zs.c revision 1.86 1 /* $NetBSD: zs.c,v 1.86 2002/08/24 05:26:57 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Zilog Z8530 Dual UART driver (machine-dependent part)
41 *
42 * Runs two serial lines per chip using slave drivers.
43 * Plain tty/async lines use the zs_async slave.
44 * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
45 */
46
47 #include "opt_ddb.h"
48 #include "opt_kgdb.h"
49 #include "opt_sparc_arch.h"
50
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/conf.h>
54 #include <sys/device.h>
55 #include <sys/file.h>
56 #include <sys/ioctl.h>
57 #include <sys/kernel.h>
58 #include <sys/proc.h>
59 #include <sys/tty.h>
60 #include <sys/time.h>
61 #include <sys/syslog.h>
62
63 #include <machine/bsd_openprom.h>
64 #include <machine/autoconf.h>
65 #include <machine/intr.h>
66 #include <machine/conf.h>
67 #include <machine/eeprom.h>
68 #include <machine/psl.h>
69 #include <machine/z8530var.h>
70
71 #include <dev/cons.h>
72 #include <dev/ic/z8530reg.h>
73
74 #include <sparc/sparc/vaddrs.h>
75 #include <sparc/sparc/auxreg.h>
76 #include <sparc/sparc/auxiotwo.h>
77 #include <sparc/dev/cons.h>
78
79 #include "kbd.h" /* NKBD */
80 #include "zs.h" /* NZS */
81
82 /* Make life easier for the initialized arrays here. */
83 #if NZS < 3
84 #undef NZS
85 #define NZS 3
86 #endif
87
88 /*
89 * Some warts needed by z8530tty.c -
90 * The default parity REALLY needs to be the same as the PROM uses,
91 * or you can not see messages done with printf during boot-up...
92 */
93 int zs_def_cflag = (CREAD | CS8 | HUPCL);
94 int zs_major = 12;
95
96 /*
97 * The Sun provides a 4.9152 MHz clock to the ZS chips.
98 */
99 #define PCLK (9600 * 512) /* PCLK pin input clock rate */
100
101 /*
102 * Select software interrupt bit based on TTY ipl.
103 */
104 #if PIL_TTY == 1
105 # define IE_ZSSOFT IE_L1
106 #elif PIL_TTY == 4
107 # define IE_ZSSOFT IE_L4
108 #elif PIL_TTY == 6
109 # define IE_ZSSOFT IE_L6
110 #else
111 # error "no suitable software interrupt bit"
112 #endif
113
114 #define ZS_DELAY() (CPU_ISSUN4C ? (0) : delay(2))
115
116 /* The layout of this is hardware-dependent (padding, order). */
117 struct zschan {
118 volatile u_char zc_csr; /* ctrl,status, and indirect access */
119 u_char zc_xxx0;
120 volatile u_char zc_data; /* data */
121 u_char zc_xxx1;
122 };
123 struct zsdevice {
124 /* Yes, they are backwards. */
125 struct zschan zs_chan_b;
126 struct zschan zs_chan_a;
127 };
128
129 /* ZS channel used as the console device (if any) */
130 void *zs_conschan_get, *zs_conschan_put;
131
132 static u_char zs_init_reg[16] = {
133 0, /* 0: CMD (reset, etc.) */
134 0, /* 1: No interrupts yet. */
135 0, /* 2: IVECT */
136 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
137 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
138 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
139 0, /* 6: TXSYNC/SYNCLO */
140 0, /* 7: RXSYNC/SYNCHI */
141 0, /* 8: alias for data port */
142 ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR,
143 0, /*10: Misc. TX/RX control bits */
144 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
145 ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */
146 0, /*13: BAUDHI (default=9600) */
147 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
148 ZSWR15_BREAK_IE,
149 };
150
151 /* Console ops */
152 static int zscngetc __P((dev_t));
153 static void zscnputc __P((dev_t, int));
154 static void zscnpollc __P((dev_t, int));
155
156 struct consdev zs_consdev = {
157 NULL,
158 NULL,
159 zscngetc,
160 zscnputc,
161 zscnpollc,
162 NULL,
163 };
164
165
166 /****************************************************************
167 * Autoconfig
168 ****************************************************************/
169
170 /* Definition of the driver for autoconfig. */
171 static int zs_match_mainbus __P((struct device *, struct cfdata *, void *));
172 static int zs_match_obio __P((struct device *, struct cfdata *, void *));
173 static void zs_attach_mainbus __P((struct device *, struct device *, void *));
174 static void zs_attach_obio __P((struct device *, struct device *, void *));
175
176 #if defined(SUN4D)
177 #include <sparc/dev/bootbusvar.h>
178
179 static int zs_match_bootbus __P((struct device *, struct cfdata *, void *));
180 static void zs_attach_bootbus __P((struct device *, struct device *, void *));
181
182 struct cfattach zs_bootbus_ca = {
183 sizeof(struct zsc_softc), zs_match_bootbus, zs_attach_bootbus
184 };
185 #endif /* SUN4D */
186
187 static void zs_attach __P((struct zsc_softc *, struct zsdevice *, int));
188 static int zs_print __P((void *, const char *name));
189
190 struct cfattach zs_mainbus_ca = {
191 sizeof(struct zsc_softc), zs_match_mainbus, zs_attach_mainbus
192 };
193
194 struct cfattach zs_obio_ca = {
195 sizeof(struct zsc_softc), zs_match_obio, zs_attach_obio
196 };
197
198 extern struct cfdriver zs_cd;
199
200 /* Interrupt handlers. */
201 static int zshard __P((void *));
202 static int zssoft __P((void *));
203
204 static int zs_get_speed __P((struct zs_chanstate *));
205
206 /* Console device support */
207 static int zs_console_flags __P((int, int, int));
208
209 /* Power management hooks */
210 int zs_enable __P((struct zs_chanstate *));
211 void zs_disable __P((struct zs_chanstate *));
212
213
214 /*
215 * Is the zs chip present?
216 */
217 static int
218 zs_match_mainbus(parent, cf, aux)
219 struct device *parent;
220 struct cfdata *cf;
221 void *aux;
222 {
223 struct mainbus_attach_args *ma = aux;
224
225 if (strcmp(cf->cf_driver->cd_name, ma->ma_name) != 0)
226 return (0);
227
228 return (1);
229 }
230
231 static int
232 zs_match_obio(parent, cf, aux)
233 struct device *parent;
234 struct cfdata *cf;
235 void *aux;
236 {
237 union obio_attach_args *uoba = aux;
238 struct obio4_attach_args *oba;
239
240 if (uoba->uoba_isobio4 == 0) {
241 struct sbus_attach_args *sa = &uoba->uoba_sbus;
242
243 if (strcmp(cf->cf_driver->cd_name, sa->sa_name) != 0)
244 return (0);
245
246 return (1);
247 }
248
249 oba = &uoba->uoba_oba4;
250 return (bus_space_probe(oba->oba_bustag, oba->oba_paddr,
251 1, 0, 0, NULL, NULL));
252 }
253
254 #if defined(SUN4D)
255 static int
256 zs_match_bootbus(parent, cf, aux)
257 struct device *parent;
258 struct cfdata *cf;
259 void *aux;
260 {
261 struct bootbus_attach_args *baa = aux;
262
263 return (strcmp(cf->cf_driver->cd_name, baa->ba_name) == 0);
264 }
265 #endif /* SUN4D */
266
267 static void
268 zs_attach_mainbus(parent, self, aux)
269 struct device *parent;
270 struct device *self;
271 void *aux;
272 {
273 struct zsc_softc *zsc = (void *) self;
274 struct mainbus_attach_args *ma = aux;
275
276 zsc->zsc_bustag = ma->ma_bustag;
277 zsc->zsc_dmatag = ma->ma_dmatag;
278 zsc->zsc_promunit = PROM_getpropint(ma->ma_node, "slave", -2);
279 zsc->zsc_node = ma->ma_node;
280
281 /*
282 * For machines with zs on mainbus (all sun4c models), we expect
283 * the device registers to be mapped by the PROM.
284 */
285 zs_attach(zsc, ma->ma_promvaddr, ma->ma_pri);
286 }
287
288 static void
289 zs_attach_obio(parent, self, aux)
290 struct device *parent;
291 struct device *self;
292 void *aux;
293 {
294 struct zsc_softc *zsc = (void *) self;
295 union obio_attach_args *uoba = aux;
296
297 if (uoba->uoba_isobio4 == 0) {
298 struct sbus_attach_args *sa = &uoba->uoba_sbus;
299 void *va;
300 struct zs_chanstate *cs;
301 int channel;
302
303 if (sa->sa_nintr == 0) {
304 printf(" no interrupt lines\n");
305 return;
306 }
307
308 /*
309 * Some sun4m models (Javastations) may not map the zs device.
310 */
311 if (sa->sa_npromvaddrs > 0)
312 va = (void *)sa->sa_promvaddr;
313 else {
314 bus_space_handle_t bh;
315
316 if (sbus_bus_map(sa->sa_bustag,
317 sa->sa_slot,
318 sa->sa_offset,
319 sa->sa_size,
320 BUS_SPACE_MAP_LINEAR, &bh) != 0) {
321 printf(" cannot map zs registers\n");
322 return;
323 }
324 va = (void *)bh;
325 }
326
327 /*
328 * Check if power state can be set, e.g. Tadpole 3GX
329 */
330 if (PROM_getpropint(sa->sa_node, "pwr-on-auxio2", 0))
331 {
332 printf (" powered via auxio2");
333 for (channel = 0; channel < 2; channel++) {
334 cs = &zsc->zsc_cs_store[channel];
335 cs->enable = zs_enable;
336 cs->disable = zs_disable;
337 }
338 }
339
340 zsc->zsc_bustag = sa->sa_bustag;
341 zsc->zsc_dmatag = sa->sa_dmatag;
342 zsc->zsc_promunit = PROM_getpropint(sa->sa_node, "slave", -2);
343 zsc->zsc_node = sa->sa_node;
344 zs_attach(zsc, va, sa->sa_pri);
345 } else {
346 struct obio4_attach_args *oba = &uoba->uoba_oba4;
347 bus_space_handle_t bh;
348 bus_addr_t paddr = oba->oba_paddr;
349
350 /*
351 * As for zs on mainbus, we require a PROM mapping.
352 */
353 if (bus_space_map(oba->oba_bustag,
354 paddr,
355 sizeof(struct zsdevice),
356 BUS_SPACE_MAP_LINEAR | OBIO_BUS_MAP_USE_ROM,
357 &bh) != 0) {
358 printf(" cannot map zs registers\n");
359 return;
360 }
361 zsc->zsc_bustag = oba->oba_bustag;
362 zsc->zsc_dmatag = oba->oba_dmatag;
363 /* Find prom unit by physical address */
364 if (cpuinfo.cpu_type == CPUTYP_4_100)
365 /*
366 * On the sun4/100, the top-most 4 bits are zero
367 * on obio addresses; force them to 1's for the
368 * sake of the comparison here.
369 */
370 paddr |= 0xf0000000;
371 zsc->zsc_promunit =
372 (paddr == 0xf1000000) ? 0 :
373 (paddr == 0xf0000000) ? 1 :
374 (paddr == 0xe0000000) ? 2 : -2;
375
376 zs_attach(zsc, (void *)bh, oba->oba_pri);
377 }
378 }
379
380 #if defined(SUN4D)
381 static void
382 zs_attach_bootbus(parent, self, aux)
383 struct device *parent;
384 struct device *self;
385 void *aux;
386 {
387 struct zsc_softc *zsc = (void *) self;
388 struct bootbus_attach_args *baa = aux;
389 void *va;
390
391 if (baa->ba_nintr == 0) {
392 printf(": no interrupt lines\n");
393 return;
394 }
395
396 if (baa->ba_npromvaddrs > 0)
397 va = (void *) baa->ba_promvaddrs;
398 else {
399 bus_space_handle_t bh;
400
401 if (bus_space_map(baa->ba_bustag,
402 BUS_ADDR(baa->ba_slot, baa->ba_offset),
403 baa->ba_size, BUS_SPACE_MAP_LINEAR, &bh) != 0) {
404 printf(": cannot map zs registers\n");
405 return;
406 }
407 va = (void *) bh;
408 }
409
410 zsc->zsc_bustag = baa->ba_bustag;
411 zsc->zsc_promunit = PROM_getpropint(baa->ba_node, "slave", -2);
412 zsc->zsc_node = baa->ba_node;
413 zs_attach(zsc, va, baa->ba_intr[0].oi_pri);
414 }
415 #endif /* SUN4D */
416
417 /*
418 * Attach a found zs.
419 *
420 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
421 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
422 */
423 static void
424 zs_attach(zsc, zsd, pri)
425 struct zsc_softc *zsc;
426 struct zsdevice *zsd;
427 int pri;
428 {
429 struct zsc_attach_args zsc_args;
430 struct zs_chanstate *cs;
431 int s, channel;
432 static int didintr, prevpri;
433
434 if (zsd == NULL) {
435 printf("configuration incomplete\n");
436 return;
437 }
438
439 printf(" softpri %d\n", PIL_TTY);
440
441 /*
442 * Initialize software state for each channel.
443 */
444 for (channel = 0; channel < 2; channel++) {
445 struct zschan *zc;
446
447 zsc_args.channel = channel;
448 cs = &zsc->zsc_cs_store[channel];
449 zsc->zsc_cs[channel] = cs;
450
451 cs->cs_channel = channel;
452 cs->cs_private = NULL;
453 cs->cs_ops = &zsops_null;
454 cs->cs_brg_clk = PCLK / 16;
455
456 zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b;
457
458 zsc_args.hwflags = zs_console_flags(zsc->zsc_promunit,
459 zsc->zsc_node,
460 channel);
461
462 if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) {
463 zsc_args.hwflags |= ZS_HWFLAG_USE_CONSDEV;
464 zsc_args.consdev = &zs_consdev;
465 }
466
467 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
468 zs_conschan_get = zc;
469 }
470 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
471 zs_conschan_put = zc;
472 }
473 /* Childs need to set cn_dev, etc */
474
475 cs->cs_reg_csr = &zc->zc_csr;
476 cs->cs_reg_data = &zc->zc_data;
477
478 bcopy(zs_init_reg, cs->cs_creg, 16);
479 bcopy(zs_init_reg, cs->cs_preg, 16);
480
481 /* XXX: Consult PROM properties for this?! */
482 cs->cs_defspeed = zs_get_speed(cs);
483 cs->cs_defcflag = zs_def_cflag;
484
485 /* Make these correspond to cs_defcflag (-crtscts) */
486 cs->cs_rr0_dcd = ZSRR0_DCD;
487 cs->cs_rr0_cts = 0;
488 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
489 cs->cs_wr5_rts = 0;
490
491 /*
492 * Clear the master interrupt enable.
493 * The INTENA is common to both channels,
494 * so just do it on the A channel.
495 */
496 if (channel == 0) {
497 zs_write_reg(cs, 9, 0);
498 }
499
500 /*
501 * Look for a child driver for this channel.
502 * The child attach will setup the hardware.
503 */
504 if (!config_found(&zsc->zsc_dev, (void *)&zsc_args, zs_print)) {
505 /* No sub-driver. Just reset it. */
506 u_char reset = (channel == 0) ?
507 ZSWR9_A_RESET : ZSWR9_B_RESET;
508 s = splzs();
509 zs_write_reg(cs, 9, reset);
510 splx(s);
511 }
512 }
513
514 /*
515 * Now safe to install interrupt handlers. Note the arguments
516 * to the interrupt handlers aren't used. Note, we only do this
517 * once since both SCCs interrupt at the same level and vector.
518 */
519 if (!didintr) {
520 didintr = 1;
521 prevpri = pri;
522 bus_intr_establish(zsc->zsc_bustag, pri, IPL_SERIAL, 0,
523 zshard, NULL);
524 bus_intr_establish(zsc->zsc_bustag, PIL_TTY,
525 IPL_SOFTSERIAL,
526 BUS_INTR_ESTABLISH_SOFTINTR,
527 zssoft, NULL);
528 } else if (pri != prevpri)
529 panic("broken zs interrupt scheme");
530
531 evcnt_attach_dynamic(&zsc->zsc_intrcnt, EVCNT_TYPE_INTR, NULL,
532 zsc->zsc_dev.dv_xname, "intr");
533
534 /*
535 * Set the master interrupt enable and interrupt vector.
536 * (common to both channels, do it on A)
537 */
538 cs = zsc->zsc_cs[0];
539 s = splhigh();
540 /* interrupt vector */
541 zs_write_reg(cs, 2, zs_init_reg[2]);
542 /* master interrupt control (enable) */
543 zs_write_reg(cs, 9, zs_init_reg[9]);
544 splx(s);
545
546 #if 0
547 /*
548 * XXX: L1A hack - We would like to be able to break into
549 * the debugger during the rest of autoconfiguration, so
550 * lower interrupts just enough to let zs interrupts in.
551 * This is done after both zs devices are attached.
552 */
553 if (zsc->zsc_promunit == 1) {
554 printf("zs1: enabling zs interrupts\n");
555 (void)splfd(); /* XXX: splzs - 1 */
556 }
557 #endif
558 }
559
560 static int
561 zs_print(aux, name)
562 void *aux;
563 const char *name;
564 {
565 struct zsc_attach_args *args = aux;
566
567 if (name != NULL)
568 printf("%s: ", name);
569
570 if (args->channel != -1)
571 printf(" channel %d", args->channel);
572
573 return (UNCONF);
574 }
575
576 static volatile int zssoftpending;
577
578 /*
579 * Our ZS chips all share a common, autovectored interrupt,
580 * so we have to look at all of them on each interrupt.
581 */
582 static int
583 zshard(arg)
584 void *arg;
585 {
586 struct zsc_softc *zsc;
587 int unit, rr3, rval, softreq;
588
589 rval = softreq = 0;
590 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
591 struct zs_chanstate *cs;
592
593 zsc = zs_cd.cd_devs[unit];
594 if (zsc == NULL)
595 continue;
596 rr3 = zsc_intr_hard(zsc);
597 /* Count up the interrupts. */
598 if (rr3) {
599 rval |= rr3;
600 zsc->zsc_intrcnt.ev_count++;
601 }
602 if ((cs = zsc->zsc_cs[0]) != NULL)
603 softreq |= cs->cs_softreq;
604 if ((cs = zsc->zsc_cs[1]) != NULL)
605 softreq |= cs->cs_softreq;
606 }
607
608 /* We are at splzs here, so no need to lock. */
609 if (softreq && (zssoftpending == 0)) {
610 zssoftpending = IE_ZSSOFT;
611 #if defined(SUN4M)
612 if (CPU_ISSUN4M)
613 raise(0, PIL_TTY);
614 else
615 #endif
616 ienab_bis(IE_ZSSOFT);
617 }
618 return (rval);
619 }
620
621 /*
622 * Similar scheme as for zshard (look at all of them)
623 */
624 static int
625 zssoft(arg)
626 void *arg;
627 {
628 struct zsc_softc *zsc;
629 int s, unit;
630
631 /* This is not the only ISR on this IPL. */
632 if (zssoftpending == 0)
633 return (0);
634
635 /*
636 * The soft intr. bit will be set by zshard only if
637 * the variable zssoftpending is zero. The order of
638 * these next two statements prevents our clearing
639 * the soft intr bit just after zshard has set it.
640 */
641 /* ienab_bic(IE_ZSSOFT); */
642 zssoftpending = 0;
643
644 /* Make sure we call the tty layer at spltty. */
645 s = spltty();
646 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
647 zsc = zs_cd.cd_devs[unit];
648 if (zsc == NULL)
649 continue;
650 (void)zsc_intr_soft(zsc);
651 }
652 splx(s);
653 return (1);
654 }
655
656
657 /*
658 * Compute the current baud rate given a ZS channel.
659 */
660 static int
661 zs_get_speed(cs)
662 struct zs_chanstate *cs;
663 {
664 int tconst;
665
666 tconst = zs_read_reg(cs, 12);
667 tconst |= zs_read_reg(cs, 13) << 8;
668 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
669 }
670
671 /*
672 * MD functions for setting the baud rate and control modes.
673 */
674 int
675 zs_set_speed(cs, bps)
676 struct zs_chanstate *cs;
677 int bps; /* bits per second */
678 {
679 int tconst, real_bps;
680
681 if (bps == 0)
682 return (0);
683
684 #ifdef DIAGNOSTIC
685 if (cs->cs_brg_clk == 0)
686 panic("zs_set_speed");
687 #endif
688
689 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
690 if (tconst < 0)
691 return (EINVAL);
692
693 /* Convert back to make sure we can do it. */
694 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
695
696 /* XXX - Allow some tolerance here? */
697 if (real_bps != bps)
698 return (EINVAL);
699
700 cs->cs_preg[12] = tconst;
701 cs->cs_preg[13] = tconst >> 8;
702
703 /* Caller will stuff the pending registers. */
704 return (0);
705 }
706
707 int
708 zs_set_modes(cs, cflag)
709 struct zs_chanstate *cs;
710 int cflag; /* bits per second */
711 {
712 int s;
713
714 /*
715 * Output hardware flow control on the chip is horrendous:
716 * if carrier detect drops, the receiver is disabled, and if
717 * CTS drops, the transmitter is stoped IN MID CHARACTER!
718 * Therefore, NEVER set the HFC bit, and instead use the
719 * status interrupt to detect CTS changes.
720 */
721 s = splzs();
722 cs->cs_rr0_pps = 0;
723 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
724 cs->cs_rr0_dcd = 0;
725 if ((cflag & MDMBUF) == 0)
726 cs->cs_rr0_pps = ZSRR0_DCD;
727 } else
728 cs->cs_rr0_dcd = ZSRR0_DCD;
729 if ((cflag & CRTSCTS) != 0) {
730 cs->cs_wr5_dtr = ZSWR5_DTR;
731 cs->cs_wr5_rts = ZSWR5_RTS;
732 cs->cs_rr0_cts = ZSRR0_CTS;
733 } else if ((cflag & CDTRCTS) != 0) {
734 cs->cs_wr5_dtr = 0;
735 cs->cs_wr5_rts = ZSWR5_DTR;
736 cs->cs_rr0_cts = ZSRR0_CTS;
737 } else if ((cflag & MDMBUF) != 0) {
738 cs->cs_wr5_dtr = 0;
739 cs->cs_wr5_rts = ZSWR5_DTR;
740 cs->cs_rr0_cts = ZSRR0_DCD;
741 } else {
742 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
743 cs->cs_wr5_rts = 0;
744 cs->cs_rr0_cts = 0;
745 }
746 splx(s);
747
748 /* Caller will stuff the pending registers. */
749 return (0);
750 }
751
752
753 /*
754 * Read or write the chip with suitable delays.
755 */
756
757 u_char
758 zs_read_reg(cs, reg)
759 struct zs_chanstate *cs;
760 u_char reg;
761 {
762 u_char val;
763
764 *cs->cs_reg_csr = reg;
765 ZS_DELAY();
766 val = *cs->cs_reg_csr;
767 ZS_DELAY();
768 return (val);
769 }
770
771 void
772 zs_write_reg(cs, reg, val)
773 struct zs_chanstate *cs;
774 u_char reg, val;
775 {
776 *cs->cs_reg_csr = reg;
777 ZS_DELAY();
778 *cs->cs_reg_csr = val;
779 ZS_DELAY();
780 }
781
782 u_char
783 zs_read_csr(cs)
784 struct zs_chanstate *cs;
785 {
786 u_char val;
787
788 val = *cs->cs_reg_csr;
789 ZS_DELAY();
790 return (val);
791 }
792
793 void
794 zs_write_csr(cs, val)
795 struct zs_chanstate *cs;
796 u_char val;
797 {
798 *cs->cs_reg_csr = val;
799 ZS_DELAY();
800 }
801
802 u_char
803 zs_read_data(cs)
804 struct zs_chanstate *cs;
805 {
806 u_char val;
807
808 val = *cs->cs_reg_data;
809 ZS_DELAY();
810 return (val);
811 }
812
813 void zs_write_data(cs, val)
814 struct zs_chanstate *cs;
815 u_char val;
816 {
817 *cs->cs_reg_data = val;
818 ZS_DELAY();
819 }
820
821 /****************************************************************
822 * Console support functions (Sun specific!)
823 * Note: this code is allowed to know about the layout of
824 * the chip registers, and uses that to keep things simple.
825 * XXX - I think I like the mvme167 code better. -gwr
826 ****************************************************************/
827
828 /*
829 * Handle user request to enter kernel debugger.
830 */
831 void
832 zs_abort(cs)
833 struct zs_chanstate *cs;
834 {
835 struct zschan *zc = zs_conschan_get;
836 int rr0;
837
838 /* Wait for end of break to avoid PROM abort. */
839 /* XXX - Limit the wait? */
840 do {
841 rr0 = zc->zc_csr;
842 ZS_DELAY();
843 } while (rr0 & ZSRR0_BREAK);
844
845 #if defined(KGDB)
846 zskgdb(cs);
847 #elif defined(DDB)
848 Debugger();
849 #else
850 printf("stopping on keyboard abort\n");
851 callrom();
852 #endif
853 }
854
855 int zs_getc __P((void *arg));
856 void zs_putc __P((void *arg, int c));
857
858 /*
859 * Polled input char.
860 */
861 int
862 zs_getc(arg)
863 void *arg;
864 {
865 struct zschan *zc = arg;
866 int s, c, rr0;
867
868 s = splhigh();
869 /* Wait for a character to arrive. */
870 do {
871 rr0 = zc->zc_csr;
872 ZS_DELAY();
873 } while ((rr0 & ZSRR0_RX_READY) == 0);
874
875 c = zc->zc_data;
876 ZS_DELAY();
877 splx(s);
878
879 /*
880 * This is used by the kd driver to read scan codes,
881 * so don't translate '\r' ==> '\n' here...
882 */
883 return (c);
884 }
885
886 /*
887 * Polled output char.
888 */
889 void
890 zs_putc(arg, c)
891 void *arg;
892 int c;
893 {
894 struct zschan *zc = arg;
895 int s, rr0;
896
897 s = splhigh();
898
899 /* Wait for transmitter to become ready. */
900 do {
901 rr0 = zc->zc_csr;
902 ZS_DELAY();
903 } while ((rr0 & ZSRR0_TX_READY) == 0);
904
905 /*
906 * Send the next character.
907 * Now you'd think that this could be followed by a ZS_DELAY()
908 * just like all the other chip accesses, but it turns out that
909 * the `transmit-ready' interrupt isn't de-asserted until
910 * some period of time after the register write completes
911 * (more than a couple instructions). So to avoid stray
912 * interrupts we put in the 2us delay regardless of cpu model.
913 */
914 zc->zc_data = c;
915 delay(2);
916
917 splx(s);
918 }
919
920 /*****************************************************************/
921 /*
922 * Polled console input putchar.
923 */
924 int
925 zscngetc(dev)
926 dev_t dev;
927 {
928 return (zs_getc(zs_conschan_get));
929 }
930
931 /*
932 * Polled console output putchar.
933 */
934 void
935 zscnputc(dev, c)
936 dev_t dev;
937 int c;
938 {
939 zs_putc(zs_conschan_put, c);
940 }
941
942 void
943 zscnpollc(dev, on)
944 dev_t dev;
945 int on;
946 {
947 /* No action needed */
948 }
949
950 int
951 zs_console_flags(promunit, node, channel)
952 int promunit;
953 int node;
954 int channel;
955 {
956 int cookie, flags = 0;
957
958 switch (prom_version()) {
959 case PROM_OLDMON:
960 case PROM_OBP_V0:
961 /*
962 * Use `promunit' and `channel' to derive the PROM
963 * stdio handles that correspond to this device.
964 */
965 if (promunit == 0)
966 cookie = PROMDEV_TTYA + channel;
967 else if (promunit == 1 && channel == 0)
968 cookie = PROMDEV_KBD;
969 else
970 cookie = -1;
971
972 if (cookie == prom_stdin())
973 flags |= ZS_HWFLAG_CONSOLE_INPUT;
974
975 /*
976 * Prevent the keyboard from matching the output device
977 * (note that PROMDEV_KBD == PROMDEV_SCREEN == 0!).
978 */
979 if (cookie != PROMDEV_KBD && cookie == prom_stdout())
980 flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
981
982 break;
983
984 case PROM_OBP_V2:
985 case PROM_OBP_V3:
986 case PROM_OPENFIRM:
987
988 /*
989 * Match the nodes and device arguments prepared by
990 * consinit() against our device node and channel.
991 * (The device argument is the part of the OBP path
992 * following the colon, as in `/obio/zs@0,100000:a')
993 */
994
995 /* Default to channel 0 if there are no explicit prom args */
996 cookie = 0;
997
998 if (node == prom_stdin_node) {
999 if (prom_stdin_args[0] != '\0')
1000 /* Translate (a,b) -> (0,1) */
1001 cookie = prom_stdin_args[0] - 'a';
1002
1003 if (channel == cookie)
1004 flags |= ZS_HWFLAG_CONSOLE_INPUT;
1005 }
1006
1007 if (node == prom_stdout_node) {
1008 if (prom_stdout_args[0] != '\0')
1009 /* Translate (a,b) -> (0,1) */
1010 cookie = prom_stdout_args[0] - 'a';
1011
1012 if (channel == cookie)
1013 flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
1014 }
1015
1016 break;
1017
1018 default:
1019 break;
1020 }
1021
1022 return (flags);
1023 }
1024
1025 /*
1026 * Power management hooks for zsopen() and zsclose().
1027 * We use them to power on/off the ports, if necessary.
1028 */
1029 int
1030 zs_enable(cs)
1031 struct zs_chanstate *cs;
1032 {
1033 auxiotwoserialendis (ZS_ENABLE);
1034 cs->enabled = 1;
1035 return(0);
1036 }
1037
1038 void
1039 zs_disable(cs)
1040 struct zs_chanstate *cs;
1041 {
1042 auxiotwoserialendis (ZS_DISABLE);
1043 cs->enabled = 0;
1044 }
1045