Home | History | Annotate | Line # | Download | only in fpu
fpu.c revision 1.20
      1 /*	$NetBSD: fpu.c,v 1.20 2003/08/07 16:29:36 agc Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This software was developed by the Computer Systems Engineering group
      8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  * contributed to Berkeley.
     10  *
     11  * All advertising materials mentioning features or use of this software
     12  * must display the following acknowledgement:
     13  *	This product includes software developed by the University of
     14  *	California, Lawrence Berkeley Laboratory.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  * 1. Redistributions of source code must retain the above copyright
     20  *    notice, this list of conditions and the following disclaimer.
     21  * 2. Redistributions in binary form must reproduce the above copyright
     22  *    notice, this list of conditions and the following disclaimer in the
     23  *    documentation and/or other materials provided with the distribution.
     24  * 3. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  *	@(#)fpu.c	8.1 (Berkeley) 6/11/93
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: fpu.c,v 1.20 2003/08/07 16:29:36 agc Exp $");
     45 
     46 #include <sys/param.h>
     47 #include <sys/proc.h>
     48 #include <sys/signal.h>
     49 #include <sys/systm.h>
     50 #include <sys/syslog.h>
     51 #include <sys/signalvar.h>
     52 
     53 #include <machine/instr.h>
     54 #include <machine/reg.h>
     55 
     56 #include <sparc/fpu/fpu_emu.h>
     57 #include <sparc/fpu/fpu_extern.h>
     58 
     59 int fpe_debug = 0;
     60 
     61 #ifdef DEBUG
     62 /*
     63  * Dump a `fpn' structure.
     64  */
     65 void
     66 fpu_dumpfpn(struct fpn *fp)
     67 {
     68 	static char *class[] = {
     69 		"SNAN", "QNAN", "ZERO", "NUM", "INF"
     70 	};
     71 
     72 	printf("%s %c.%x %x %x %xE%d", class[fp->fp_class + 2],
     73 		fp->fp_sign ? '-' : ' ',
     74 		fp->fp_mant[0],	fp->fp_mant[1],
     75 		fp->fp_mant[2], fp->fp_mant[3],
     76 		fp->fp_exp);
     77 }
     78 #endif
     79 
     80 /*
     81  * fpu_execute returns the following error numbers (0 = no error):
     82  */
     83 #define	FPE		1	/* take a floating point exception */
     84 #define	NOTFPU		2	/* not an FPU instruction */
     85 
     86 /*
     87  * Translate current exceptions into `first' exception.  The
     88  * bits go the wrong way for ffs() (0x10 is most important, etc).
     89  * There are only 5, so do it the obvious way.
     90  */
     91 #define	X1(x) x
     92 #define	X2(x) x,x
     93 #define	X4(x) x,x,x,x
     94 #define	X8(x) X4(x),X4(x)
     95 #define	X16(x) X8(x),X8(x)
     96 
     97 static char cx_to_trapx[] = {
     98 	X1(FSR_NX),
     99 	X2(FSR_DZ),
    100 	X4(FSR_UF),
    101 	X8(FSR_OF),
    102 	X16(FSR_NV)
    103 };
    104 static u_char fpu_codes[] = {
    105 	X1(FPE_FLTINEX_TRAP),
    106 	X2(FPE_FLTDIV_TRAP),
    107 	X4(FPE_FLTUND_TRAP),
    108 	X8(FPE_FLTOVF_TRAP),
    109 	X16(FPE_FLTOPERR_TRAP)
    110 };
    111 
    112 /*
    113  * The FPU gave us an exception.  Clean up the mess.  Note that the
    114  * fp queue can only have FPops in it, never load/store FP registers
    115  * nor FBfcc instructions.  Experiments with `crashme' prove that
    116  * unknown FPops do enter the queue, however.
    117  */
    118 void
    119 fpu_cleanup(l, fs)
    120 	register struct lwp *l;
    121 #ifndef SUN4U
    122 	register struct fpstate *fs;
    123 #else /* SUN4U */
    124 	register struct fpstate64 *fs;
    125 #endif /* SUN4U */
    126 {
    127 	register int i, fsr = fs->fs_fsr, error;
    128 	struct proc *p = l->l_proc;
    129 	union instr instr;
    130 	struct fpemu fe;
    131 
    132 	switch ((fsr >> FSR_FTT_SHIFT) & FSR_FTT_MASK) {
    133 
    134 	case FSR_TT_NONE:
    135 		panic("fpu_cleanup: No fault");	/* ??? */
    136 		break;
    137 
    138 	case FSR_TT_IEEE:
    139 		DPRINTF(FPE_INSN, ("fpu_cleanup: FSR_TT_IEEE\n"));
    140 		/* XXX missing trap address! */
    141 		if ((i = fsr & FSR_CX) == 0)
    142 			panic("fpu ieee trap, but no exception");
    143 		KERNEL_PROC_LOCK(l);
    144 		trapsignal(l, SIGFPE, fpu_codes[i - 1]);
    145 		KERNEL_PROC_UNLOCK(l);
    146 		break;		/* XXX should return, but queue remains */
    147 
    148 	case FSR_TT_UNFIN:
    149 		DPRINTF(FPE_INSN, ("fpu_cleanup: FSR_TT_UNFIN\n"));
    150 #ifdef SUN4U
    151 		if (fs->fs_qsize == 0) {
    152 			printf("fpu_cleanup: unfinished fpop");
    153 			/* The book sez reexecute or emulate. */
    154 			return;
    155 		}
    156 		break;
    157 
    158 #endif /* SUN4U */
    159 	case FSR_TT_UNIMP:
    160 		DPRINTF(FPE_INSN, ("fpu_cleanup: FSR_TT_UNIMP\n"));
    161 		if (fs->fs_qsize == 0)
    162 			panic("fpu_cleanup: unimplemented fpop");
    163 		break;
    164 
    165 	case FSR_TT_SEQ:
    166 		panic("fpu sequence error");
    167 		/* NOTREACHED */
    168 
    169 	case FSR_TT_HWERR:
    170 		DPRINTF(FPE_INSN, ("fpu_cleanup: FSR_TT_HWERR\n"));
    171 		log(LOG_ERR, "fpu hardware error (%s[%d])\n",
    172 		    p->p_comm, p->p_pid);
    173 		uprintf("%s[%d]: fpu hardware error\n", p->p_comm, p->p_pid);
    174 		KERNEL_PROC_LOCK(l);
    175 		trapsignal(l, SIGFPE, -1);	/* ??? */
    176 		KERNEL_PROC_UNLOCK(l);
    177 		goto out;
    178 
    179 	default:
    180 		printf("fsr=0x%x\n", fsr);
    181 		panic("fpu error");
    182 	}
    183 
    184 	/* emulate the instructions left in the queue */
    185 	fe.fe_fpstate = fs;
    186 	for (i = 0; i < fs->fs_qsize; i++) {
    187 		instr.i_int = fs->fs_queue[i].fq_instr;
    188 		if (instr.i_any.i_op != IOP_reg ||
    189 		    (instr.i_op3.i_op3 != IOP3_FPop1 &&
    190 		     instr.i_op3.i_op3 != IOP3_FPop2))
    191 			panic("bogus fpu queue");
    192 		error = fpu_execute(&fe, instr);
    193 		if (error == 0)
    194 			continue;
    195 
    196 		KERNEL_PROC_LOCK(l);
    197 		switch (error) {
    198 		case FPE:
    199 			trapsignal(l, SIGFPE,
    200 			    fpu_codes[(fs->fs_fsr & FSR_CX) - 1]);
    201 			break;
    202 
    203 		case NOTFPU:
    204 #ifdef SUN4U
    205 #ifdef DEBUG
    206 			printf("fpu_cleanup: not an FPU error -- sending SIGILL\n");
    207 #endif
    208 #endif /* SUN4U */
    209 			trapsignal(l, SIGILL, 0);	/* ??? code?  */
    210 			break;
    211 
    212 		default:
    213 			panic("fpu_cleanup 3");
    214 			/* NOTREACHED */
    215 		}
    216 		KERNEL_PROC_UNLOCK(l);
    217 		/* XXX should stop here, but queue remains */
    218 	}
    219 out:
    220 	fs->fs_qsize = 0;
    221 }
    222 
    223 #ifdef notyet
    224 /*
    225  * If we have no FPU at all (are there any machines like this out
    226  * there!?) we have to emulate each instruction, and we need a pointer
    227  * to the trapframe so that we can step over them and do FBfcc's.
    228  * We know the `queue' is empty, though; we just want to emulate
    229  * the instruction at tf->tf_pc.
    230  */
    231 fpu_emulate(l, tf, fs)
    232 	struct lwp *l;
    233 	register struct trapframe *tf;
    234 #ifndef SUN4U
    235 	register struct fpstate *fs;
    236 #else /* SUN4U */
    237 	register struct fpstate64 *fs;
    238 #endif /* SUN4U */
    239 {
    240 
    241 	do {
    242 		fetch instr from pc
    243 		decode
    244 		if (integer instr) {
    245 			/*
    246 			 * We do this here, rather than earlier, to avoid
    247 			 * losing even more badly than usual.
    248 			 */
    249 			if (l->l_addr->u_pcb.pcb_uw) {
    250 				write_user_windows();
    251 				if (rwindow_save(l))
    252 					sigexit(l, SIGILL);
    253 			}
    254 			if (loadstore) {
    255 				do_it;
    256 				pc = npc, npc += 4
    257 			} else if (fbfcc) {
    258 				do_annul_stuff;
    259 			} else
    260 				return;
    261 		} else if (fpu instr) {
    262 			fe.fe_fsr = fs->fs_fsr &= ~FSR_CX;
    263 			error = fpu_execute(&fe, fs, instr);
    264 			switch (error) {
    265 				etc;
    266 			}
    267 		} else
    268 			return;
    269 		if (want to reschedule)
    270 			return;
    271 	} while (error == 0);
    272 }
    273 #endif
    274 
    275 /*
    276  * Execute an FPU instruction (one that runs entirely in the FPU; not
    277  * FBfcc or STF, for instance).  On return, fe->fe_fs->fs_fsr will be
    278  * modified to reflect the setting the hardware would have left.
    279  *
    280  * Note that we do not catch all illegal opcodes, so you can, for instance,
    281  * multiply two integers this way.
    282  */
    283 int
    284 fpu_execute(fe, instr)
    285 	register struct fpemu *fe;
    286 	union instr instr;
    287 {
    288 	register struct fpn *fp;
    289 #ifndef SUN4U
    290 	register int opf, rs1, rs2, rd, type, mask, fsr, cx;
    291 	register struct fpstate *fs;
    292 #else /* SUN4U */
    293 	register int opf, rs1, rs2, rd, type, mask, fsr, cx, i, cond;
    294 	register struct fpstate64 *fs;
    295 #endif /* SUN4U */
    296 	u_int space[4];
    297 
    298 	/*
    299 	 * `Decode' and execute instruction.  Start with no exceptions.
    300 	 * The type of any i_opf opcode is in the bottom two bits, so we
    301 	 * squish them out here.
    302 	 */
    303 	opf = instr.i_opf.i_opf;
    304 	/*
    305 	 * The low two bits of the opf field for floating point insns usually
    306 	 * correspond to the operation width:
    307 	 *
    308 	 *	0:	Invalid
    309 	 *	1:	Single precision float
    310 	 *	2:	Double precision float
    311 	 *	3:	Quad precision float
    312 	 *
    313 	 * The exceptions are the integer to float conversion instructions.
    314 	 *
    315 	 * For double and quad precision, the low bit if the rs or rd field
    316 	 * is actually the high bit of the register number.
    317 	 */
    318 
    319 	type = opf & 3;
    320 	mask = 0x3 >> (3 - type);
    321 
    322 	rs1 = instr.i_opf.i_rs1;
    323 	rs1 = (rs1 & ~mask) | ((rs1 & mask & 0x1) << 5);
    324 	rs2 = instr.i_opf.i_rs2;
    325 	rs2 = (rs2 & ~mask) | ((rs2 & mask & 0x1) << 5);
    326 	rd = instr.i_opf.i_rd;
    327 	rd = (rd & ~mask) | ((rd & mask & 0x1) << 5);
    328 #ifdef DIAGNOSTIC
    329 	if ((rs1 | rs2 | rd) & mask)
    330 		/* This may be an FPU insn but it is illegal. */
    331 		return (NOTFPU);
    332 #endif
    333 	fs = fe->fe_fpstate;
    334 	fe->fe_fsr = fs->fs_fsr & ~FSR_CX;
    335 	fe->fe_cx = 0;
    336 #ifdef SUN4U
    337 	/*
    338 	 * Check to see if we're dealing with a fancy cmove and handle
    339 	 * it first.
    340 	 */
    341 	if (instr.i_op3.i_op3 == IOP3_FPop2 && (opf&0xff0) != (FCMP&0xff0)) {
    342 		switch (opf >>= 2) {
    343 		case FMVFC0 >> 2:
    344 			DPRINTF(FPE_INSN, ("fpu_execute: FMVFC0\n"));
    345 			cond = (fs->fs_fsr>>FSR_FCC_SHIFT)&FSR_FCC_MASK;
    346 			if (instr.i_fmovcc.i_cond != cond) return(0); /* success */
    347 			rs1 = fs->fs_regs[rs2];
    348 			goto mov;
    349 		case FMVFC1 >> 2:
    350 			DPRINTF(FPE_INSN, ("fpu_execute: FMVFC1\n"));
    351 			cond = (fs->fs_fsr>>FSR_FCC1_SHIFT)&FSR_FCC_MASK;
    352 			if (instr.i_fmovcc.i_cond != cond) return(0); /* success */
    353 			rs1 = fs->fs_regs[rs2];
    354 			goto mov;
    355 		case FMVFC2 >> 2:
    356 			DPRINTF(FPE_INSN, ("fpu_execute: FMVFC2\n"));
    357 			cond = (fs->fs_fsr>>FSR_FCC2_SHIFT)&FSR_FCC_MASK;
    358 			if (instr.i_fmovcc.i_cond != cond) return(0); /* success */
    359 			rs1 = fs->fs_regs[rs2];
    360 			goto mov;
    361 		case FMVFC3 >> 2:
    362 			DPRINTF(FPE_INSN, ("fpu_execute: FMVFC3\n"));
    363 			cond = (fs->fs_fsr>>FSR_FCC3_SHIFT)&FSR_FCC_MASK;
    364 			if (instr.i_fmovcc.i_cond != cond) return(0); /* success */
    365 			rs1 = fs->fs_regs[rs2];
    366 			goto mov;
    367 		case FMVIC >> 2:
    368 			/* Presume we're curlwp */
    369 			DPRINTF(FPE_INSN, ("fpu_execute: FMVIC\n"));
    370 			cond = (curlwp->l_md.md_tf->tf_tstate>>TSTATE_CCR_SHIFT)&PSR_ICC;
    371 			if (instr.i_fmovcc.i_cond != cond) return(0); /* success */
    372 			rs1 = fs->fs_regs[rs2];
    373 			goto mov;
    374 		case FMVXC >> 2:
    375 			/* Presume we're curlwp */
    376 			DPRINTF(FPE_INSN, ("fpu_execute: FMVXC\n"));
    377 			cond = (curlwp->l_md.md_tf->tf_tstate>>(TSTATE_CCR_SHIFT+XCC_SHIFT))&PSR_ICC;
    378 			if (instr.i_fmovcc.i_cond != cond) return(0); /* success */
    379 			rs1 = fs->fs_regs[rs2];
    380 			goto mov;
    381 		case FMVRZ >> 2:
    382 			/* Presume we're curlwp */
    383 			DPRINTF(FPE_INSN, ("fpu_execute: FMVRZ\n"));
    384 			rs1 = instr.i_fmovr.i_rs1;
    385 			if (rs1 != 0 && (int64_t)curlwp->l_md.md_tf->tf_global[rs1] != 0)
    386 				return (0); /* success */
    387 			rs1 = fs->fs_regs[rs2];
    388 			goto mov;
    389 		case FMVRLEZ >> 2:
    390 			/* Presume we're curlwp */
    391 			DPRINTF(FPE_INSN, ("fpu_execute: FMVRLEZ\n"));
    392 			rs1 = instr.i_fmovr.i_rs1;
    393 			if (rs1 != 0 && (int64_t)curlwp->l_md.md_tf->tf_global[rs1] > 0)
    394 				return (0); /* success */
    395 			rs1 = fs->fs_regs[rs2];
    396 			goto mov;
    397 		case FMVRLZ >> 2:
    398 			/* Presume we're curlwp */
    399 			DPRINTF(FPE_INSN, ("fpu_execute: FMVRLZ\n"));
    400 			rs1 = instr.i_fmovr.i_rs1;
    401 			if (rs1 == 0 || (int64_t)curlwp->l_md.md_tf->tf_global[rs1] >= 0)
    402 				return (0); /* success */
    403 			rs1 = fs->fs_regs[rs2];
    404 			goto mov;
    405 		case FMVRNZ >> 2:
    406 			/* Presume we're curlwp */
    407 			DPRINTF(FPE_INSN, ("fpu_execute: FMVRNZ\n"));
    408 			rs1 = instr.i_fmovr.i_rs1;
    409 			if (rs1 == 0 || (int64_t)curlwp->l_md.md_tf->tf_global[rs1] == 0)
    410 				return (0); /* success */
    411 			rs1 = fs->fs_regs[rs2];
    412 			goto mov;
    413 		case FMVRGZ >> 2:
    414 			/* Presume we're curlwp */
    415 			DPRINTF(FPE_INSN, ("fpu_execute: FMVRGZ\n"));
    416 			rs1 = instr.i_fmovr.i_rs1;
    417 			if (rs1 == 0 || (int64_t)curlwp->l_md.md_tf->tf_global[rs1] <= 0)
    418 				return (0); /* success */
    419 			rs1 = fs->fs_regs[rs2];
    420 			goto mov;
    421 		case FMVRGEZ >> 2:
    422 			/* Presume we're curlwp */
    423 			DPRINTF(FPE_INSN, ("fpu_execute: FMVRGEZ\n"));
    424 			rs1 = instr.i_fmovr.i_rs1;
    425 			if (rs1 != 0 && (int64_t)curlwp->l_md.md_tf->tf_global[rs1] < 0)
    426 				return (0); /* success */
    427 			rs1 = fs->fs_regs[rs2];
    428 			goto mov;
    429 		default:
    430 			DPRINTF(FPE_INSN,
    431 				("fpu_execute: unknown v9 FP inst %x opf %x\n",
    432 					instr.i_int, opf));
    433 			return (NOTFPU);
    434 		}
    435 	}
    436 #endif /* SUN4U */
    437 	switch (opf >>= 2) {
    438 
    439 	default:
    440 		DPRINTF(FPE_INSN,
    441 			("fpu_execute: unknown basic FP inst %x opf %x\n",
    442 				instr.i_int, opf));
    443 		return (NOTFPU);
    444 
    445 	case FMOV >> 2:		/* these should all be pretty obvious */
    446 		DPRINTF(FPE_INSN, ("fpu_execute: FMOV\n"));
    447 		rs1 = fs->fs_regs[rs2];
    448 		goto mov;
    449 
    450 	case FNEG >> 2:
    451 		DPRINTF(FPE_INSN, ("fpu_execute: FNEG\n"));
    452 		rs1 = fs->fs_regs[rs2] ^ (1 << 31);
    453 		goto mov;
    454 
    455 	case FABS >> 2:
    456 		DPRINTF(FPE_INSN, ("fpu_execute: FABS\n"));
    457 		rs1 = fs->fs_regs[rs2] & ~(1 << 31);
    458 	mov:
    459 #ifndef SUN4U
    460 		fs->fs_regs[rd] = rs1;
    461 #else /* SUN4U */
    462 		i = 1<<(type-1);
    463 		fs->fs_regs[rd++] = rs1;
    464 		while (--i > 0)
    465 			fs->fs_regs[rd++] = fs->fs_regs[++rs2];
    466 #endif /* SUN4U */
    467 		fs->fs_fsr = fe->fe_fsr;
    468 		return (0);	/* success */
    469 
    470 	case FSQRT >> 2:
    471 		DPRINTF(FPE_INSN, ("fpu_execute: FSQRT\n"));
    472 		fpu_explode(fe, &fe->fe_f1, type, rs2);
    473 		fp = fpu_sqrt(fe);
    474 		break;
    475 
    476 	case FADD >> 2:
    477 		DPRINTF(FPE_INSN, ("fpu_execute: FADD\n"));
    478 		fpu_explode(fe, &fe->fe_f1, type, rs1);
    479 		fpu_explode(fe, &fe->fe_f2, type, rs2);
    480 		fp = fpu_add(fe);
    481 		break;
    482 
    483 	case FSUB >> 2:
    484 		DPRINTF(FPE_INSN, ("fpu_execute: FSUB\n"));
    485 		fpu_explode(fe, &fe->fe_f1, type, rs1);
    486 		fpu_explode(fe, &fe->fe_f2, type, rs2);
    487 		fp = fpu_sub(fe);
    488 		break;
    489 
    490 	case FMUL >> 2:
    491 		DPRINTF(FPE_INSN, ("fpu_execute: FMUL\n"));
    492 		fpu_explode(fe, &fe->fe_f1, type, rs1);
    493 		fpu_explode(fe, &fe->fe_f2, type, rs2);
    494 		fp = fpu_mul(fe);
    495 		break;
    496 
    497 	case FDIV >> 2:
    498 		DPRINTF(FPE_INSN, ("fpu_execute: FDIV\n"));
    499 		fpu_explode(fe, &fe->fe_f1, type, rs1);
    500 		fpu_explode(fe, &fe->fe_f2, type, rs2);
    501 		fp = fpu_div(fe);
    502 		break;
    503 
    504 	case FCMP >> 2:
    505 		DPRINTF(FPE_INSN, ("fpu_execute: FCMP\n"));
    506 		fpu_explode(fe, &fe->fe_f1, type, rs1);
    507 		fpu_explode(fe, &fe->fe_f2, type, rs2);
    508 		fpu_compare(fe, 0);
    509 		goto cmpdone;
    510 
    511 	case FCMPE >> 2:
    512 		DPRINTF(FPE_INSN, ("fpu_execute: FCMPE\n"));
    513 		fpu_explode(fe, &fe->fe_f1, type, rs1);
    514 		fpu_explode(fe, &fe->fe_f2, type, rs2);
    515 		fpu_compare(fe, 1);
    516 	cmpdone:
    517 		/*
    518 		 * The only possible exception here is NV; catch it
    519 		 * early and get out, as there is no result register.
    520 		 */
    521 		cx = fe->fe_cx;
    522 		fsr = fe->fe_fsr | (cx << FSR_CX_SHIFT);
    523 		if (cx != 0) {
    524 			if (fsr & (FSR_NV << FSR_TEM_SHIFT)) {
    525 				fs->fs_fsr = (fsr & ~FSR_FTT) |
    526 				    (FSR_TT_IEEE << FSR_FTT_SHIFT);
    527 				return (FPE);
    528 			}
    529 			fsr |= FSR_NV << FSR_AX_SHIFT;
    530 		}
    531 		fs->fs_fsr = fsr;
    532 		return (0);
    533 
    534 	case FSMULD >> 2:
    535 	case FDMULX >> 2:
    536 		DPRINTF(FPE_INSN, ("fpu_execute: FSMULx\n"));
    537 		if (type == FTYPE_EXT)
    538 			return (NOTFPU);
    539 		fpu_explode(fe, &fe->fe_f1, type, rs1);
    540 		fpu_explode(fe, &fe->fe_f2, type, rs2);
    541 		type++;	/* single to double, or double to quad */
    542 		fp = fpu_mul(fe);
    543 		break;
    544 
    545 #ifdef SUN4U
    546 	case FXTOS >> 2:
    547 	case FXTOD >> 2:
    548 	case FXTOQ >> 2:
    549 		DPRINTF(FPE_INSN, ("fpu_execute: FXTOx\n"));
    550 		type = FTYPE_LNG;
    551 		fpu_explode(fe, fp = &fe->fe_f1, type, rs2);
    552 		type = opf & 3;	/* sneaky; depends on instruction encoding */
    553 		break;
    554 
    555 	case FTOX >> 2:
    556 		DPRINTF(FPE_INSN, ("fpu_execute: FTOX\n"));
    557 		fpu_explode(fe, fp = &fe->fe_f1, type, rs2);
    558 		type = FTYPE_LNG;
    559 		/* Recalculate destination register */
    560 		rd = instr.i_opf.i_rd;
    561 		break;
    562 
    563 #endif /* SUN4U */
    564 	case FTOI >> 2:
    565 		DPRINTF(FPE_INSN, ("fpu_execute: FTOI\n"));
    566 		fpu_explode(fe, fp = &fe->fe_f1, type, rs2);
    567 		type = FTYPE_INT;
    568 		/* Recalculate destination register */
    569 		rd = instr.i_opf.i_rd;
    570 		break;
    571 
    572 	case FTOS >> 2:
    573 	case FTOD >> 2:
    574 	case FTOQ >> 2:
    575 		DPRINTF(FPE_INSN, ("fpu_execute: FTOx\n"));
    576 		fpu_explode(fe, fp = &fe->fe_f1, type, rs2);
    577 		/* Recalculate rd with correct type info. */
    578 		type = opf & 3;	/* sneaky; depends on instruction encoding */
    579 		mask = 0x3 >> (3 - type);
    580 		rd = instr.i_opf.i_rd;
    581 		rd = (rd & ~mask) | ((rd & mask & 0x1) << 5);
    582 		break;
    583 	}
    584 
    585 	/*
    586 	 * ALU operation is complete.  Collapse the result and then check
    587 	 * for exceptions.  If we got any, and they are enabled, do not
    588 	 * alter the destination register, just stop with an exception.
    589 	 * Otherwise set new current exceptions and accrue.
    590 	 */
    591 	fpu_implode(fe, fp, type, space);
    592 	cx = fe->fe_cx;
    593 	fsr = fe->fe_fsr;
    594 	if (cx != 0) {
    595 		mask = (fsr >> FSR_TEM_SHIFT) & FSR_TEM_MASK;
    596 		if (cx & mask) {
    597 			/* not accrued??? */
    598 			fs->fs_fsr = (fsr & ~FSR_FTT) |
    599 			    (FSR_TT_IEEE << FSR_FTT_SHIFT) |
    600 			    (cx_to_trapx[(cx & mask) - 1] << FSR_CX_SHIFT);
    601 			return (FPE);
    602 		}
    603 		fsr |= (cx << FSR_CX_SHIFT) | (cx << FSR_AX_SHIFT);
    604 	}
    605 	fs->fs_fsr = fsr;
    606 	DPRINTF(FPE_REG, ("-> %c%d\n", (type == FTYPE_LNG) ? 'x' :
    607 		((type == FTYPE_INT) ? 'i' :
    608 			((type == FTYPE_SNG) ? 's' :
    609 				((type == FTYPE_DBL) ? 'd' :
    610 					((type == FTYPE_EXT) ? 'q' : '?')))),
    611 		rd));
    612 	fs->fs_regs[rd] = space[0];
    613 	if (type >= FTYPE_DBL || type == FTYPE_LNG) {
    614 		fs->fs_regs[rd + 1] = space[1];
    615 		if (type > FTYPE_DBL) {
    616 			fs->fs_regs[rd + 2] = space[2];
    617 			fs->fs_regs[rd + 3] = space[3];
    618 		}
    619 	}
    620 	return (0);	/* success */
    621 }
    622