zs.c revision 1.97 1 /* $NetBSD: zs.c,v 1.97 2003/01/28 12:35:35 pk Exp $ */
2
3 /*-
4 * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Zilog Z8530 Dual UART driver (machine-dependent part)
41 *
42 * Runs two serial lines per chip using slave drivers.
43 * Plain tty/async lines use the zs_async slave.
44 * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
45 */
46
47 #include "opt_ddb.h"
48 #include "opt_kgdb.h"
49 #include "opt_sparc_arch.h"
50
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/conf.h>
54 #include <sys/device.h>
55 #include <sys/file.h>
56 #include <sys/ioctl.h>
57 #include <sys/kernel.h>
58 #include <sys/proc.h>
59 #include <sys/tty.h>
60 #include <sys/time.h>
61 #include <sys/syslog.h>
62
63 #include <machine/bsd_openprom.h>
64 #include <machine/autoconf.h>
65 #include <machine/intr.h>
66 #include <machine/eeprom.h>
67 #include <machine/psl.h>
68 #include <machine/z8530var.h>
69
70 #include <dev/cons.h>
71 #include <dev/ic/z8530reg.h>
72
73 #include <sparc/sparc/vaddrs.h>
74 #include <sparc/sparc/auxreg.h>
75 #include <sparc/sparc/auxiotwo.h>
76 #include <sparc/dev/cons.h>
77
78 #include "kbd.h" /* NKBD */
79 #include "zs.h" /* NZS */
80
81 /* Make life easier for the initialized arrays here. */
82 #if NZS < 3
83 #undef NZS
84 #define NZS 3
85 #endif
86
87 /*
88 * Some warts needed by z8530tty.c -
89 * The default parity REALLY needs to be the same as the PROM uses,
90 * or you can not see messages done with printf during boot-up...
91 */
92 int zs_def_cflag = (CREAD | CS8 | HUPCL);
93
94 /*
95 * The Sun provides a 4.9152 MHz clock to the ZS chips.
96 */
97 #define PCLK (9600 * 512) /* PCLK pin input clock rate */
98
99 #define ZS_DELAY() (CPU_ISSUN4C ? (0) : delay(2))
100
101 /* The layout of this is hardware-dependent (padding, order). */
102 struct zschan {
103 volatile u_char zc_csr; /* ctrl,status, and indirect access */
104 u_char zc_xxx0;
105 volatile u_char zc_data; /* data */
106 u_char zc_xxx1;
107 };
108 struct zsdevice {
109 /* Yes, they are backwards. */
110 struct zschan zs_chan_b;
111 struct zschan zs_chan_a;
112 };
113
114 /* ZS channel used as the console device (if any) */
115 void *zs_conschan_get, *zs_conschan_put;
116
117 static u_char zs_init_reg[16] = {
118 0, /* 0: CMD (reset, etc.) */
119 0, /* 1: No interrupts yet. */
120 0, /* 2: IVECT */
121 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
122 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
123 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
124 0, /* 6: TXSYNC/SYNCLO */
125 0, /* 7: RXSYNC/SYNCHI */
126 0, /* 8: alias for data port */
127 ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR,
128 0, /*10: Misc. TX/RX control bits */
129 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
130 ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */
131 0, /*13: BAUDHI (default=9600) */
132 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
133 ZSWR15_BREAK_IE,
134 };
135
136 /* Console ops */
137 static int zscngetc __P((dev_t));
138 static void zscnputc __P((dev_t, int));
139 static void zscnpollc __P((dev_t, int));
140
141 struct consdev zs_consdev = {
142 NULL,
143 NULL,
144 zscngetc,
145 zscnputc,
146 zscnpollc,
147 NULL,
148 };
149
150
151 /****************************************************************
152 * Autoconfig
153 ****************************************************************/
154
155 /* Definition of the driver for autoconfig. */
156 static int zs_match_mainbus __P((struct device *, struct cfdata *, void *));
157 static int zs_match_obio __P((struct device *, struct cfdata *, void *));
158 static void zs_attach_mainbus __P((struct device *, struct device *, void *));
159 static void zs_attach_obio __P((struct device *, struct device *, void *));
160
161 #if defined(SUN4D)
162 #include <sparc/dev/bootbusvar.h>
163
164 static int zs_match_bootbus __P((struct device *, struct cfdata *, void *));
165 static void zs_attach_bootbus __P((struct device *, struct device *, void *));
166
167 CFATTACH_DECL(zs_bootbus, sizeof(struct zsc_softc),
168 zs_match_bootbus, zs_attach_bootbus, NULL, NULL);
169 #endif /* SUN4D */
170
171 static void zs_attach __P((struct zsc_softc *, struct zsdevice *, int));
172 static int zs_print __P((void *, const char *name));
173
174 CFATTACH_DECL(zs_mainbus, sizeof(struct zsc_softc),
175 zs_match_mainbus, zs_attach_mainbus, NULL, NULL);
176
177 CFATTACH_DECL(zs_obio, sizeof(struct zsc_softc),
178 zs_match_obio, zs_attach_obio, NULL, NULL);
179
180 extern struct cfdriver zs_cd;
181
182 /* softintr(9) cookie, shared by all instances of this driver */
183 static void *zs_sicookie;
184
185 /* Interrupt handlers. */
186 static int zshard __P((void *));
187 static void zssoft __P((void *));
188
189 static int zs_get_speed __P((struct zs_chanstate *));
190
191 /* Console device support */
192 static int zs_console_flags __P((int, int, int));
193
194 /* Power management hooks */
195 int zs_enable __P((struct zs_chanstate *));
196 void zs_disable __P((struct zs_chanstate *));
197
198
199 /*
200 * Is the zs chip present?
201 */
202 static int
203 zs_match_mainbus(parent, cf, aux)
204 struct device *parent;
205 struct cfdata *cf;
206 void *aux;
207 {
208 struct mainbus_attach_args *ma = aux;
209
210 if (strcmp(cf->cf_name, ma->ma_name) != 0)
211 return (0);
212
213 return (1);
214 }
215
216 static int
217 zs_match_obio(parent, cf, aux)
218 struct device *parent;
219 struct cfdata *cf;
220 void *aux;
221 {
222 union obio_attach_args *uoba = aux;
223 struct obio4_attach_args *oba;
224
225 if (uoba->uoba_isobio4 == 0) {
226 struct sbus_attach_args *sa = &uoba->uoba_sbus;
227
228 if (strcmp(cf->cf_name, sa->sa_name) != 0)
229 return (0);
230
231 return (1);
232 }
233
234 oba = &uoba->uoba_oba4;
235 return (bus_space_probe(oba->oba_bustag, oba->oba_paddr,
236 1, 0, 0, NULL, NULL));
237 }
238
239 #if defined(SUN4D)
240 static int
241 zs_match_bootbus(parent, cf, aux)
242 struct device *parent;
243 struct cfdata *cf;
244 void *aux;
245 {
246 struct bootbus_attach_args *baa = aux;
247
248 return (strcmp(cf->cf_name, baa->ba_name) == 0);
249 }
250 #endif /* SUN4D */
251
252 static void
253 zs_attach_mainbus(parent, self, aux)
254 struct device *parent;
255 struct device *self;
256 void *aux;
257 {
258 struct zsc_softc *zsc = (void *) self;
259 struct mainbus_attach_args *ma = aux;
260
261 zsc->zsc_bustag = ma->ma_bustag;
262 zsc->zsc_dmatag = ma->ma_dmatag;
263 zsc->zsc_promunit = PROM_getpropint(ma->ma_node, "slave", -2);
264 zsc->zsc_node = ma->ma_node;
265
266 /*
267 * For machines with zs on mainbus (all sun4c models), we expect
268 * the device registers to be mapped by the PROM.
269 */
270 zs_attach(zsc, ma->ma_promvaddr, ma->ma_pri);
271 }
272
273 static void
274 zs_attach_obio(parent, self, aux)
275 struct device *parent;
276 struct device *self;
277 void *aux;
278 {
279 struct zsc_softc *zsc = (void *) self;
280 union obio_attach_args *uoba = aux;
281
282 if (uoba->uoba_isobio4 == 0) {
283 struct sbus_attach_args *sa = &uoba->uoba_sbus;
284 void *va;
285 struct zs_chanstate *cs;
286 int channel;
287
288 if (sa->sa_nintr == 0) {
289 printf(" no interrupt lines\n");
290 return;
291 }
292
293 /*
294 * Some sun4m models (Javastations) may not map the zs device.
295 */
296 if (sa->sa_npromvaddrs > 0)
297 va = (void *)sa->sa_promvaddr;
298 else {
299 bus_space_handle_t bh;
300
301 if (sbus_bus_map(sa->sa_bustag,
302 sa->sa_slot,
303 sa->sa_offset,
304 sa->sa_size,
305 BUS_SPACE_MAP_LINEAR, &bh) != 0) {
306 printf(" cannot map zs registers\n");
307 return;
308 }
309 va = (void *)bh;
310 }
311
312 /*
313 * Check if power state can be set, e.g. Tadpole 3GX
314 */
315 if (PROM_getpropint(sa->sa_node, "pwr-on-auxio2", 0))
316 {
317 printf (" powered via auxio2");
318 for (channel = 0; channel < 2; channel++) {
319 cs = &zsc->zsc_cs_store[channel];
320 cs->enable = zs_enable;
321 cs->disable = zs_disable;
322 }
323 }
324
325 zsc->zsc_bustag = sa->sa_bustag;
326 zsc->zsc_dmatag = sa->sa_dmatag;
327 zsc->zsc_promunit = PROM_getpropint(sa->sa_node, "slave", -2);
328 zsc->zsc_node = sa->sa_node;
329 zs_attach(zsc, va, sa->sa_pri);
330 } else {
331 struct obio4_attach_args *oba = &uoba->uoba_oba4;
332 bus_space_handle_t bh;
333 bus_addr_t paddr = oba->oba_paddr;
334
335 /*
336 * As for zs on mainbus, we require a PROM mapping.
337 */
338 if (bus_space_map(oba->oba_bustag,
339 paddr,
340 sizeof(struct zsdevice),
341 BUS_SPACE_MAP_LINEAR | OBIO_BUS_MAP_USE_ROM,
342 &bh) != 0) {
343 printf(" cannot map zs registers\n");
344 return;
345 }
346 zsc->zsc_bustag = oba->oba_bustag;
347 zsc->zsc_dmatag = oba->oba_dmatag;
348 /*
349 * Find prom unit by physical address
350 * We're just comparing the address (not the iospace) here
351 */
352 paddr = BUS_ADDR_PADDR(paddr);
353 if (cpuinfo.cpu_type == CPUTYP_4_100)
354 /*
355 * On the sun4/100, the top-most 4 bits are zero
356 * on obio addresses; force them to 1's for the
357 * sake of the comparison here.
358 */
359 paddr |= 0xf0000000;
360 zsc->zsc_promunit =
361 (paddr == 0xf1000000) ? 0 :
362 (paddr == 0xf0000000) ? 1 :
363 (paddr == 0xe0000000) ? 2 : -2;
364
365 zs_attach(zsc, (void *)bh, oba->oba_pri);
366 }
367 }
368
369 #if defined(SUN4D)
370 static void
371 zs_attach_bootbus(parent, self, aux)
372 struct device *parent;
373 struct device *self;
374 void *aux;
375 {
376 struct zsc_softc *zsc = (void *) self;
377 struct bootbus_attach_args *baa = aux;
378 void *va;
379
380 if (baa->ba_nintr == 0) {
381 printf(": no interrupt lines\n");
382 return;
383 }
384
385 if (baa->ba_npromvaddrs > 0)
386 va = (void *) baa->ba_promvaddrs;
387 else {
388 bus_space_handle_t bh;
389
390 if (bus_space_map(baa->ba_bustag,
391 BUS_ADDR(baa->ba_slot, baa->ba_offset),
392 baa->ba_size, BUS_SPACE_MAP_LINEAR, &bh) != 0) {
393 printf(": cannot map zs registers\n");
394 return;
395 }
396 va = (void *) bh;
397 }
398
399 zsc->zsc_bustag = baa->ba_bustag;
400 zsc->zsc_promunit = PROM_getpropint(baa->ba_node, "slave", -2);
401 zsc->zsc_node = baa->ba_node;
402 zs_attach(zsc, va, baa->ba_intr[0].oi_pri);
403 }
404 #endif /* SUN4D */
405
406 /*
407 * Attach a found zs.
408 *
409 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
410 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
411 */
412 static void
413 zs_attach(zsc, zsd, pri)
414 struct zsc_softc *zsc;
415 struct zsdevice *zsd;
416 int pri;
417 {
418 struct zsc_attach_args zsc_args;
419 struct zs_chanstate *cs;
420 int s, channel;
421 static int didintr, prevpri;
422
423 if (zsd == NULL) {
424 printf("configuration incomplete\n");
425 return;
426 }
427
428 if (!didintr) {
429 zs_sicookie = softintr_establish(IPL_SOFTSERIAL, zssoft, NULL);
430 if (zs_sicookie == NULL) {
431 printf("\n%s: cannot establish soft int handler\n",
432 zsc->zsc_dev.dv_xname);
433 return;
434 }
435 }
436 printf(" softpri %d\n", IPL_SOFTSERIAL);
437
438 /*
439 * Initialize software state for each channel.
440 */
441 for (channel = 0; channel < 2; channel++) {
442 struct zschan *zc;
443
444 zsc_args.channel = channel;
445 cs = &zsc->zsc_cs_store[channel];
446 zsc->zsc_cs[channel] = cs;
447
448 simple_lock_init(&cs->cs_lock);
449 cs->cs_channel = channel;
450 cs->cs_private = NULL;
451 cs->cs_ops = &zsops_null;
452 cs->cs_brg_clk = PCLK / 16;
453
454 zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b;
455
456 zsc_args.hwflags = zs_console_flags(zsc->zsc_promunit,
457 zsc->zsc_node,
458 channel);
459
460 if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) {
461 zsc_args.hwflags |= ZS_HWFLAG_USE_CONSDEV;
462 zsc_args.consdev = &zs_consdev;
463 }
464
465 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
466 zs_conschan_get = zc;
467 }
468 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
469 zs_conschan_put = zc;
470 }
471 /* Childs need to set cn_dev, etc */
472
473 cs->cs_reg_csr = &zc->zc_csr;
474 cs->cs_reg_data = &zc->zc_data;
475
476 bcopy(zs_init_reg, cs->cs_creg, 16);
477 bcopy(zs_init_reg, cs->cs_preg, 16);
478
479 /* XXX: Consult PROM properties for this?! */
480 cs->cs_defspeed = zs_get_speed(cs);
481 cs->cs_defcflag = zs_def_cflag;
482
483 /* Make these correspond to cs_defcflag (-crtscts) */
484 cs->cs_rr0_dcd = ZSRR0_DCD;
485 cs->cs_rr0_cts = 0;
486 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
487 cs->cs_wr5_rts = 0;
488
489 /*
490 * Clear the master interrupt enable.
491 * The INTENA is common to both channels,
492 * so just do it on the A channel.
493 */
494 if (channel == 0) {
495 zs_write_reg(cs, 9, 0);
496 }
497
498 /*
499 * Look for a child driver for this channel.
500 * The child attach will setup the hardware.
501 */
502 if (!config_found(&zsc->zsc_dev, (void *)&zsc_args, zs_print)) {
503 /* No sub-driver. Just reset it. */
504 u_char reset = (channel == 0) ?
505 ZSWR9_A_RESET : ZSWR9_B_RESET;
506 s = splzs();
507 zs_write_reg(cs, 9, reset);
508 splx(s);
509 }
510 }
511
512 /*
513 * Now safe to install interrupt handlers. Note the arguments
514 * to the interrupt handlers aren't used. Note, we only do this
515 * once since both SCCs interrupt at the same level and vector.
516 */
517 if (!didintr) {
518 didintr = 1;
519 prevpri = pri;
520 bus_intr_establish(zsc->zsc_bustag, pri, IPL_SERIAL,
521 zshard, NULL);
522 } else if (pri != prevpri)
523 panic("broken zs interrupt scheme");
524
525 evcnt_attach_dynamic(&zsc->zsc_intrcnt, EVCNT_TYPE_INTR, NULL,
526 zsc->zsc_dev.dv_xname, "intr");
527
528 /*
529 * Set the master interrupt enable and interrupt vector.
530 * (common to both channels, do it on A)
531 */
532 cs = zsc->zsc_cs[0];
533 s = splhigh();
534 /* interrupt vector */
535 zs_write_reg(cs, 2, zs_init_reg[2]);
536 /* master interrupt control (enable) */
537 zs_write_reg(cs, 9, zs_init_reg[9]);
538 splx(s);
539
540 #if 0
541 /*
542 * XXX: L1A hack - We would like to be able to break into
543 * the debugger during the rest of autoconfiguration, so
544 * lower interrupts just enough to let zs interrupts in.
545 * This is done after both zs devices are attached.
546 */
547 if (zsc->zsc_promunit == 1) {
548 printf("zs1: enabling zs interrupts\n");
549 (void)splfd(); /* XXX: splzs - 1 */
550 }
551 #endif
552 }
553
554 static int
555 zs_print(aux, name)
556 void *aux;
557 const char *name;
558 {
559 struct zsc_attach_args *args = aux;
560
561 if (name != NULL)
562 aprint_normal("%s: ", name);
563
564 if (args->channel != -1)
565 aprint_normal(" channel %d", args->channel);
566
567 return (UNCONF);
568 }
569
570 static volatile int zssoftpending;
571
572 /*
573 * Our ZS chips all share a common, autovectored interrupt,
574 * so we have to look at all of them on each interrupt.
575 */
576 static int
577 zshard(arg)
578 void *arg;
579 {
580 struct zsc_softc *zsc;
581 int unit, rr3, rval, softreq;
582
583 rval = softreq = 0;
584 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
585 struct zs_chanstate *cs;
586
587 zsc = zs_cd.cd_devs[unit];
588 if (zsc == NULL)
589 continue;
590 rr3 = zsc_intr_hard(zsc);
591 /* Count up the interrupts. */
592 if (rr3) {
593 rval |= rr3;
594 zsc->zsc_intrcnt.ev_count++;
595 }
596 if ((cs = zsc->zsc_cs[0]) != NULL)
597 softreq |= cs->cs_softreq;
598 if ((cs = zsc->zsc_cs[1]) != NULL)
599 softreq |= cs->cs_softreq;
600 }
601
602 /* We are at splzs here, so no need to lock. */
603 if (softreq && (zssoftpending == 0)) {
604 zssoftpending = 1;
605 softintr_schedule(zs_sicookie);
606 }
607 return (rval);
608 }
609
610 /*
611 * Similar scheme as for zshard (look at all of them)
612 */
613 static void
614 zssoft(arg)
615 void *arg;
616 {
617 struct zsc_softc *zsc;
618 int s, unit;
619
620 /* This is not the only ISR on this IPL. */
621 if (zssoftpending == 0)
622 return;
623
624 /*
625 * The soft intr. bit will be set by zshard only if
626 * the variable zssoftpending is zero. The order of
627 * these next two statements prevents our clearing
628 * the soft intr bit just after zshard has set it.
629 */
630 /* ienab_bic(IE_ZSSOFT); */
631 zssoftpending = 0;
632
633 /* Make sure we call the tty layer at spltty. */
634 s = spltty();
635 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
636 zsc = zs_cd.cd_devs[unit];
637 if (zsc == NULL)
638 continue;
639 (void)zsc_intr_soft(zsc);
640 }
641 splx(s);
642 }
643
644
645 /*
646 * Compute the current baud rate given a ZS channel.
647 */
648 static int
649 zs_get_speed(cs)
650 struct zs_chanstate *cs;
651 {
652 int tconst;
653
654 tconst = zs_read_reg(cs, 12);
655 tconst |= zs_read_reg(cs, 13) << 8;
656 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
657 }
658
659 /*
660 * MD functions for setting the baud rate and control modes.
661 */
662 int
663 zs_set_speed(cs, bps)
664 struct zs_chanstate *cs;
665 int bps; /* bits per second */
666 {
667 int tconst, real_bps;
668
669 if (bps == 0)
670 return (0);
671
672 #ifdef DIAGNOSTIC
673 if (cs->cs_brg_clk == 0)
674 panic("zs_set_speed");
675 #endif
676
677 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
678 if (tconst < 0)
679 return (EINVAL);
680
681 /* Convert back to make sure we can do it. */
682 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
683
684 /* XXX - Allow some tolerance here? */
685 if (real_bps != bps)
686 return (EINVAL);
687
688 cs->cs_preg[12] = tconst;
689 cs->cs_preg[13] = tconst >> 8;
690
691 /* Caller will stuff the pending registers. */
692 return (0);
693 }
694
695 int
696 zs_set_modes(cs, cflag)
697 struct zs_chanstate *cs;
698 int cflag; /* bits per second */
699 {
700 int s;
701
702 /*
703 * Output hardware flow control on the chip is horrendous:
704 * if carrier detect drops, the receiver is disabled, and if
705 * CTS drops, the transmitter is stoped IN MID CHARACTER!
706 * Therefore, NEVER set the HFC bit, and instead use the
707 * status interrupt to detect CTS changes.
708 */
709 s = splzs();
710 cs->cs_rr0_pps = 0;
711 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
712 cs->cs_rr0_dcd = 0;
713 if ((cflag & MDMBUF) == 0)
714 cs->cs_rr0_pps = ZSRR0_DCD;
715 } else
716 cs->cs_rr0_dcd = ZSRR0_DCD;
717 if ((cflag & CRTSCTS) != 0) {
718 cs->cs_wr5_dtr = ZSWR5_DTR;
719 cs->cs_wr5_rts = ZSWR5_RTS;
720 cs->cs_rr0_cts = ZSRR0_CTS;
721 } else if ((cflag & CDTRCTS) != 0) {
722 cs->cs_wr5_dtr = 0;
723 cs->cs_wr5_rts = ZSWR5_DTR;
724 cs->cs_rr0_cts = ZSRR0_CTS;
725 } else if ((cflag & MDMBUF) != 0) {
726 cs->cs_wr5_dtr = 0;
727 cs->cs_wr5_rts = ZSWR5_DTR;
728 cs->cs_rr0_cts = ZSRR0_DCD;
729 } else {
730 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
731 cs->cs_wr5_rts = 0;
732 cs->cs_rr0_cts = 0;
733 }
734 splx(s);
735
736 /* Caller will stuff the pending registers. */
737 return (0);
738 }
739
740
741 /*
742 * Read or write the chip with suitable delays.
743 */
744
745 u_char
746 zs_read_reg(cs, reg)
747 struct zs_chanstate *cs;
748 u_char reg;
749 {
750 u_char val;
751
752 *cs->cs_reg_csr = reg;
753 ZS_DELAY();
754 val = *cs->cs_reg_csr;
755 ZS_DELAY();
756 return (val);
757 }
758
759 void
760 zs_write_reg(cs, reg, val)
761 struct zs_chanstate *cs;
762 u_char reg, val;
763 {
764 *cs->cs_reg_csr = reg;
765 ZS_DELAY();
766 *cs->cs_reg_csr = val;
767 ZS_DELAY();
768 }
769
770 u_char
771 zs_read_csr(cs)
772 struct zs_chanstate *cs;
773 {
774 u_char val;
775
776 val = *cs->cs_reg_csr;
777 ZS_DELAY();
778 return (val);
779 }
780
781 void
782 zs_write_csr(cs, val)
783 struct zs_chanstate *cs;
784 u_char val;
785 {
786 *cs->cs_reg_csr = val;
787 ZS_DELAY();
788 }
789
790 u_char
791 zs_read_data(cs)
792 struct zs_chanstate *cs;
793 {
794 u_char val;
795
796 val = *cs->cs_reg_data;
797 ZS_DELAY();
798 return (val);
799 }
800
801 void zs_write_data(cs, val)
802 struct zs_chanstate *cs;
803 u_char val;
804 {
805 *cs->cs_reg_data = val;
806 ZS_DELAY();
807 }
808
809 /****************************************************************
810 * Console support functions (Sun specific!)
811 * Note: this code is allowed to know about the layout of
812 * the chip registers, and uses that to keep things simple.
813 * XXX - I think I like the mvme167 code better. -gwr
814 ****************************************************************/
815
816 /*
817 * Handle user request to enter kernel debugger.
818 */
819 void
820 zs_abort(cs)
821 struct zs_chanstate *cs;
822 {
823 struct zschan *zc = zs_conschan_get;
824 int rr0;
825
826 /* Wait for end of break to avoid PROM abort. */
827 /* XXX - Limit the wait? */
828 do {
829 rr0 = zc->zc_csr;
830 ZS_DELAY();
831 } while (rr0 & ZSRR0_BREAK);
832
833 #if defined(KGDB)
834 zskgdb(cs);
835 #elif defined(DDB)
836 Debugger();
837 #else
838 printf("stopping on keyboard abort\n");
839 callrom();
840 #endif
841 }
842
843 int zs_getc __P((void *arg));
844 void zs_putc __P((void *arg, int c));
845
846 /*
847 * Polled input char.
848 */
849 int
850 zs_getc(arg)
851 void *arg;
852 {
853 struct zschan *zc = arg;
854 int s, c, rr0;
855 u_int omid;
856
857 /* Temporarily direct interrupts at ourselves */
858 s = splhigh();
859 omid = setitr(cpuinfo.mid);
860
861 /* Wait for a character to arrive. */
862 do {
863 rr0 = zc->zc_csr;
864 ZS_DELAY();
865 } while ((rr0 & ZSRR0_RX_READY) == 0);
866
867 c = zc->zc_data;
868 ZS_DELAY();
869 setitr(omid);
870 splx(s);
871
872 /*
873 * This is used by the kd driver to read scan codes,
874 * so don't translate '\r' ==> '\n' here...
875 */
876 return (c);
877 }
878
879 /*
880 * Polled output char.
881 */
882 void
883 zs_putc(arg, c)
884 void *arg;
885 int c;
886 {
887 struct zschan *zc = arg;
888 int s, rr0;
889 u_int omid;
890
891 /* Temporarily direct interrupts at ourselves */
892 s = splhigh();
893 omid = setitr(cpuinfo.mid);
894
895 /* Wait for transmitter to become ready. */
896 do {
897 rr0 = zc->zc_csr;
898 ZS_DELAY();
899 } while ((rr0 & ZSRR0_TX_READY) == 0);
900
901 /*
902 * Send the next character.
903 * Now you'd think that this could be followed by a ZS_DELAY()
904 * just like all the other chip accesses, but it turns out that
905 * the `transmit-ready' interrupt isn't de-asserted until
906 * some period of time after the register write completes
907 * (more than a couple instructions). So to avoid stray
908 * interrupts we put in the 2us delay regardless of cpu model.
909 */
910 zc->zc_data = c;
911 delay(2);
912
913 setitr(omid);
914 splx(s);
915 }
916
917 /*****************************************************************/
918 /*
919 * Polled console input putchar.
920 */
921 int
922 zscngetc(dev)
923 dev_t dev;
924 {
925 return (zs_getc(zs_conschan_get));
926 }
927
928 /*
929 * Polled console output putchar.
930 */
931 void
932 zscnputc(dev, c)
933 dev_t dev;
934 int c;
935 {
936 zs_putc(zs_conschan_put, c);
937 }
938
939 void
940 zscnpollc(dev, on)
941 dev_t dev;
942 int on;
943 {
944 /* No action needed */
945 }
946
947 int
948 zs_console_flags(promunit, node, channel)
949 int promunit;
950 int node;
951 int channel;
952 {
953 int cookie, flags = 0;
954
955 switch (prom_version()) {
956 case PROM_OLDMON:
957 case PROM_OBP_V0:
958 /*
959 * Use `promunit' and `channel' to derive the PROM
960 * stdio handles that correspond to this device.
961 */
962 if (promunit == 0)
963 cookie = PROMDEV_TTYA + channel;
964 else if (promunit == 1 && channel == 0)
965 cookie = PROMDEV_KBD;
966 else
967 cookie = -1;
968
969 if (cookie == prom_stdin())
970 flags |= ZS_HWFLAG_CONSOLE_INPUT;
971
972 /*
973 * Prevent the keyboard from matching the output device
974 * (note that PROMDEV_KBD == PROMDEV_SCREEN == 0!).
975 */
976 if (cookie != PROMDEV_KBD && cookie == prom_stdout())
977 flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
978
979 break;
980
981 case PROM_OBP_V2:
982 case PROM_OBP_V3:
983 case PROM_OPENFIRM:
984
985 /*
986 * Match the nodes and device arguments prepared by
987 * consinit() against our device node and channel.
988 * (The device argument is the part of the OBP path
989 * following the colon, as in `/obio/zs@0,100000:a')
990 */
991
992 /* Default to channel 0 if there are no explicit prom args */
993 cookie = 0;
994
995 if (node == prom_stdin_node) {
996 if (prom_stdin_args[0] != '\0')
997 /* Translate (a,b) -> (0,1) */
998 cookie = prom_stdin_args[0] - 'a';
999
1000 if (channel == cookie)
1001 flags |= ZS_HWFLAG_CONSOLE_INPUT;
1002 }
1003
1004 if (node == prom_stdout_node) {
1005 if (prom_stdout_args[0] != '\0')
1006 /* Translate (a,b) -> (0,1) */
1007 cookie = prom_stdout_args[0] - 'a';
1008
1009 if (channel == cookie)
1010 flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
1011 }
1012
1013 break;
1014
1015 default:
1016 break;
1017 }
1018
1019 return (flags);
1020 }
1021
1022 /*
1023 * Power management hooks for zsopen() and zsclose().
1024 * We use them to power on/off the ports, if necessary.
1025 */
1026 int
1027 zs_enable(cs)
1028 struct zs_chanstate *cs;
1029 {
1030 auxiotwoserialendis (ZS_ENABLE);
1031 cs->enabled = 1;
1032 return(0);
1033 }
1034
1035 void
1036 zs_disable(cs)
1037 struct zs_chanstate *cs;
1038 {
1039 auxiotwoserialendis (ZS_DISABLE);
1040 cs->enabled = 0;
1041 }
1042