zs.c revision 1.91 1 /* $NetBSD: zs.c,v 1.91 2002/10/02 16:02:17 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Zilog Z8530 Dual UART driver (machine-dependent part)
41 *
42 * Runs two serial lines per chip using slave drivers.
43 * Plain tty/async lines use the zs_async slave.
44 * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
45 */
46
47 #include "opt_ddb.h"
48 #include "opt_kgdb.h"
49 #include "opt_sparc_arch.h"
50
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/conf.h>
54 #include <sys/device.h>
55 #include <sys/file.h>
56 #include <sys/ioctl.h>
57 #include <sys/kernel.h>
58 #include <sys/proc.h>
59 #include <sys/tty.h>
60 #include <sys/time.h>
61 #include <sys/syslog.h>
62
63 #include <machine/bsd_openprom.h>
64 #include <machine/autoconf.h>
65 #include <machine/intr.h>
66 #include <machine/eeprom.h>
67 #include <machine/psl.h>
68 #include <machine/z8530var.h>
69
70 #include <dev/cons.h>
71 #include <dev/ic/z8530reg.h>
72
73 #include <sparc/sparc/vaddrs.h>
74 #include <sparc/sparc/auxreg.h>
75 #include <sparc/sparc/auxiotwo.h>
76 #include <sparc/dev/cons.h>
77
78 #include "kbd.h" /* NKBD */
79 #include "zs.h" /* NZS */
80
81 /* Make life easier for the initialized arrays here. */
82 #if NZS < 3
83 #undef NZS
84 #define NZS 3
85 #endif
86
87 /*
88 * Some warts needed by z8530tty.c -
89 * The default parity REALLY needs to be the same as the PROM uses,
90 * or you can not see messages done with printf during boot-up...
91 */
92 int zs_def_cflag = (CREAD | CS8 | HUPCL);
93
94 /*
95 * The Sun provides a 4.9152 MHz clock to the ZS chips.
96 */
97 #define PCLK (9600 * 512) /* PCLK pin input clock rate */
98
99 /*
100 * Select software interrupt bit based on TTY ipl.
101 */
102 #if PIL_TTY == 1
103 # define IE_ZSSOFT IE_L1
104 #elif PIL_TTY == 4
105 # define IE_ZSSOFT IE_L4
106 #elif PIL_TTY == 6
107 # define IE_ZSSOFT IE_L6
108 #else
109 # error "no suitable software interrupt bit"
110 #endif
111
112 #define ZS_DELAY() (CPU_ISSUN4C ? (0) : delay(2))
113
114 /* The layout of this is hardware-dependent (padding, order). */
115 struct zschan {
116 volatile u_char zc_csr; /* ctrl,status, and indirect access */
117 u_char zc_xxx0;
118 volatile u_char zc_data; /* data */
119 u_char zc_xxx1;
120 };
121 struct zsdevice {
122 /* Yes, they are backwards. */
123 struct zschan zs_chan_b;
124 struct zschan zs_chan_a;
125 };
126
127 /* ZS channel used as the console device (if any) */
128 void *zs_conschan_get, *zs_conschan_put;
129
130 static u_char zs_init_reg[16] = {
131 0, /* 0: CMD (reset, etc.) */
132 0, /* 1: No interrupts yet. */
133 0, /* 2: IVECT */
134 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
135 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
136 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
137 0, /* 6: TXSYNC/SYNCLO */
138 0, /* 7: RXSYNC/SYNCHI */
139 0, /* 8: alias for data port */
140 ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR,
141 0, /*10: Misc. TX/RX control bits */
142 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
143 ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */
144 0, /*13: BAUDHI (default=9600) */
145 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
146 ZSWR15_BREAK_IE,
147 };
148
149 /* Console ops */
150 static int zscngetc __P((dev_t));
151 static void zscnputc __P((dev_t, int));
152 static void zscnpollc __P((dev_t, int));
153
154 struct consdev zs_consdev = {
155 NULL,
156 NULL,
157 zscngetc,
158 zscnputc,
159 zscnpollc,
160 NULL,
161 };
162
163
164 /****************************************************************
165 * Autoconfig
166 ****************************************************************/
167
168 /* Definition of the driver for autoconfig. */
169 static int zs_match_mainbus __P((struct device *, struct cfdata *, void *));
170 static int zs_match_obio __P((struct device *, struct cfdata *, void *));
171 static void zs_attach_mainbus __P((struct device *, struct device *, void *));
172 static void zs_attach_obio __P((struct device *, struct device *, void *));
173
174 #if defined(SUN4D)
175 #include <sparc/dev/bootbusvar.h>
176
177 static int zs_match_bootbus __P((struct device *, struct cfdata *, void *));
178 static void zs_attach_bootbus __P((struct device *, struct device *, void *));
179
180 CFATTACH_DECL(zs_bootbus, sizeof(struct zsc_softc),
181 zs_match_bootbus, zs_attach_bootbus, NULL, NULL);
182 #endif /* SUN4D */
183
184 static void zs_attach __P((struct zsc_softc *, struct zsdevice *, int));
185 static int zs_print __P((void *, const char *name));
186
187 CFATTACH_DECL(zs_mainbus, sizeof(struct zsc_softc),
188 zs_match_mainbus, zs_attach_mainbus, NULL, NULL);
189
190 CFATTACH_DECL(zs_obio, sizeof(struct zsc_softc),
191 zs_match_obio, zs_attach_obio, NULL, NULL);
192
193 extern struct cfdriver zs_cd;
194
195 /* Interrupt handlers. */
196 static int zshard __P((void *));
197 static int zssoft __P((void *));
198
199 static int zs_get_speed __P((struct zs_chanstate *));
200
201 /* Console device support */
202 static int zs_console_flags __P((int, int, int));
203
204 /* Power management hooks */
205 int zs_enable __P((struct zs_chanstate *));
206 void zs_disable __P((struct zs_chanstate *));
207
208
209 /*
210 * Is the zs chip present?
211 */
212 static int
213 zs_match_mainbus(parent, cf, aux)
214 struct device *parent;
215 struct cfdata *cf;
216 void *aux;
217 {
218 struct mainbus_attach_args *ma = aux;
219
220 if (strcmp(cf->cf_name, ma->ma_name) != 0)
221 return (0);
222
223 return (1);
224 }
225
226 static int
227 zs_match_obio(parent, cf, aux)
228 struct device *parent;
229 struct cfdata *cf;
230 void *aux;
231 {
232 union obio_attach_args *uoba = aux;
233 struct obio4_attach_args *oba;
234
235 if (uoba->uoba_isobio4 == 0) {
236 struct sbus_attach_args *sa = &uoba->uoba_sbus;
237
238 if (strcmp(cf->cf_name, sa->sa_name) != 0)
239 return (0);
240
241 return (1);
242 }
243
244 oba = &uoba->uoba_oba4;
245 return (bus_space_probe(oba->oba_bustag, oba->oba_paddr,
246 1, 0, 0, NULL, NULL));
247 }
248
249 #if defined(SUN4D)
250 static int
251 zs_match_bootbus(parent, cf, aux)
252 struct device *parent;
253 struct cfdata *cf;
254 void *aux;
255 {
256 struct bootbus_attach_args *baa = aux;
257
258 return (strcmp(cf->cf_name, baa->ba_name) == 0);
259 }
260 #endif /* SUN4D */
261
262 static void
263 zs_attach_mainbus(parent, self, aux)
264 struct device *parent;
265 struct device *self;
266 void *aux;
267 {
268 struct zsc_softc *zsc = (void *) self;
269 struct mainbus_attach_args *ma = aux;
270
271 zsc->zsc_bustag = ma->ma_bustag;
272 zsc->zsc_dmatag = ma->ma_dmatag;
273 zsc->zsc_promunit = PROM_getpropint(ma->ma_node, "slave", -2);
274 zsc->zsc_node = ma->ma_node;
275
276 /*
277 * For machines with zs on mainbus (all sun4c models), we expect
278 * the device registers to be mapped by the PROM.
279 */
280 zs_attach(zsc, ma->ma_promvaddr, ma->ma_pri);
281 }
282
283 static void
284 zs_attach_obio(parent, self, aux)
285 struct device *parent;
286 struct device *self;
287 void *aux;
288 {
289 struct zsc_softc *zsc = (void *) self;
290 union obio_attach_args *uoba = aux;
291
292 if (uoba->uoba_isobio4 == 0) {
293 struct sbus_attach_args *sa = &uoba->uoba_sbus;
294 void *va;
295 struct zs_chanstate *cs;
296 int channel;
297
298 if (sa->sa_nintr == 0) {
299 printf(" no interrupt lines\n");
300 return;
301 }
302
303 /*
304 * Some sun4m models (Javastations) may not map the zs device.
305 */
306 if (sa->sa_npromvaddrs > 0)
307 va = (void *)sa->sa_promvaddr;
308 else {
309 bus_space_handle_t bh;
310
311 if (sbus_bus_map(sa->sa_bustag,
312 sa->sa_slot,
313 sa->sa_offset,
314 sa->sa_size,
315 BUS_SPACE_MAP_LINEAR, &bh) != 0) {
316 printf(" cannot map zs registers\n");
317 return;
318 }
319 va = (void *)bh;
320 }
321
322 /*
323 * Check if power state can be set, e.g. Tadpole 3GX
324 */
325 if (PROM_getpropint(sa->sa_node, "pwr-on-auxio2", 0))
326 {
327 printf (" powered via auxio2");
328 for (channel = 0; channel < 2; channel++) {
329 cs = &zsc->zsc_cs_store[channel];
330 cs->enable = zs_enable;
331 cs->disable = zs_disable;
332 }
333 }
334
335 zsc->zsc_bustag = sa->sa_bustag;
336 zsc->zsc_dmatag = sa->sa_dmatag;
337 zsc->zsc_promunit = PROM_getpropint(sa->sa_node, "slave", -2);
338 zsc->zsc_node = sa->sa_node;
339 zs_attach(zsc, va, sa->sa_pri);
340 } else {
341 struct obio4_attach_args *oba = &uoba->uoba_oba4;
342 bus_space_handle_t bh;
343 bus_addr_t paddr = oba->oba_paddr;
344
345 /*
346 * As for zs on mainbus, we require a PROM mapping.
347 */
348 if (bus_space_map(oba->oba_bustag,
349 paddr,
350 sizeof(struct zsdevice),
351 BUS_SPACE_MAP_LINEAR | OBIO_BUS_MAP_USE_ROM,
352 &bh) != 0) {
353 printf(" cannot map zs registers\n");
354 return;
355 }
356 zsc->zsc_bustag = oba->oba_bustag;
357 zsc->zsc_dmatag = oba->oba_dmatag;
358 /* Find prom unit by physical address */
359 if (cpuinfo.cpu_type == CPUTYP_4_100)
360 /*
361 * On the sun4/100, the top-most 4 bits are zero
362 * on obio addresses; force them to 1's for the
363 * sake of the comparison here.
364 */
365 paddr |= 0xf0000000;
366 zsc->zsc_promunit =
367 (paddr == 0xf1000000) ? 0 :
368 (paddr == 0xf0000000) ? 1 :
369 (paddr == 0xe0000000) ? 2 : -2;
370
371 zs_attach(zsc, (void *)bh, oba->oba_pri);
372 }
373 }
374
375 #if defined(SUN4D)
376 static void
377 zs_attach_bootbus(parent, self, aux)
378 struct device *parent;
379 struct device *self;
380 void *aux;
381 {
382 struct zsc_softc *zsc = (void *) self;
383 struct bootbus_attach_args *baa = aux;
384 void *va;
385
386 if (baa->ba_nintr == 0) {
387 printf(": no interrupt lines\n");
388 return;
389 }
390
391 if (baa->ba_npromvaddrs > 0)
392 va = (void *) baa->ba_promvaddrs;
393 else {
394 bus_space_handle_t bh;
395
396 if (bus_space_map(baa->ba_bustag,
397 BUS_ADDR(baa->ba_slot, baa->ba_offset),
398 baa->ba_size, BUS_SPACE_MAP_LINEAR, &bh) != 0) {
399 printf(": cannot map zs registers\n");
400 return;
401 }
402 va = (void *) bh;
403 }
404
405 zsc->zsc_bustag = baa->ba_bustag;
406 zsc->zsc_promunit = PROM_getpropint(baa->ba_node, "slave", -2);
407 zsc->zsc_node = baa->ba_node;
408 zs_attach(zsc, va, baa->ba_intr[0].oi_pri);
409 }
410 #endif /* SUN4D */
411
412 /*
413 * Attach a found zs.
414 *
415 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
416 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
417 */
418 static void
419 zs_attach(zsc, zsd, pri)
420 struct zsc_softc *zsc;
421 struct zsdevice *zsd;
422 int pri;
423 {
424 struct zsc_attach_args zsc_args;
425 struct zs_chanstate *cs;
426 int s, channel;
427 static int didintr, prevpri;
428
429 if (zsd == NULL) {
430 printf("configuration incomplete\n");
431 return;
432 }
433
434 printf(" softpri %d\n", PIL_TTY);
435
436 /*
437 * Initialize software state for each channel.
438 */
439 for (channel = 0; channel < 2; channel++) {
440 struct zschan *zc;
441
442 zsc_args.channel = channel;
443 cs = &zsc->zsc_cs_store[channel];
444 zsc->zsc_cs[channel] = cs;
445
446 cs->cs_channel = channel;
447 cs->cs_private = NULL;
448 cs->cs_ops = &zsops_null;
449 cs->cs_brg_clk = PCLK / 16;
450
451 zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b;
452
453 zsc_args.hwflags = zs_console_flags(zsc->zsc_promunit,
454 zsc->zsc_node,
455 channel);
456
457 if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) {
458 zsc_args.hwflags |= ZS_HWFLAG_USE_CONSDEV;
459 zsc_args.consdev = &zs_consdev;
460 }
461
462 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
463 zs_conschan_get = zc;
464 }
465 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
466 zs_conschan_put = zc;
467 }
468 /* Childs need to set cn_dev, etc */
469
470 cs->cs_reg_csr = &zc->zc_csr;
471 cs->cs_reg_data = &zc->zc_data;
472
473 bcopy(zs_init_reg, cs->cs_creg, 16);
474 bcopy(zs_init_reg, cs->cs_preg, 16);
475
476 /* XXX: Consult PROM properties for this?! */
477 cs->cs_defspeed = zs_get_speed(cs);
478 cs->cs_defcflag = zs_def_cflag;
479
480 /* Make these correspond to cs_defcflag (-crtscts) */
481 cs->cs_rr0_dcd = ZSRR0_DCD;
482 cs->cs_rr0_cts = 0;
483 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
484 cs->cs_wr5_rts = 0;
485
486 /*
487 * Clear the master interrupt enable.
488 * The INTENA is common to both channels,
489 * so just do it on the A channel.
490 */
491 if (channel == 0) {
492 zs_write_reg(cs, 9, 0);
493 }
494
495 /*
496 * Look for a child driver for this channel.
497 * The child attach will setup the hardware.
498 */
499 if (!config_found(&zsc->zsc_dev, (void *)&zsc_args, zs_print)) {
500 /* No sub-driver. Just reset it. */
501 u_char reset = (channel == 0) ?
502 ZSWR9_A_RESET : ZSWR9_B_RESET;
503 s = splzs();
504 zs_write_reg(cs, 9, reset);
505 splx(s);
506 }
507 }
508
509 /*
510 * Now safe to install interrupt handlers. Note the arguments
511 * to the interrupt handlers aren't used. Note, we only do this
512 * once since both SCCs interrupt at the same level and vector.
513 */
514 if (!didintr) {
515 didintr = 1;
516 prevpri = pri;
517 bus_intr_establish(zsc->zsc_bustag, pri, IPL_SERIAL, 0,
518 zshard, NULL);
519 bus_intr_establish(zsc->zsc_bustag, PIL_TTY,
520 IPL_SOFTSERIAL,
521 BUS_INTR_ESTABLISH_SOFTINTR,
522 zssoft, NULL);
523 } else if (pri != prevpri)
524 panic("broken zs interrupt scheme");
525
526 evcnt_attach_dynamic(&zsc->zsc_intrcnt, EVCNT_TYPE_INTR, NULL,
527 zsc->zsc_dev.dv_xname, "intr");
528
529 /*
530 * Set the master interrupt enable and interrupt vector.
531 * (common to both channels, do it on A)
532 */
533 cs = zsc->zsc_cs[0];
534 s = splhigh();
535 /* interrupt vector */
536 zs_write_reg(cs, 2, zs_init_reg[2]);
537 /* master interrupt control (enable) */
538 zs_write_reg(cs, 9, zs_init_reg[9]);
539 splx(s);
540
541 #if 0
542 /*
543 * XXX: L1A hack - We would like to be able to break into
544 * the debugger during the rest of autoconfiguration, so
545 * lower interrupts just enough to let zs interrupts in.
546 * This is done after both zs devices are attached.
547 */
548 if (zsc->zsc_promunit == 1) {
549 printf("zs1: enabling zs interrupts\n");
550 (void)splfd(); /* XXX: splzs - 1 */
551 }
552 #endif
553 }
554
555 static int
556 zs_print(aux, name)
557 void *aux;
558 const char *name;
559 {
560 struct zsc_attach_args *args = aux;
561
562 if (name != NULL)
563 printf("%s: ", name);
564
565 if (args->channel != -1)
566 printf(" channel %d", args->channel);
567
568 return (UNCONF);
569 }
570
571 static volatile int zssoftpending;
572
573 /*
574 * Our ZS chips all share a common, autovectored interrupt,
575 * so we have to look at all of them on each interrupt.
576 */
577 static int
578 zshard(arg)
579 void *arg;
580 {
581 struct zsc_softc *zsc;
582 int unit, rr3, rval, softreq;
583
584 rval = softreq = 0;
585 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
586 struct zs_chanstate *cs;
587
588 zsc = zs_cd.cd_devs[unit];
589 if (zsc == NULL)
590 continue;
591 rr3 = zsc_intr_hard(zsc);
592 /* Count up the interrupts. */
593 if (rr3) {
594 rval |= rr3;
595 zsc->zsc_intrcnt.ev_count++;
596 }
597 if ((cs = zsc->zsc_cs[0]) != NULL)
598 softreq |= cs->cs_softreq;
599 if ((cs = zsc->zsc_cs[1]) != NULL)
600 softreq |= cs->cs_softreq;
601 }
602
603 /* We are at splzs here, so no need to lock. */
604 if (softreq && (zssoftpending == 0)) {
605 zssoftpending = IE_ZSSOFT;
606 #if defined(SUN4M)
607 if (CPU_ISSUN4M)
608 raise(0, PIL_TTY);
609 else
610 #endif
611 ienab_bis(IE_ZSSOFT);
612 }
613 return (rval);
614 }
615
616 /*
617 * Similar scheme as for zshard (look at all of them)
618 */
619 static int
620 zssoft(arg)
621 void *arg;
622 {
623 struct zsc_softc *zsc;
624 int s, unit;
625
626 /* This is not the only ISR on this IPL. */
627 if (zssoftpending == 0)
628 return (0);
629
630 /*
631 * The soft intr. bit will be set by zshard only if
632 * the variable zssoftpending is zero. The order of
633 * these next two statements prevents our clearing
634 * the soft intr bit just after zshard has set it.
635 */
636 /* ienab_bic(IE_ZSSOFT); */
637 zssoftpending = 0;
638
639 /* Make sure we call the tty layer at spltty. */
640 s = spltty();
641 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
642 zsc = zs_cd.cd_devs[unit];
643 if (zsc == NULL)
644 continue;
645 (void)zsc_intr_soft(zsc);
646 }
647 splx(s);
648 return (1);
649 }
650
651
652 /*
653 * Compute the current baud rate given a ZS channel.
654 */
655 static int
656 zs_get_speed(cs)
657 struct zs_chanstate *cs;
658 {
659 int tconst;
660
661 tconst = zs_read_reg(cs, 12);
662 tconst |= zs_read_reg(cs, 13) << 8;
663 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
664 }
665
666 /*
667 * MD functions for setting the baud rate and control modes.
668 */
669 int
670 zs_set_speed(cs, bps)
671 struct zs_chanstate *cs;
672 int bps; /* bits per second */
673 {
674 int tconst, real_bps;
675
676 if (bps == 0)
677 return (0);
678
679 #ifdef DIAGNOSTIC
680 if (cs->cs_brg_clk == 0)
681 panic("zs_set_speed");
682 #endif
683
684 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
685 if (tconst < 0)
686 return (EINVAL);
687
688 /* Convert back to make sure we can do it. */
689 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
690
691 /* XXX - Allow some tolerance here? */
692 if (real_bps != bps)
693 return (EINVAL);
694
695 cs->cs_preg[12] = tconst;
696 cs->cs_preg[13] = tconst >> 8;
697
698 /* Caller will stuff the pending registers. */
699 return (0);
700 }
701
702 int
703 zs_set_modes(cs, cflag)
704 struct zs_chanstate *cs;
705 int cflag; /* bits per second */
706 {
707 int s;
708
709 /*
710 * Output hardware flow control on the chip is horrendous:
711 * if carrier detect drops, the receiver is disabled, and if
712 * CTS drops, the transmitter is stoped IN MID CHARACTER!
713 * Therefore, NEVER set the HFC bit, and instead use the
714 * status interrupt to detect CTS changes.
715 */
716 s = splzs();
717 cs->cs_rr0_pps = 0;
718 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
719 cs->cs_rr0_dcd = 0;
720 if ((cflag & MDMBUF) == 0)
721 cs->cs_rr0_pps = ZSRR0_DCD;
722 } else
723 cs->cs_rr0_dcd = ZSRR0_DCD;
724 if ((cflag & CRTSCTS) != 0) {
725 cs->cs_wr5_dtr = ZSWR5_DTR;
726 cs->cs_wr5_rts = ZSWR5_RTS;
727 cs->cs_rr0_cts = ZSRR0_CTS;
728 } else if ((cflag & CDTRCTS) != 0) {
729 cs->cs_wr5_dtr = 0;
730 cs->cs_wr5_rts = ZSWR5_DTR;
731 cs->cs_rr0_cts = ZSRR0_CTS;
732 } else if ((cflag & MDMBUF) != 0) {
733 cs->cs_wr5_dtr = 0;
734 cs->cs_wr5_rts = ZSWR5_DTR;
735 cs->cs_rr0_cts = ZSRR0_DCD;
736 } else {
737 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
738 cs->cs_wr5_rts = 0;
739 cs->cs_rr0_cts = 0;
740 }
741 splx(s);
742
743 /* Caller will stuff the pending registers. */
744 return (0);
745 }
746
747
748 /*
749 * Read or write the chip with suitable delays.
750 */
751
752 u_char
753 zs_read_reg(cs, reg)
754 struct zs_chanstate *cs;
755 u_char reg;
756 {
757 u_char val;
758
759 *cs->cs_reg_csr = reg;
760 ZS_DELAY();
761 val = *cs->cs_reg_csr;
762 ZS_DELAY();
763 return (val);
764 }
765
766 void
767 zs_write_reg(cs, reg, val)
768 struct zs_chanstate *cs;
769 u_char reg, val;
770 {
771 *cs->cs_reg_csr = reg;
772 ZS_DELAY();
773 *cs->cs_reg_csr = val;
774 ZS_DELAY();
775 }
776
777 u_char
778 zs_read_csr(cs)
779 struct zs_chanstate *cs;
780 {
781 u_char val;
782
783 val = *cs->cs_reg_csr;
784 ZS_DELAY();
785 return (val);
786 }
787
788 void
789 zs_write_csr(cs, val)
790 struct zs_chanstate *cs;
791 u_char val;
792 {
793 *cs->cs_reg_csr = val;
794 ZS_DELAY();
795 }
796
797 u_char
798 zs_read_data(cs)
799 struct zs_chanstate *cs;
800 {
801 u_char val;
802
803 val = *cs->cs_reg_data;
804 ZS_DELAY();
805 return (val);
806 }
807
808 void zs_write_data(cs, val)
809 struct zs_chanstate *cs;
810 u_char val;
811 {
812 *cs->cs_reg_data = val;
813 ZS_DELAY();
814 }
815
816 /****************************************************************
817 * Console support functions (Sun specific!)
818 * Note: this code is allowed to know about the layout of
819 * the chip registers, and uses that to keep things simple.
820 * XXX - I think I like the mvme167 code better. -gwr
821 ****************************************************************/
822
823 /*
824 * Handle user request to enter kernel debugger.
825 */
826 void
827 zs_abort(cs)
828 struct zs_chanstate *cs;
829 {
830 struct zschan *zc = zs_conschan_get;
831 int rr0;
832
833 /* Wait for end of break to avoid PROM abort. */
834 /* XXX - Limit the wait? */
835 do {
836 rr0 = zc->zc_csr;
837 ZS_DELAY();
838 } while (rr0 & ZSRR0_BREAK);
839
840 #if defined(KGDB)
841 zskgdb(cs);
842 #elif defined(DDB)
843 Debugger();
844 #else
845 printf("stopping on keyboard abort\n");
846 callrom();
847 #endif
848 }
849
850 int zs_getc __P((void *arg));
851 void zs_putc __P((void *arg, int c));
852
853 /*
854 * Polled input char.
855 */
856 int
857 zs_getc(arg)
858 void *arg;
859 {
860 struct zschan *zc = arg;
861 int s, c, rr0;
862
863 s = splhigh();
864 /* Wait for a character to arrive. */
865 do {
866 rr0 = zc->zc_csr;
867 ZS_DELAY();
868 } while ((rr0 & ZSRR0_RX_READY) == 0);
869
870 c = zc->zc_data;
871 ZS_DELAY();
872 splx(s);
873
874 /*
875 * This is used by the kd driver to read scan codes,
876 * so don't translate '\r' ==> '\n' here...
877 */
878 return (c);
879 }
880
881 /*
882 * Polled output char.
883 */
884 void
885 zs_putc(arg, c)
886 void *arg;
887 int c;
888 {
889 struct zschan *zc = arg;
890 int s, rr0;
891
892 s = splhigh();
893
894 /* Wait for transmitter to become ready. */
895 do {
896 rr0 = zc->zc_csr;
897 ZS_DELAY();
898 } while ((rr0 & ZSRR0_TX_READY) == 0);
899
900 /*
901 * Send the next character.
902 * Now you'd think that this could be followed by a ZS_DELAY()
903 * just like all the other chip accesses, but it turns out that
904 * the `transmit-ready' interrupt isn't de-asserted until
905 * some period of time after the register write completes
906 * (more than a couple instructions). So to avoid stray
907 * interrupts we put in the 2us delay regardless of cpu model.
908 */
909 zc->zc_data = c;
910 delay(2);
911
912 splx(s);
913 }
914
915 /*****************************************************************/
916 /*
917 * Polled console input putchar.
918 */
919 int
920 zscngetc(dev)
921 dev_t dev;
922 {
923 return (zs_getc(zs_conschan_get));
924 }
925
926 /*
927 * Polled console output putchar.
928 */
929 void
930 zscnputc(dev, c)
931 dev_t dev;
932 int c;
933 {
934 zs_putc(zs_conschan_put, c);
935 }
936
937 void
938 zscnpollc(dev, on)
939 dev_t dev;
940 int on;
941 {
942 /* No action needed */
943 }
944
945 int
946 zs_console_flags(promunit, node, channel)
947 int promunit;
948 int node;
949 int channel;
950 {
951 int cookie, flags = 0;
952
953 switch (prom_version()) {
954 case PROM_OLDMON:
955 case PROM_OBP_V0:
956 /*
957 * Use `promunit' and `channel' to derive the PROM
958 * stdio handles that correspond to this device.
959 */
960 if (promunit == 0)
961 cookie = PROMDEV_TTYA + channel;
962 else if (promunit == 1 && channel == 0)
963 cookie = PROMDEV_KBD;
964 else
965 cookie = -1;
966
967 if (cookie == prom_stdin())
968 flags |= ZS_HWFLAG_CONSOLE_INPUT;
969
970 /*
971 * Prevent the keyboard from matching the output device
972 * (note that PROMDEV_KBD == PROMDEV_SCREEN == 0!).
973 */
974 if (cookie != PROMDEV_KBD && cookie == prom_stdout())
975 flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
976
977 break;
978
979 case PROM_OBP_V2:
980 case PROM_OBP_V3:
981 case PROM_OPENFIRM:
982
983 /*
984 * Match the nodes and device arguments prepared by
985 * consinit() against our device node and channel.
986 * (The device argument is the part of the OBP path
987 * following the colon, as in `/obio/zs@0,100000:a')
988 */
989
990 /* Default to channel 0 if there are no explicit prom args */
991 cookie = 0;
992
993 if (node == prom_stdin_node) {
994 if (prom_stdin_args[0] != '\0')
995 /* Translate (a,b) -> (0,1) */
996 cookie = prom_stdin_args[0] - 'a';
997
998 if (channel == cookie)
999 flags |= ZS_HWFLAG_CONSOLE_INPUT;
1000 }
1001
1002 if (node == prom_stdout_node) {
1003 if (prom_stdout_args[0] != '\0')
1004 /* Translate (a,b) -> (0,1) */
1005 cookie = prom_stdout_args[0] - 'a';
1006
1007 if (channel == cookie)
1008 flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
1009 }
1010
1011 break;
1012
1013 default:
1014 break;
1015 }
1016
1017 return (flags);
1018 }
1019
1020 /*
1021 * Power management hooks for zsopen() and zsclose().
1022 * We use them to power on/off the ports, if necessary.
1023 */
1024 int
1025 zs_enable(cs)
1026 struct zs_chanstate *cs;
1027 {
1028 auxiotwoserialendis (ZS_ENABLE);
1029 cs->enabled = 1;
1030 return(0);
1031 }
1032
1033 void
1034 zs_disable(cs)
1035 struct zs_chanstate *cs;
1036 {
1037 auxiotwoserialendis (ZS_DISABLE);
1038 cs->enabled = 0;
1039 }
1040