zs.c revision 1.97.2.2 1 /* $NetBSD: zs.c,v 1.97.2.2 2004/09/18 14:40:28 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Zilog Z8530 Dual UART driver (machine-dependent part)
41 *
42 * Runs two serial lines per chip using slave drivers.
43 * Plain tty/async lines use the zs_async slave.
44 * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
45 */
46
47 #include <sys/cdefs.h>
48 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.97.2.2 2004/09/18 14:40:28 skrll Exp $");
49
50 #include "opt_ddb.h"
51 #include "opt_kgdb.h"
52 #include "opt_sparc_arch.h"
53
54 #include <sys/param.h>
55 #include <sys/systm.h>
56 #include <sys/conf.h>
57 #include <sys/device.h>
58 #include <sys/file.h>
59 #include <sys/ioctl.h>
60 #include <sys/kernel.h>
61 #include <sys/proc.h>
62 #include <sys/tty.h>
63 #include <sys/time.h>
64 #include <sys/syslog.h>
65
66 #include <machine/bsd_openprom.h>
67 #include <machine/autoconf.h>
68 #include <machine/intr.h>
69 #include <machine/eeprom.h>
70 #include <machine/psl.h>
71 #include <machine/z8530var.h>
72
73 #include <dev/cons.h>
74 #include <dev/ic/z8530reg.h>
75
76 #include <sparc/sparc/vaddrs.h>
77 #include <sparc/sparc/auxreg.h>
78 #include <sparc/sparc/auxiotwo.h>
79 #include <sparc/dev/cons.h>
80
81 /*
82 * Some warts needed by z8530tty.c -
83 * The default parity REALLY needs to be the same as the PROM uses,
84 * or you can not see messages done with printf during boot-up...
85 */
86 int zs_def_cflag = (CREAD | CS8 | HUPCL);
87
88 /*
89 * The Sun provides a 4.9152 MHz clock to the ZS chips.
90 */
91 #define PCLK (9600 * 512) /* PCLK pin input clock rate */
92
93 #define ZS_DELAY() (CPU_ISSUN4C ? (0) : delay(2))
94
95 /* The layout of this is hardware-dependent (padding, order). */
96 struct zschan {
97 volatile u_char zc_csr; /* ctrl,status, and indirect access */
98 u_char zc_xxx0;
99 volatile u_char zc_data; /* data */
100 u_char zc_xxx1;
101 };
102 struct zsdevice {
103 /* Yes, they are backwards. */
104 struct zschan zs_chan_b;
105 struct zschan zs_chan_a;
106 };
107
108 /* ZS channel used as the console device (if any) */
109 void *zs_conschan_get, *zs_conschan_put;
110
111 static u_char zs_init_reg[16] = {
112 0, /* 0: CMD (reset, etc.) */
113 0, /* 1: No interrupts yet. */
114 0, /* 2: IVECT */
115 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
116 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
117 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
118 0, /* 6: TXSYNC/SYNCLO */
119 0, /* 7: RXSYNC/SYNCHI */
120 0, /* 8: alias for data port */
121 ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR,
122 0, /*10: Misc. TX/RX control bits */
123 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
124 ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */
125 0, /*13: BAUDHI (default=9600) */
126 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
127 ZSWR15_BREAK_IE,
128 };
129
130 /* Console ops */
131 static int zscngetc __P((dev_t));
132 static void zscnputc __P((dev_t, int));
133 static void zscnpollc __P((dev_t, int));
134
135 struct consdev zs_consdev = {
136 NULL,
137 NULL,
138 zscngetc,
139 zscnputc,
140 zscnpollc,
141 NULL,
142 };
143
144
145 /****************************************************************
146 * Autoconfig
147 ****************************************************************/
148
149 /* Definition of the driver for autoconfig. */
150 static int zs_match_mainbus __P((struct device *, struct cfdata *, void *));
151 static int zs_match_obio __P((struct device *, struct cfdata *, void *));
152 static void zs_attach_mainbus __P((struct device *, struct device *, void *));
153 static void zs_attach_obio __P((struct device *, struct device *, void *));
154
155 #if defined(SUN4D)
156 #include <sparc/dev/bootbusvar.h>
157
158 static int zs_match_bootbus __P((struct device *, struct cfdata *, void *));
159 static void zs_attach_bootbus __P((struct device *, struct device *, void *));
160
161 CFATTACH_DECL(zs_bootbus, sizeof(struct zsc_softc),
162 zs_match_bootbus, zs_attach_bootbus, NULL, NULL);
163 #endif /* SUN4D */
164
165 static void zs_attach __P((struct zsc_softc *, struct zsdevice *, int));
166 static int zs_print __P((void *, const char *name));
167
168 CFATTACH_DECL(zs_mainbus, sizeof(struct zsc_softc),
169 zs_match_mainbus, zs_attach_mainbus, NULL, NULL);
170
171 CFATTACH_DECL(zs_obio, sizeof(struct zsc_softc),
172 zs_match_obio, zs_attach_obio, NULL, NULL);
173
174 extern struct cfdriver zs_cd;
175
176 /* softintr(9) cookie, shared by all instances of this driver */
177 static void *zs_sicookie;
178
179 /* Interrupt handlers. */
180 static int zshard __P((void *));
181 static void zssoft __P((void *));
182
183 static int zs_get_speed __P((struct zs_chanstate *));
184
185 /* Console device support */
186 static int zs_console_flags __P((int, int, int));
187
188 /* Power management hooks */
189 int zs_enable __P((struct zs_chanstate *));
190 void zs_disable __P((struct zs_chanstate *));
191
192
193 /*
194 * Is the zs chip present?
195 */
196 static int
197 zs_match_mainbus(parent, cf, aux)
198 struct device *parent;
199 struct cfdata *cf;
200 void *aux;
201 {
202 struct mainbus_attach_args *ma = aux;
203
204 if (strcmp(cf->cf_name, ma->ma_name) != 0)
205 return (0);
206
207 return (1);
208 }
209
210 static int
211 zs_match_obio(parent, cf, aux)
212 struct device *parent;
213 struct cfdata *cf;
214 void *aux;
215 {
216 union obio_attach_args *uoba = aux;
217 struct obio4_attach_args *oba;
218
219 if (uoba->uoba_isobio4 == 0) {
220 struct sbus_attach_args *sa = &uoba->uoba_sbus;
221
222 if (strcmp(cf->cf_name, sa->sa_name) != 0)
223 return (0);
224
225 return (1);
226 }
227
228 oba = &uoba->uoba_oba4;
229 return (bus_space_probe(oba->oba_bustag, oba->oba_paddr,
230 1, 0, 0, NULL, NULL));
231 }
232
233 #if defined(SUN4D)
234 static int
235 zs_match_bootbus(parent, cf, aux)
236 struct device *parent;
237 struct cfdata *cf;
238 void *aux;
239 {
240 struct bootbus_attach_args *baa = aux;
241
242 return (strcmp(cf->cf_name, baa->ba_name) == 0);
243 }
244 #endif /* SUN4D */
245
246 static void
247 zs_attach_mainbus(parent, self, aux)
248 struct device *parent;
249 struct device *self;
250 void *aux;
251 {
252 struct zsc_softc *zsc = (void *) self;
253 struct mainbus_attach_args *ma = aux;
254
255 zsc->zsc_bustag = ma->ma_bustag;
256 zsc->zsc_dmatag = ma->ma_dmatag;
257 zsc->zsc_promunit = prom_getpropint(ma->ma_node, "slave", -2);
258 zsc->zsc_node = ma->ma_node;
259
260 /*
261 * For machines with zs on mainbus (all sun4c models), we expect
262 * the device registers to be mapped by the PROM.
263 */
264 zs_attach(zsc, ma->ma_promvaddr, ma->ma_pri);
265 }
266
267 static void
268 zs_attach_obio(parent, self, aux)
269 struct device *parent;
270 struct device *self;
271 void *aux;
272 {
273 struct zsc_softc *zsc = (void *) self;
274 union obio_attach_args *uoba = aux;
275
276 if (uoba->uoba_isobio4 == 0) {
277 struct sbus_attach_args *sa = &uoba->uoba_sbus;
278 void *va;
279 struct zs_chanstate *cs;
280 int channel;
281
282 if (sa->sa_nintr == 0) {
283 printf(" no interrupt lines\n");
284 return;
285 }
286
287 /*
288 * Some sun4m models (Javastations) may not map the zs device.
289 */
290 if (sa->sa_npromvaddrs > 0)
291 va = (void *)sa->sa_promvaddr;
292 else {
293 bus_space_handle_t bh;
294
295 if (sbus_bus_map(sa->sa_bustag,
296 sa->sa_slot,
297 sa->sa_offset,
298 sa->sa_size,
299 BUS_SPACE_MAP_LINEAR, &bh) != 0) {
300 printf(" cannot map zs registers\n");
301 return;
302 }
303 va = (void *)bh;
304 }
305
306 /*
307 * Check if power state can be set, e.g. Tadpole 3GX
308 */
309 if (prom_getpropint(sa->sa_node, "pwr-on-auxio2", 0))
310 {
311 printf (" powered via auxio2");
312 for (channel = 0; channel < 2; channel++) {
313 cs = &zsc->zsc_cs_store[channel];
314 cs->enable = zs_enable;
315 cs->disable = zs_disable;
316 }
317 }
318
319 zsc->zsc_bustag = sa->sa_bustag;
320 zsc->zsc_dmatag = sa->sa_dmatag;
321 zsc->zsc_promunit = prom_getpropint(sa->sa_node, "slave", -2);
322 zsc->zsc_node = sa->sa_node;
323 zs_attach(zsc, va, sa->sa_pri);
324 } else {
325 struct obio4_attach_args *oba = &uoba->uoba_oba4;
326 bus_space_handle_t bh;
327 bus_addr_t paddr = oba->oba_paddr;
328
329 /*
330 * As for zs on mainbus, we require a PROM mapping.
331 */
332 if (bus_space_map(oba->oba_bustag,
333 paddr,
334 sizeof(struct zsdevice),
335 BUS_SPACE_MAP_LINEAR | OBIO_BUS_MAP_USE_ROM,
336 &bh) != 0) {
337 printf(" cannot map zs registers\n");
338 return;
339 }
340 zsc->zsc_bustag = oba->oba_bustag;
341 zsc->zsc_dmatag = oba->oba_dmatag;
342 /*
343 * Find prom unit by physical address
344 * We're just comparing the address (not the iospace) here
345 */
346 paddr = BUS_ADDR_PADDR(paddr);
347 if (cpuinfo.cpu_type == CPUTYP_4_100)
348 /*
349 * On the sun4/100, the top-most 4 bits are zero
350 * on obio addresses; force them to 1's for the
351 * sake of the comparison here.
352 */
353 paddr |= 0xf0000000;
354 zsc->zsc_promunit =
355 (paddr == 0xf1000000) ? 0 :
356 (paddr == 0xf0000000) ? 1 :
357 (paddr == 0xe0000000) ? 2 : -2;
358
359 zs_attach(zsc, (void *)bh, oba->oba_pri);
360 }
361 }
362
363 #if defined(SUN4D)
364 static void
365 zs_attach_bootbus(parent, self, aux)
366 struct device *parent;
367 struct device *self;
368 void *aux;
369 {
370 struct zsc_softc *zsc = (void *) self;
371 struct bootbus_attach_args *baa = aux;
372 void *va;
373
374 if (baa->ba_nintr == 0) {
375 printf(": no interrupt lines\n");
376 return;
377 }
378
379 if (baa->ba_npromvaddrs > 0)
380 va = (void *) baa->ba_promvaddrs;
381 else {
382 bus_space_handle_t bh;
383
384 if (bus_space_map(baa->ba_bustag,
385 BUS_ADDR(baa->ba_slot, baa->ba_offset),
386 baa->ba_size, BUS_SPACE_MAP_LINEAR, &bh) != 0) {
387 printf(": cannot map zs registers\n");
388 return;
389 }
390 va = (void *) bh;
391 }
392
393 zsc->zsc_bustag = baa->ba_bustag;
394 zsc->zsc_promunit = prom_getpropint(baa->ba_node, "slave", -2);
395 zsc->zsc_node = baa->ba_node;
396 zs_attach(zsc, va, baa->ba_intr[0].oi_pri);
397 }
398 #endif /* SUN4D */
399
400 /*
401 * Attach a found zs.
402 *
403 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
404 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
405 */
406 static void
407 zs_attach(zsc, zsd, pri)
408 struct zsc_softc *zsc;
409 struct zsdevice *zsd;
410 int pri;
411 {
412 struct zsc_attach_args zsc_args;
413 struct zs_chanstate *cs;
414 int s, channel;
415 static int didintr, prevpri;
416
417 if (zsd == NULL) {
418 printf("configuration incomplete\n");
419 return;
420 }
421
422 if (!didintr) {
423 zs_sicookie = softintr_establish(IPL_SOFTSERIAL, zssoft, NULL);
424 if (zs_sicookie == NULL) {
425 printf("\n%s: cannot establish soft int handler\n",
426 zsc->zsc_dev.dv_xname);
427 return;
428 }
429 }
430 printf(" softpri %d\n", IPL_SOFTSERIAL);
431
432 /*
433 * Initialize software state for each channel.
434 */
435 for (channel = 0; channel < 2; channel++) {
436 struct zschan *zc;
437
438 zsc_args.channel = channel;
439 cs = &zsc->zsc_cs_store[channel];
440 zsc->zsc_cs[channel] = cs;
441
442 simple_lock_init(&cs->cs_lock);
443 cs->cs_channel = channel;
444 cs->cs_private = NULL;
445 cs->cs_ops = &zsops_null;
446 cs->cs_brg_clk = PCLK / 16;
447
448 zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b;
449
450 zsc_args.hwflags = zs_console_flags(zsc->zsc_promunit,
451 zsc->zsc_node,
452 channel);
453
454 if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) {
455 zsc_args.hwflags |= ZS_HWFLAG_USE_CONSDEV;
456 zsc_args.consdev = &zs_consdev;
457 }
458
459 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
460 zs_conschan_get = zc;
461 }
462 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
463 zs_conschan_put = zc;
464 }
465 /* Childs need to set cn_dev, etc */
466
467 cs->cs_reg_csr = &zc->zc_csr;
468 cs->cs_reg_data = &zc->zc_data;
469
470 bcopy(zs_init_reg, cs->cs_creg, 16);
471 bcopy(zs_init_reg, cs->cs_preg, 16);
472
473 /* XXX: Consult PROM properties for this?! */
474 cs->cs_defspeed = zs_get_speed(cs);
475 cs->cs_defcflag = zs_def_cflag;
476
477 /* Make these correspond to cs_defcflag (-crtscts) */
478 cs->cs_rr0_dcd = ZSRR0_DCD;
479 cs->cs_rr0_cts = 0;
480 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
481 cs->cs_wr5_rts = 0;
482
483 /*
484 * Clear the master interrupt enable.
485 * The INTENA is common to both channels,
486 * so just do it on the A channel.
487 */
488 if (channel == 0) {
489 zs_write_reg(cs, 9, 0);
490 }
491
492 /*
493 * Look for a child driver for this channel.
494 * The child attach will setup the hardware.
495 */
496 if (!config_found(&zsc->zsc_dev, (void *)&zsc_args, zs_print)) {
497 /* No sub-driver. Just reset it. */
498 u_char reset = (channel == 0) ?
499 ZSWR9_A_RESET : ZSWR9_B_RESET;
500 s = splzs();
501 zs_write_reg(cs, 9, reset);
502 splx(s);
503 }
504 }
505
506 /*
507 * Now safe to install interrupt handlers. Note the arguments
508 * to the interrupt handlers aren't used. Note, we only do this
509 * once since both SCCs interrupt at the same level and vector.
510 */
511 if (!didintr) {
512 didintr = 1;
513 prevpri = pri;
514 bus_intr_establish(zsc->zsc_bustag, pri, IPL_SERIAL,
515 zshard, NULL);
516 } else if (pri != prevpri)
517 panic("broken zs interrupt scheme");
518
519 evcnt_attach_dynamic(&zsc->zsc_intrcnt, EVCNT_TYPE_INTR, NULL,
520 zsc->zsc_dev.dv_xname, "intr");
521
522 /*
523 * Set the master interrupt enable and interrupt vector.
524 * (common to both channels, do it on A)
525 */
526 cs = zsc->zsc_cs[0];
527 s = splhigh();
528 /* interrupt vector */
529 zs_write_reg(cs, 2, zs_init_reg[2]);
530 /* master interrupt control (enable) */
531 zs_write_reg(cs, 9, zs_init_reg[9]);
532 splx(s);
533
534 #if 0
535 /*
536 * XXX: L1A hack - We would like to be able to break into
537 * the debugger during the rest of autoconfiguration, so
538 * lower interrupts just enough to let zs interrupts in.
539 * This is done after both zs devices are attached.
540 */
541 if (zsc->zsc_promunit == 1) {
542 printf("zs1: enabling zs interrupts\n");
543 (void)splfd(); /* XXX: splzs - 1 */
544 }
545 #endif
546 }
547
548 static int
549 zs_print(aux, name)
550 void *aux;
551 const char *name;
552 {
553 struct zsc_attach_args *args = aux;
554
555 if (name != NULL)
556 aprint_normal("%s: ", name);
557
558 if (args->channel != -1)
559 aprint_normal(" channel %d", args->channel);
560
561 return (UNCONF);
562 }
563
564 static volatile int zssoftpending;
565
566 /*
567 * Our ZS chips all share a common, autovectored interrupt,
568 * so we have to look at all of them on each interrupt.
569 */
570 static int
571 zshard(arg)
572 void *arg;
573 {
574 struct zsc_softc *zsc;
575 int unit, rr3, rval, softreq;
576
577 rval = softreq = 0;
578 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
579 struct zs_chanstate *cs;
580
581 zsc = zs_cd.cd_devs[unit];
582 if (zsc == NULL)
583 continue;
584 rr3 = zsc_intr_hard(zsc);
585 /* Count up the interrupts. */
586 if (rr3) {
587 rval |= rr3;
588 zsc->zsc_intrcnt.ev_count++;
589 }
590 if ((cs = zsc->zsc_cs[0]) != NULL)
591 softreq |= cs->cs_softreq;
592 if ((cs = zsc->zsc_cs[1]) != NULL)
593 softreq |= cs->cs_softreq;
594 }
595
596 /* We are at splzs here, so no need to lock. */
597 if (softreq && (zssoftpending == 0)) {
598 zssoftpending = 1;
599 softintr_schedule(zs_sicookie);
600 }
601 return (rval);
602 }
603
604 /*
605 * Similar scheme as for zshard (look at all of them)
606 */
607 static void
608 zssoft(arg)
609 void *arg;
610 {
611 struct zsc_softc *zsc;
612 int s, unit;
613
614 /* This is not the only ISR on this IPL. */
615 if (zssoftpending == 0)
616 return;
617
618 /*
619 * The soft intr. bit will be set by zshard only if
620 * the variable zssoftpending is zero. The order of
621 * these next two statements prevents our clearing
622 * the soft intr bit just after zshard has set it.
623 */
624 /* ienab_bic(IE_ZSSOFT); */
625 zssoftpending = 0;
626
627 /* Make sure we call the tty layer at spltty. */
628 s = spltty();
629 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
630 zsc = zs_cd.cd_devs[unit];
631 if (zsc == NULL)
632 continue;
633 (void)zsc_intr_soft(zsc);
634 }
635 splx(s);
636 }
637
638
639 /*
640 * Compute the current baud rate given a ZS channel.
641 */
642 static int
643 zs_get_speed(cs)
644 struct zs_chanstate *cs;
645 {
646 int tconst;
647
648 tconst = zs_read_reg(cs, 12);
649 tconst |= zs_read_reg(cs, 13) << 8;
650 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
651 }
652
653 /*
654 * MD functions for setting the baud rate and control modes.
655 */
656 int
657 zs_set_speed(cs, bps)
658 struct zs_chanstate *cs;
659 int bps; /* bits per second */
660 {
661 int tconst, real_bps;
662
663 if (bps == 0)
664 return (0);
665
666 #ifdef DIAGNOSTIC
667 if (cs->cs_brg_clk == 0)
668 panic("zs_set_speed");
669 #endif
670
671 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
672 if (tconst < 0)
673 return (EINVAL);
674
675 /* Convert back to make sure we can do it. */
676 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
677
678 /* XXX - Allow some tolerance here? */
679 if (real_bps != bps)
680 return (EINVAL);
681
682 cs->cs_preg[12] = tconst;
683 cs->cs_preg[13] = tconst >> 8;
684
685 /* Caller will stuff the pending registers. */
686 return (0);
687 }
688
689 int
690 zs_set_modes(cs, cflag)
691 struct zs_chanstate *cs;
692 int cflag; /* bits per second */
693 {
694 int s;
695
696 /*
697 * Output hardware flow control on the chip is horrendous:
698 * if carrier detect drops, the receiver is disabled, and if
699 * CTS drops, the transmitter is stoped IN MID CHARACTER!
700 * Therefore, NEVER set the HFC bit, and instead use the
701 * status interrupt to detect CTS changes.
702 */
703 s = splzs();
704 cs->cs_rr0_pps = 0;
705 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
706 cs->cs_rr0_dcd = 0;
707 if ((cflag & MDMBUF) == 0)
708 cs->cs_rr0_pps = ZSRR0_DCD;
709 } else
710 cs->cs_rr0_dcd = ZSRR0_DCD;
711 if ((cflag & CRTSCTS) != 0) {
712 cs->cs_wr5_dtr = ZSWR5_DTR;
713 cs->cs_wr5_rts = ZSWR5_RTS;
714 cs->cs_rr0_cts = ZSRR0_CTS;
715 } else if ((cflag & CDTRCTS) != 0) {
716 cs->cs_wr5_dtr = 0;
717 cs->cs_wr5_rts = ZSWR5_DTR;
718 cs->cs_rr0_cts = ZSRR0_CTS;
719 } else if ((cflag & MDMBUF) != 0) {
720 cs->cs_wr5_dtr = 0;
721 cs->cs_wr5_rts = ZSWR5_DTR;
722 cs->cs_rr0_cts = ZSRR0_DCD;
723 } else {
724 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
725 cs->cs_wr5_rts = 0;
726 cs->cs_rr0_cts = 0;
727 }
728 splx(s);
729
730 /* Caller will stuff the pending registers. */
731 return (0);
732 }
733
734
735 /*
736 * Read or write the chip with suitable delays.
737 */
738
739 u_char
740 zs_read_reg(cs, reg)
741 struct zs_chanstate *cs;
742 u_char reg;
743 {
744 u_char val;
745
746 *cs->cs_reg_csr = reg;
747 ZS_DELAY();
748 val = *cs->cs_reg_csr;
749 ZS_DELAY();
750 return (val);
751 }
752
753 void
754 zs_write_reg(cs, reg, val)
755 struct zs_chanstate *cs;
756 u_char reg, val;
757 {
758 *cs->cs_reg_csr = reg;
759 ZS_DELAY();
760 *cs->cs_reg_csr = val;
761 ZS_DELAY();
762 }
763
764 u_char
765 zs_read_csr(cs)
766 struct zs_chanstate *cs;
767 {
768 u_char val;
769
770 val = *cs->cs_reg_csr;
771 ZS_DELAY();
772 return (val);
773 }
774
775 void
776 zs_write_csr(cs, val)
777 struct zs_chanstate *cs;
778 u_char val;
779 {
780 *cs->cs_reg_csr = val;
781 ZS_DELAY();
782 }
783
784 u_char
785 zs_read_data(cs)
786 struct zs_chanstate *cs;
787 {
788 u_char val;
789
790 val = *cs->cs_reg_data;
791 ZS_DELAY();
792 return (val);
793 }
794
795 void zs_write_data(cs, val)
796 struct zs_chanstate *cs;
797 u_char val;
798 {
799 *cs->cs_reg_data = val;
800 ZS_DELAY();
801 }
802
803 /****************************************************************
804 * Console support functions (Sun specific!)
805 * Note: this code is allowed to know about the layout of
806 * the chip registers, and uses that to keep things simple.
807 * XXX - I think I like the mvme167 code better. -gwr
808 ****************************************************************/
809
810 /*
811 * Handle user request to enter kernel debugger.
812 */
813 void
814 zs_abort(cs)
815 struct zs_chanstate *cs;
816 {
817 struct zschan *zc = zs_conschan_get;
818 int rr0;
819
820 /* Wait for end of break to avoid PROM abort. */
821 /* XXX - Limit the wait? */
822 do {
823 rr0 = zc->zc_csr;
824 ZS_DELAY();
825 } while (rr0 & ZSRR0_BREAK);
826
827 #if defined(KGDB)
828 zskgdb(cs);
829 #elif defined(DDB)
830 Debugger();
831 #else
832 printf("stopping on keyboard abort\n");
833 callrom();
834 #endif
835 }
836
837 int zs_getc __P((void *arg));
838 void zs_putc __P((void *arg, int c));
839
840 /*
841 * Polled input char.
842 */
843 int
844 zs_getc(arg)
845 void *arg;
846 {
847 struct zschan *zc = arg;
848 int s, c, rr0;
849 u_int omid;
850
851 /* Temporarily direct interrupts at ourselves */
852 s = splhigh();
853 omid = setitr(cpuinfo.mid);
854
855 /* Wait for a character to arrive. */
856 do {
857 rr0 = zc->zc_csr;
858 ZS_DELAY();
859 } while ((rr0 & ZSRR0_RX_READY) == 0);
860
861 c = zc->zc_data;
862 ZS_DELAY();
863 setitr(omid);
864 splx(s);
865
866 /*
867 * This is used by the kd driver to read scan codes,
868 * so don't translate '\r' ==> '\n' here...
869 */
870 return (c);
871 }
872
873 /*
874 * Polled output char.
875 */
876 void
877 zs_putc(arg, c)
878 void *arg;
879 int c;
880 {
881 struct zschan *zc = arg;
882 int s, rr0;
883 u_int omid;
884
885 /* Temporarily direct interrupts at ourselves */
886 s = splhigh();
887 omid = setitr(cpuinfo.mid);
888
889 /* Wait for transmitter to become ready. */
890 do {
891 rr0 = zc->zc_csr;
892 ZS_DELAY();
893 } while ((rr0 & ZSRR0_TX_READY) == 0);
894
895 /*
896 * Send the next character.
897 * Now you'd think that this could be followed by a ZS_DELAY()
898 * just like all the other chip accesses, but it turns out that
899 * the `transmit-ready' interrupt isn't de-asserted until
900 * some period of time after the register write completes
901 * (more than a couple instructions). So to avoid stray
902 * interrupts we put in the 2us delay regardless of CPU model.
903 */
904 zc->zc_data = c;
905 delay(2);
906
907 setitr(omid);
908 splx(s);
909 }
910
911 /*****************************************************************/
912 /*
913 * Polled console input putchar.
914 */
915 int
916 zscngetc(dev)
917 dev_t dev;
918 {
919 return (zs_getc(zs_conschan_get));
920 }
921
922 /*
923 * Polled console output putchar.
924 */
925 void
926 zscnputc(dev, c)
927 dev_t dev;
928 int c;
929 {
930 zs_putc(zs_conschan_put, c);
931 }
932
933 void
934 zscnpollc(dev, on)
935 dev_t dev;
936 int on;
937 {
938 /* No action needed */
939 }
940
941 int
942 zs_console_flags(promunit, node, channel)
943 int promunit;
944 int node;
945 int channel;
946 {
947 int cookie, flags = 0;
948
949 switch (prom_version()) {
950 case PROM_OLDMON:
951 case PROM_OBP_V0:
952 /*
953 * Use `promunit' and `channel' to derive the PROM
954 * stdio handles that correspond to this device.
955 */
956 if (promunit == 0)
957 cookie = PROMDEV_TTYA + channel;
958 else if (promunit == 1 && channel == 0)
959 cookie = PROMDEV_KBD;
960 else
961 cookie = -1;
962
963 if (cookie == prom_stdin())
964 flags |= ZS_HWFLAG_CONSOLE_INPUT;
965
966 /*
967 * Prevent the keyboard from matching the output device
968 * (note that PROMDEV_KBD == PROMDEV_SCREEN == 0!).
969 */
970 if (cookie != PROMDEV_KBD && cookie == prom_stdout())
971 flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
972
973 break;
974
975 case PROM_OBP_V2:
976 case PROM_OBP_V3:
977 case PROM_OPENFIRM:
978
979 /*
980 * Match the nodes and device arguments prepared by
981 * consinit() against our device node and channel.
982 * (The device argument is the part of the OBP path
983 * following the colon, as in `/obio/zs@0,100000:a')
984 */
985
986 /* Default to channel 0 if there are no explicit prom args */
987 cookie = 0;
988
989 if (node == prom_stdin_node) {
990 if (prom_stdin_args[0] != '\0')
991 /* Translate (a,b) -> (0,1) */
992 cookie = prom_stdin_args[0] - 'a';
993
994 if (channel == cookie)
995 flags |= ZS_HWFLAG_CONSOLE_INPUT;
996 }
997
998 if (node == prom_stdout_node) {
999 if (prom_stdout_args[0] != '\0')
1000 /* Translate (a,b) -> (0,1) */
1001 cookie = prom_stdout_args[0] - 'a';
1002
1003 if (channel == cookie)
1004 flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
1005 }
1006
1007 break;
1008
1009 default:
1010 break;
1011 }
1012
1013 return (flags);
1014 }
1015
1016 /*
1017 * Power management hooks for zsopen() and zsclose().
1018 * We use them to power on/off the ports, if necessary.
1019 */
1020 int
1021 zs_enable(cs)
1022 struct zs_chanstate *cs;
1023 {
1024 auxiotwoserialendis (ZS_ENABLE);
1025 cs->enabled = 1;
1026 return(0);
1027 }
1028
1029 void
1030 zs_disable(cs)
1031 struct zs_chanstate *cs;
1032 {
1033 auxiotwoserialendis (ZS_DISABLE);
1034 cs->enabled = 0;
1035 }
1036