev, etc */
416
417 cs->cs_reg_csr = &zc->zc_csr;
418 cs->cs_reg_data = &zc->zc_data;
419
420 bcopy(zs_init_reg, cs->cs_creg, 16);
421 bcopy(zs_init_reg, cs->cs_preg, 16);
422
423 /* XXX: Consult PROM properties for this?! */
424 cs->cs_defspeed = zs_get_speed(cs);
425 cs->cs_defcflag = zs_def_cflag;
426
427 /* Make these correspond to cs_defcflag (-crtscts) */
428 cs->cs_rr0_dcd = ZSRR0_DCD;
429 cs->cs_rr0_cts = 0;
430 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
431 cs->cs_wr5_rts = 0;
432
433 /*
434 * Clear the master interrupt enable.
435 * The INTENA is common to both channels,
436 * so just do it on the A channel.
437 */
438 if (channel == 0) {
439 zs_write_reg(cs, 9, 0);
440 }
441
442 /*
443 * Look for a child driver for this channel.
444 * The child attach will setup the hardware.
445 */
446 if (!config_found(&zsc->zsc_dev, (void *)&zsc_args, zs_print)) {
447 /* No sub-driver. Just reset it. */
448 u_char reset = (channel == 0) ?
449 ZSWR9_A_RESET : ZSWR9_B_RESET;
450 s = splzs();
451 zs_write_reg(cs, 9, reset);
452 splx(s);
453 }
454 }
455
456 /*
457 * Now safe to install interrupt handlers. Note the arguments
458 * to the interrupt handlers aren't used. Note, we only do this
459 * once since both SCCs interrupt at the same level and vector.
460 */
461 if (!didintr) {
462 didintr = 1;
463 prevpri = pri;
464 bus_intr_establish(zsc->zsc_bustag, pri, IPL_SERIAL, 0,
465 zshard, NULL);
466 bus_intr_establish(zsc->zsc_bustag, PIL_TTY,
467 IPL_SOFTSERIAL,
468 BUS_INTR_ESTABLISH_SOFTINTR,
469 zssoft, NULL);
470 } else if (pri != prevpri)
471 panic("broken zs interrupt scheme");
472
473 evcnt_attach_dynamic(&zsc->zsc_intrcnt, EVCNT_TYPE_INTR, NULL,
474 zsc->zsc_dev.dv_xname, "intr");
475
476 /*
477 * Set the master interrupt enable and interrupt vector.
478 * (common to both channels, do it on A)
479 */
480 cs = zsc->zsc_cs[0];
481 s = splhigh();
482 /* interrupt vector */
483 zs_write_reg(cs, 2, zs_init_reg[2]);
484 /* master interrupt control (enable) */
485 zs_write_reg(cs, 9, zs_init_reg[9]);
486 splx(s);
487
488 #if 0
489 /*
490 * XXX: L1A hack - We would like to be able to break into
491 * the debugger during the rest of autoconfiguration, so
492 * lower interrupts just enough to let zs interrupts in.
493 * This is done after both zs devices are attached.
494 */
495 if (zsc->zsc_promunit == 1) {
496 printf("zs1: enabling zs interrupts\n");
497 (void)splfd(); /* XXX: splzs - 1 */
498 }
499 #endif
500 }
501
502 static int
503 zs_print(aux, name)
504 void *aux;
505 const char *name;
506 {
507 struct zsc_attach_args *args = aux;
508
509 if (name != NULL)
510 printf("%s: ", name);
511
512 if (args->channel != -1)
513 printf(" channel %d", args->channel);
514
515 return (UNCONF);
516 }
517
518 static volatile int zssoftpending;
519
520 /*
521 * Our ZS chips all share a common, autovectored interrupt,
522 * so we have to look at all of them on each interrupt.
523 */
524 static int
525 zshard(arg)
526 void *arg;
527 {
528 struct zsc_softc *zsc;
529 int unit, rr3, rval, softreq;
530
531 rval = softreq = 0;
532 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
533 struct zs_chanstate *cs;
534
535 zsc = zs_cd.cd_devs[unit];
536 if (zsc == NULL)
537 continue;
538 rr3 = zsc_intr_hard(zsc);
539 /* Count up the interrupts. */
540 if (rr3) {
541 rval |= rr3;
542 zsc->zsc_intrcnt.ev_count++;
543 }
544 if ((cs = zsc->zsc_cs[0]) != NULL)
545 softreq |= cs->cs_softreq;
546 if ((cs = zsc->zsc_cs[1]) != NULL)
547 softreq |= cs->cs_softreq;
548 }
549
550 /* We are at splzs here, so no need to lock. */
551 if (softreq && (zssoftpending == 0)) {
552 zssoftpending = IE_ZSSOFT;
553 #if defined(SUN4M)
554 if (CPU_ISSUN4M)
555 raise(0, PIL_TTY);
556 else
557 #endif
558 ienab_bis(IE_ZSSOFT);
559 }
560 return (rval);
561 }
562
563 /*
564 * Similar scheme as for zshard (look at all of them)
565 */
566 static int
567 zssoft(arg)
568 void *arg;
569 {
570 struct zsc_softc *zsc;
571 int s, unit;
572
573 /* This is not the only ISR on this IPL. */
574 if (zssoftpending == 0)
575 return (0);
576
577 /*
578 * The soft intr. bit will be set by zshard only if
579 * the variable zssoftpending is zero. The order of
580 * these next two statements prevents our clearing
581 * the soft intr bit just after zshard has set it.
582 */
583 /* ienab_bic(IE_ZSSOFT); */
584 zssoftpending = 0;
585
586 /* Make sure we call the tty layer at spltty. */
587 s = spltty();
588 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
589 zsc = zs_cd.cd_devs[unit];
590 if (zsc == NULL)
591 continue;
592 (void)zsc_intr_soft(zsc);
593 }
594 splx(s);
595 return (1);
596 }
597
598
599 /*
600 * Compute the current baud rate given a ZS channel.
601 */
602 static int
603 zs_get_speed(cs)
604 struct zs_chanstate *cs;
605 {
606 int tconst;
607
608 tconst = zs_read_reg(cs, 12);
609 tconst |= zs_read_reg(cs, 13) << 8;
610 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
611 }
612
613 /*
614 * MD functions for setting the baud rate and control modes.
615 */
616 int
617 zs_set_speed(cs, bps)
618 struct zs_chanstate *cs;
619 int bps; /* bits per second */
620 {
621 int tconst, real_bps;
622
623 if (bps == 0)
624 return (0);
625
626 #ifdef DIAGNOSTIC
627 if (cs->cs_brg_clk == 0)
628 panic("zs_set_speed");
629 #endif
630
631 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
632 if (tconst < 0)
633 return (EINVAL);
634
635 /* Convert back to make sure we can do it. */
636 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
637
638 /* XXX - Allow some tolerance here? */
639 if (real_bps != bps)
640 return (EINVAL);
641
642 cs->cs_preg[12] = tconst;
643 cs->cs_preg[13] = tconst >> 8;
644
645 /* Caller will stuff the pending registers. */
646 return (0);
647 }
648
649 int
650 zs_set_modes(cs, cflag)
651 struct zs_chanstate *cs;
652 int cflag; /* bits per second */
653 {
654 int s;
655
656 /*
657 * Output hardware flow control on the chip is horrendous:
658 * if carrier detect drops, the receiver is disabled, and if
659 * CTS drops, the transmitter is stoped IN MID CHARACTER!
660 * Therefore, NEVER set the HFC bit, and instead use the
661 * status interrupt to detect CTS changes.
662 */
663 s = splzs();
664 cs->cs_rr0_pps = 0;
665 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
666 cs->cs_rr0_dcd = 0;
667 if ((cflag & MDMBUF) == 0)
668 cs->cs_rr0_pps = ZSRR0_DCD;
669 } else
670 cs->cs_rr0_dcd = ZSRR0_DCD;
671 if ((cflag & CRTSCTS) != 0) {
672 cs->cs_wr5_dtr = ZSWR5_DTR;
673 cs->cs_wr5_rts = ZSWR5_RTS;
674 cs->cs_rr0_cts = ZSRR0_CTS;
675 } else if ((cflag & CDTRCTS) != 0) {
676 cs->cs_wr5_dtr = 0;
677 cs->cs_wr5_rts = ZSWR5_DTR;
678 cs->cs_rr0_cts = ZSRR0_CTS;
679 } else if ((cflag & MDMBUF) != 0) {
680 cs->cs_wr5_dtr = 0;
681 cs->cs_wr5_rts = ZSWR5_DTR;
682 cs->cs_rr0_cts = ZSRR0_DCD;
683 } else {
684 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
685 cs->cs_wr5_rts = 0;
686 cs->cs_rr0_cts = 0;
687 }
688 splx(s);
689
690 /* Caller will stuff the pending registers. */
691 return (0);
692 }
693
694
695 /*
696 * Read or write the chip with suitable delays.
697 */
698
699 u_char
700 zs_read_reg(cs, reg)
701 struct zs_chanstate *cs;
702 u_char reg;
703 {
704 u_char val;
705
706 *cs->cs_reg_csr = reg;
707 ZS_DELAY();
708 val = *cs->cs_reg_csr;
709 ZS_DELAY();
710 return (val);
711 }
712
713 void
714 zs_write_reg(cs, reg, val)
715 struct zs_chanstate *cs;
716 u_char reg, val;
717 {
718 *cs->cs_reg_csr = reg;
719 ZS_DELAY();
720 *cs->cs_reg_csr = val;
721 ZS_DELAY();
722 }
723
724 u_char
725 zs_read_csr(cs)
726 struct zs_chanstate *cs;
727 {
728 u_char val;
729
730 val = *cs->cs_reg_csr;
731 ZS_DELAY();
732 return (val);
733 }
734
735 void
736 zs_write_csr(cs, val)
737 struct zs_chanstate *cs;
738 u_char val;
739 {
740 *cs->cs_reg_csr = val;
741 ZS_DELAY();
742 }
743
744 u_char
745 zs_read_data(cs)
746 struct zs_chanstate *cs;
747 {
748 u_char val;
749
750 val = *cs->cs_reg_data;
751 ZS_DELAY();
752 return (val);
753 }
754
755 void zs_write_data(cs, val)
756 struct zs_chanstate *cs;
757 u_char val;
758 {
759 *cs->cs_reg_data = val;
760 ZS_DELAY();
761 }
762
763 /****************************************************************
764 * Console support functions (Sun specific!)
765 * Note: this code is allowed to know about the layout of
766 * the chip registers, and uses that to keep things simple.
767 * XXX - I think I like the mvme167 code better. -gwr
768 ****************************************************************/
769
770 /*
771 * Handle user request to enter kernel debugger.
772 */
773 void
774 zs_abort(cs)
775 struct zs_chanstate *cs;
776 {
777 struct zschan *zc = zs_conschan_get;
778 int rr0;
779
780 /* Wait for end of break to avoid PROM abort. */
781 /* XXX - Limit the wait? */
782 do {
783 rr0 = zc->zc_csr;
784 ZS_DELAY();
785 } while (rr0 & ZSRR0_BREAK);
786
787 #if defined(KGDB)
788 zskgdb(cs);
789 #elif defined(DDB)
790 Debugger();
791 #else
792 printf("stopping on keyboard abort\n");
793 callrom();
794 #endif
795 }
796
797 int zs_getc __P((void *arg));
798 void zs_putc __P((void *arg, int c));
799
800 /*
801 * Polled input char.
802 */
803 int
804 zs_getc(arg)
805 void *arg;
806 {
807 struct zschan *zc = arg;
808 int s, c, rr0;
809
810 s = splhigh();
811 /* Wait for a character to arrive. */
812 do {
813 rr0 = zc->zc_csr;
814 ZS_DELAY();
815 } while ((rr0 & ZSRR0_RX_READY) == 0);
816
817 c = zc->zc_data;
818 ZS_DELAY();
819 splx(s);
820
821 /*
822 * This is used by the kd driver to read scan codes,
823 * so don't translate '\r' ==> '\n' here...
824 */
825 return (c);
826 }
827
828 /*
829 * Polled output char.
830 */
831 void
832 zs_putc(arg, c)
833 void *arg;
834 int c;
835 {
836 struct zschan *zc = arg;
837 int s, rr0;
838
839 s = splhigh();
840
841 /* Wait for transmitter to become ready. */
842 do {
843 rr0 = zc->zc_csr;
844 ZS_DELAY();
845 } while ((rr0 & ZSRR0_TX_READY) == 0);
846
847 /*
848 * Send the next character.
849 * Now you'd think that this could be followed by a ZS_DELAY()
850 * just like all the other chip accesses, but it turns out that
851 * the `transmit-ready' interrupt isn't de-asserted until
852 * some period of time after the register write completes
853 * (more than a couple instructions). So to avoid stray
854 * interrupts we put in the 2us delay regardless of cpu model.
855 */
856 zc->zc_data = c;
857 delay(2);
858
859 splx(s);
860 }
861
862 /*****************************************************************/
863 /*
864 * Polled console input putchar.
865 */
866 int
867 zscngetc(dev)
868 dev_t dev;
869 {
870 return (zs_getc(zs_conschan_get));
871 }
872
873 /*
874 * Polled console output putchar.
875 */
876 void
877 zscnputc(dev, c)
878 dev_t dev;
879 int c;
880 {
881 zs_putc(zs_conschan_put, c);
882 }
883
884 void
885 zscnpollc(dev, on)
886 dev_t dev;
887 int on;
888 {
889 /* No action needed */
890 }
891
892 int
893 zs_console_flags(promunit, node, channel)
894 int promunit;
895 int node;
896 int channel;
897 {
898 int cookie, flags = 0;
899
900 switch (prom_version()) {
901 case PROM_OLDMON:
902 case PROM_OBP_V0:
903 /*
904 * Use `promunit' and `channel' to derive the PROM
905 * stdio handles that correspond to this device.
906 */
907 if (promunit == 0)
908 cookie = PROMDEV_TTYA + channel;
909 else if (promunit == 1 && channel == 0)
910 cookie = PROMDEV_KBD;
911 else
912 cookie = -1;
913
914 if (cookie == prom_stdin())
915 flags |= ZS_HWFLAG_CONSOLE_INPUT;
916
917 /*
918 * Prevent the keyboard from matching the output device
919 * (note that PROMDEV_KBD == PROMDEV_SCREEN == 0!).
920 */
921 if (cookie != PROMDEV_KBD && cookie == prom_stdout())
922 flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
923
924 break;
925
926 case PROM_OBP_V2:
927 case PROM_OBP_V3:
928 case PROM_OPENFIRM:
929
930 /*
931 * Match the nodes and device arguments prepared by
932 * consinit() against our device node and channel.
933 * (The device argument is the part of the OBP path
934 * following the colon, as in `/obio/zs@0,100000:a')
935 */
936
937 /* Default to channel 0 if there are no explicit prom args */
938 cookie = 0;
939
940 if (node == prom_stdin_node) {
941 if (prom_stdin_args[0] != '\0')
942 /* Translate (a,b) -> (0,1) */
943 cookie = prom_stdin_args[0] - 'a';
944
945 if (channel == cookie)
946 flags |= ZS_HWFLAG_CONSOLE_INPUT;
947 }
948
949 if (node == prom_stdout_node) {
950 if (prom_stdout_args[0] != '\0')
951 /* Translate (a,b) -> (0,1) */
952 cookie = prom_stdout_args[0] - 'a';
953
954 if (channel == cookie)
955 flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
956 }
957
958 break;
959
960 default:
961 break;
962 }
963
964 return (flags);
965 }
966
967 /*
968 * Power management hooks for zsopen() and zsclose().
969 * We use them to power on/off the ports, if necessary.
970 */
971 int
972 zs_enable(cs)
973 struct zs_chanstate *cs;
974 {
975 auxiotwoserialendis (ZS_ENABLE);
976 cs->enabled = 1;
977 return(0);
978 }
979
980 void
981 zs_disable(cs)
982 struct zs_chanstate *cs;
983 {
984 auxiotwoserialendis (ZS_DISABLE);
985 cs->enabled = 0;
986 }
987