fpu.c revision 1.25 1 /* $NetBSD: fpu.c,v 1.25 2005/11/16 23:24:44 uwe Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * @(#)fpu.c 8.1 (Berkeley) 6/11/93
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: fpu.c,v 1.25 2005/11/16 23:24:44 uwe Exp $");
45
46 #include <sys/param.h>
47 #include <sys/proc.h>
48 #include <sys/signal.h>
49 #include <sys/systm.h>
50 #include <sys/syslog.h>
51 #include <sys/signalvar.h>
52
53 #include <machine/instr.h>
54 #include <machine/reg.h>
55
56 #include <sparc/fpu/fpu_emu.h>
57 #include <sparc/fpu/fpu_extern.h>
58
59 int fpe_debug = 0;
60
61 #ifdef DEBUG
62 /*
63 * Dump a `fpn' structure.
64 */
65 void
66 fpu_dumpfpn(struct fpn *fp)
67 {
68 static const char *class[] = {
69 "SNAN", "QNAN", "ZERO", "NUM", "INF"
70 };
71
72 printf("%s %c.%x %x %x %xE%d", class[fp->fp_class + 2],
73 fp->fp_sign ? '-' : ' ',
74 fp->fp_mant[0], fp->fp_mant[1],
75 fp->fp_mant[2], fp->fp_mant[3],
76 fp->fp_exp);
77 }
78 #endif
79
80 /*
81 * fpu_execute returns the following error numbers (0 = no error):
82 */
83 #define FPE 1 /* take a floating point exception */
84 #define NOTFPU 2 /* not an FPU instruction */
85
86 /*
87 * Translate current exceptions into `first' exception. The
88 * bits go the wrong way for ffs() (0x10 is most important, etc).
89 * There are only 5, so do it the obvious way.
90 */
91 #define X1(x) x
92 #define X2(x) x,x
93 #define X4(x) x,x,x,x
94 #define X8(x) X4(x),X4(x)
95 #define X16(x) X8(x),X8(x)
96
97 static char cx_to_trapx[] = {
98 X1(FSR_NX),
99 X2(FSR_DZ),
100 X4(FSR_UF),
101 X8(FSR_OF),
102 X16(FSR_NV)
103 };
104 static u_char fpu_codes_native[] = {
105 X1(FPE_FLTRES),
106 X2(FPE_FLTDIV),
107 X4(FPE_FLTUND),
108 X8(FPE_FLTOVF),
109 X16(FPE_FLTINV)
110 };
111 #if defined(COMPAT_SUNOS)
112 static u_char fpu_codes_sunos[] = {
113 X1(FPE_FLTINEX_TRAP),
114 X2(FPE_FLTDIV_TRAP),
115 X4(FPE_FLTUND_TRAP),
116 X8(FPE_FLTOVF_TRAP),
117 X16(FPE_FLTOPERR_TRAP)
118 };
119 extern struct emul emul_sunos;
120 #endif /* SUNOS_COMPAT */
121 /* Note: SVR4(Solaris) FPE_* codes happen to be compatible with ours */
122
123 /*
124 * The FPU gave us an exception. Clean up the mess. Note that the
125 * fp queue can only have FPops in it, never load/store FP registers
126 * nor FBfcc instructions. Experiments with `crashme' prove that
127 * unknown FPops do enter the queue, however.
128 */
129 int
130 fpu_cleanup(l, fs)
131 struct lwp *l;
132 #ifndef SUN4U
133 struct fpstate *fs;
134 #else /* SUN4U */
135 struct fpstate64 *fs;
136 #endif /* SUN4U */
137 {
138 int i, fsr = fs->fs_fsr, error;
139 struct proc *p = l->l_proc;
140 union instr instr;
141 struct fpemu fe;
142 u_char *fpu_codes;
143 int code = 0;
144
145 fpu_codes =
146 #ifdef COMPAT_SUNOS
147 (p->p_emul == &emul_sunos) ? fpu_codes_sunos :
148 #endif
149 fpu_codes_native;
150
151 switch ((fsr >> FSR_FTT_SHIFT) & FSR_FTT_MASK) {
152
153 case FSR_TT_NONE:
154 panic("fpu_cleanup: No fault"); /* ??? */
155 break;
156
157 case FSR_TT_IEEE:
158 DPRINTF(FPE_INSN, ("fpu_cleanup: FSR_TT_IEEE\n"));
159 /* XXX missing trap address! */
160 if ((i = fsr & FSR_CX) == 0)
161 panic("fpu ieee trap, but no exception");
162 code = fpu_codes[i - 1];
163 break; /* XXX should return, but queue remains */
164
165 case FSR_TT_UNFIN:
166 DPRINTF(FPE_INSN, ("fpu_cleanup: FSR_TT_UNFIN\n"));
167 #ifdef SUN4U
168 if (fs->fs_qsize == 0) {
169 printf("fpu_cleanup: unfinished fpop");
170 /* The book sez reexecute or emulate. */
171 return (0);
172 }
173 break;
174
175 #endif /* SUN4U */
176 case FSR_TT_UNIMP:
177 DPRINTF(FPE_INSN, ("fpu_cleanup: FSR_TT_UNIMP\n"));
178 if (fs->fs_qsize == 0)
179 panic("fpu_cleanup: unimplemented fpop");
180 break;
181
182 case FSR_TT_SEQ:
183 panic("fpu sequence error");
184 /* NOTREACHED */
185
186 case FSR_TT_HWERR:
187 DPRINTF(FPE_INSN, ("fpu_cleanup: FSR_TT_HWERR\n"));
188 log(LOG_ERR, "fpu hardware error (%s[%d])\n",
189 p->p_comm, p->p_pid);
190 uprintf("%s[%d]: fpu hardware error\n", p->p_comm, p->p_pid);
191 code = SI_NOINFO;
192 goto out;
193
194 default:
195 printf("fsr=0x%x\n", fsr);
196 panic("fpu error");
197 }
198
199 /* emulate the instructions left in the queue */
200 fe.fe_fpstate = fs;
201 for (i = 0; i < fs->fs_qsize; i++) {
202 instr.i_int = fs->fs_queue[i].fq_instr;
203 if (instr.i_any.i_op != IOP_reg ||
204 (instr.i_op3.i_op3 != IOP3_FPop1 &&
205 instr.i_op3.i_op3 != IOP3_FPop2))
206 panic("bogus fpu queue");
207 error = fpu_execute(&fe, instr);
208 if (error == 0)
209 continue;
210
211 switch (error) {
212 case FPE:
213 code = fpu_codes[(fs->fs_fsr & FSR_CX) - 1];
214 break;
215
216 case NOTFPU:
217 #ifdef SUN4U
218 #ifdef DEBUG
219 printf("fpu_cleanup: not an FPU error -- sending SIGILL\n");
220 #endif
221 #endif /* SUN4U */
222 code = SI_NOINFO;
223 break;
224
225 default:
226 panic("fpu_cleanup 3");
227 /* NOTREACHED */
228 }
229 /* XXX should stop here, but queue remains */
230 }
231 out:
232 fs->fs_qsize = 0;
233 return (code);
234 }
235
236 #ifdef notyet
237 /*
238 * If we have no FPU at all (are there any machines like this out
239 * there!?) we have to emulate each instruction, and we need a pointer
240 * to the trapframe so that we can step over them and do FBfcc's.
241 * We know the `queue' is empty, though; we just want to emulate
242 * the instruction at tf->tf_pc.
243 */
244 fpu_emulate(l, tf, fs)
245 struct lwp *l;
246 struct trapframe *tf;
247 #ifndef SUN4U
248 struct fpstate *fs;
249 #else /* SUN4U */
250 struct fpstate64 *fs;
251 #endif /* SUN4U */
252 {
253
254 do {
255 fetch instr from pc
256 decode
257 if (integer instr) {
258 /*
259 * We do this here, rather than earlier, to avoid
260 * losing even more badly than usual.
261 */
262 if (l->l_addr->u_pcb.pcb_uw) {
263 write_user_windows();
264 if (rwindow_save(l))
265 sigexit(l, SIGILL);
266 }
267 if (loadstore) {
268 do_it;
269 pc = npc, npc += 4
270 } else if (fbfcc) {
271 do_annul_stuff;
272 } else
273 return;
274 } else if (fpu instr) {
275 fe.fe_fsr = fs->fs_fsr &= ~FSR_CX;
276 error = fpu_execute(&fe, fs, instr);
277 switch (error) {
278 etc;
279 }
280 } else
281 return;
282 if (want to reschedule)
283 return;
284 } while (error == 0);
285 }
286 #endif
287
288 /*
289 * Execute an FPU instruction (one that runs entirely in the FPU; not
290 * FBfcc or STF, for instance). On return, fe->fe_fs->fs_fsr will be
291 * modified to reflect the setting the hardware would have left.
292 *
293 * Note that we do not catch all illegal opcodes, so you can, for instance,
294 * multiply two integers this way.
295 */
296 int
297 fpu_execute(struct fpemu *fe, union instr instr)
298 {
299 struct fpn *fp;
300 #ifndef SUN4U
301 int opf, rs1, rs2, rd, type, mask, fsr, cx;
302 struct fpstate *fs;
303 #else /* SUN4U */
304 int opf, rs1, rs2, rd, type, mask, fsr, cx, i, cond;
305 struct fpstate64 *fs;
306 #endif /* SUN4U */
307 u_int space[4];
308
309 /*
310 * `Decode' and execute instruction. Start with no exceptions.
311 * The type of any i_opf opcode is in the bottom two bits, so we
312 * squish them out here.
313 */
314 opf = instr.i_opf.i_opf;
315 /*
316 * The low two bits of the opf field for floating point insns usually
317 * correspond to the operation width:
318 *
319 * 0: Invalid
320 * 1: Single precision float
321 * 2: Double precision float
322 * 3: Quad precision float
323 *
324 * The exceptions are the integer to float conversion instructions.
325 *
326 * For double and quad precision, the low bit if the rs or rd field
327 * is actually the high bit of the register number.
328 */
329
330 type = opf & 3;
331 mask = 0x3 >> (3 - type);
332
333 rs1 = instr.i_opf.i_rs1;
334 rs1 = (rs1 & ~mask) | ((rs1 & mask & 0x1) << 5);
335 rs2 = instr.i_opf.i_rs2;
336 rs2 = (rs2 & ~mask) | ((rs2 & mask & 0x1) << 5);
337 rd = instr.i_opf.i_rd;
338 rd = (rd & ~mask) | ((rd & mask & 0x1) << 5);
339 #ifdef DIAGNOSTIC
340 if ((rs1 | rs2 | rd) & mask)
341 /* This may be an FPU insn but it is illegal. */
342 return (NOTFPU);
343 #endif
344 fs = fe->fe_fpstate;
345 fe->fe_fsr = fs->fs_fsr & ~FSR_CX;
346 fe->fe_cx = 0;
347 #ifdef SUN4U
348 /*
349 * Check to see if we're dealing with a fancy cmove and handle
350 * it first.
351 */
352 if (instr.i_op3.i_op3 == IOP3_FPop2 && (opf&0xff0) != (FCMP&0xff0)) {
353 switch (opf >>= 2) {
354 case FMVFC0 >> 2:
355 DPRINTF(FPE_INSN, ("fpu_execute: FMVFC0\n"));
356 cond = (fs->fs_fsr>>FSR_FCC_SHIFT)&FSR_FCC_MASK;
357 if (instr.i_fmovcc.i_cond != cond) return(0); /* success */
358 rs1 = fs->fs_regs[rs2];
359 goto mov;
360 case FMVFC1 >> 2:
361 DPRINTF(FPE_INSN, ("fpu_execute: FMVFC1\n"));
362 cond = (fs->fs_fsr>>FSR_FCC1_SHIFT)&FSR_FCC_MASK;
363 if (instr.i_fmovcc.i_cond != cond) return(0); /* success */
364 rs1 = fs->fs_regs[rs2];
365 goto mov;
366 case FMVFC2 >> 2:
367 DPRINTF(FPE_INSN, ("fpu_execute: FMVFC2\n"));
368 cond = (fs->fs_fsr>>FSR_FCC2_SHIFT)&FSR_FCC_MASK;
369 if (instr.i_fmovcc.i_cond != cond) return(0); /* success */
370 rs1 = fs->fs_regs[rs2];
371 goto mov;
372 case FMVFC3 >> 2:
373 DPRINTF(FPE_INSN, ("fpu_execute: FMVFC3\n"));
374 cond = (fs->fs_fsr>>FSR_FCC3_SHIFT)&FSR_FCC_MASK;
375 if (instr.i_fmovcc.i_cond != cond) return(0); /* success */
376 rs1 = fs->fs_regs[rs2];
377 goto mov;
378 case FMVIC >> 2:
379 /* Presume we're curlwp */
380 DPRINTF(FPE_INSN, ("fpu_execute: FMVIC\n"));
381 cond = (curlwp->l_md.md_tf->tf_tstate>>TSTATE_CCR_SHIFT)&PSR_ICC;
382 if (instr.i_fmovcc.i_cond != cond) return(0); /* success */
383 rs1 = fs->fs_regs[rs2];
384 goto mov;
385 case FMVXC >> 2:
386 /* Presume we're curlwp */
387 DPRINTF(FPE_INSN, ("fpu_execute: FMVXC\n"));
388 cond = (curlwp->l_md.md_tf->tf_tstate>>(TSTATE_CCR_SHIFT+XCC_SHIFT))&PSR_ICC;
389 if (instr.i_fmovcc.i_cond != cond) return(0); /* success */
390 rs1 = fs->fs_regs[rs2];
391 goto mov;
392 case FMVRZ >> 2:
393 /* Presume we're curlwp */
394 DPRINTF(FPE_INSN, ("fpu_execute: FMVRZ\n"));
395 rs1 = instr.i_fmovr.i_rs1;
396 if (rs1 != 0 && (int64_t)curlwp->l_md.md_tf->tf_global[rs1] != 0)
397 return (0); /* success */
398 rs1 = fs->fs_regs[rs2];
399 goto mov;
400 case FMVRLEZ >> 2:
401 /* Presume we're curlwp */
402 DPRINTF(FPE_INSN, ("fpu_execute: FMVRLEZ\n"));
403 rs1 = instr.i_fmovr.i_rs1;
404 if (rs1 != 0 && (int64_t)curlwp->l_md.md_tf->tf_global[rs1] > 0)
405 return (0); /* success */
406 rs1 = fs->fs_regs[rs2];
407 goto mov;
408 case FMVRLZ >> 2:
409 /* Presume we're curlwp */
410 DPRINTF(FPE_INSN, ("fpu_execute: FMVRLZ\n"));
411 rs1 = instr.i_fmovr.i_rs1;
412 if (rs1 == 0 || (int64_t)curlwp->l_md.md_tf->tf_global[rs1] >= 0)
413 return (0); /* success */
414 rs1 = fs->fs_regs[rs2];
415 goto mov;
416 case FMVRNZ >> 2:
417 /* Presume we're curlwp */
418 DPRINTF(FPE_INSN, ("fpu_execute: FMVRNZ\n"));
419 rs1 = instr.i_fmovr.i_rs1;
420 if (rs1 == 0 || (int64_t)curlwp->l_md.md_tf->tf_global[rs1] == 0)
421 return (0); /* success */
422 rs1 = fs->fs_regs[rs2];
423 goto mov;
424 case FMVRGZ >> 2:
425 /* Presume we're curlwp */
426 DPRINTF(FPE_INSN, ("fpu_execute: FMVRGZ\n"));
427 rs1 = instr.i_fmovr.i_rs1;
428 if (rs1 == 0 || (int64_t)curlwp->l_md.md_tf->tf_global[rs1] <= 0)
429 return (0); /* success */
430 rs1 = fs->fs_regs[rs2];
431 goto mov;
432 case FMVRGEZ >> 2:
433 /* Presume we're curlwp */
434 DPRINTF(FPE_INSN, ("fpu_execute: FMVRGEZ\n"));
435 rs1 = instr.i_fmovr.i_rs1;
436 if (rs1 != 0 && (int64_t)curlwp->l_md.md_tf->tf_global[rs1] < 0)
437 return (0); /* success */
438 rs1 = fs->fs_regs[rs2];
439 goto mov;
440 default:
441 DPRINTF(FPE_INSN,
442 ("fpu_execute: unknown v9 FP inst %x opf %x\n",
443 instr.i_int, opf));
444 return (NOTFPU);
445 }
446 }
447 #endif /* SUN4U */
448 switch (opf >>= 2) {
449
450 default:
451 DPRINTF(FPE_INSN,
452 ("fpu_execute: unknown basic FP inst %x opf %x\n",
453 instr.i_int, opf));
454 return (NOTFPU);
455
456 case FMOV >> 2: /* these should all be pretty obvious */
457 DPRINTF(FPE_INSN, ("fpu_execute: FMOV\n"));
458 rs1 = fs->fs_regs[rs2];
459 goto mov;
460
461 case FNEG >> 2:
462 DPRINTF(FPE_INSN, ("fpu_execute: FNEG\n"));
463 rs1 = fs->fs_regs[rs2] ^ (1 << 31);
464 goto mov;
465
466 case FABS >> 2:
467 DPRINTF(FPE_INSN, ("fpu_execute: FABS\n"));
468 rs1 = fs->fs_regs[rs2] & ~(1 << 31);
469 mov:
470 #ifndef SUN4U
471 fs->fs_regs[rd] = rs1;
472 #else /* SUN4U */
473 i = 1<<(type-1);
474 fs->fs_regs[rd++] = rs1;
475 while (--i > 0)
476 fs->fs_regs[rd++] = fs->fs_regs[++rs2];
477 #endif /* SUN4U */
478 fs->fs_fsr = fe->fe_fsr;
479 return (0); /* success */
480
481 case FSQRT >> 2:
482 DPRINTF(FPE_INSN, ("fpu_execute: FSQRT\n"));
483 fpu_explode(fe, &fe->fe_f1, type, rs2);
484 fp = fpu_sqrt(fe);
485 break;
486
487 case FADD >> 2:
488 DPRINTF(FPE_INSN, ("fpu_execute: FADD\n"));
489 fpu_explode(fe, &fe->fe_f1, type, rs1);
490 fpu_explode(fe, &fe->fe_f2, type, rs2);
491 fp = fpu_add(fe);
492 break;
493
494 case FSUB >> 2:
495 DPRINTF(FPE_INSN, ("fpu_execute: FSUB\n"));
496 fpu_explode(fe, &fe->fe_f1, type, rs1);
497 fpu_explode(fe, &fe->fe_f2, type, rs2);
498 fp = fpu_sub(fe);
499 break;
500
501 case FMUL >> 2:
502 DPRINTF(FPE_INSN, ("fpu_execute: FMUL\n"));
503 fpu_explode(fe, &fe->fe_f1, type, rs1);
504 fpu_explode(fe, &fe->fe_f2, type, rs2);
505 fp = fpu_mul(fe);
506 break;
507
508 case FDIV >> 2:
509 DPRINTF(FPE_INSN, ("fpu_execute: FDIV\n"));
510 fpu_explode(fe, &fe->fe_f1, type, rs1);
511 fpu_explode(fe, &fe->fe_f2, type, rs2);
512 fp = fpu_div(fe);
513 break;
514
515 case FCMP >> 2:
516 DPRINTF(FPE_INSN, ("fpu_execute: FCMP\n"));
517 fpu_explode(fe, &fe->fe_f1, type, rs1);
518 fpu_explode(fe, &fe->fe_f2, type, rs2);
519 fpu_compare(fe, 0);
520 goto cmpdone;
521
522 case FCMPE >> 2:
523 DPRINTF(FPE_INSN, ("fpu_execute: FCMPE\n"));
524 fpu_explode(fe, &fe->fe_f1, type, rs1);
525 fpu_explode(fe, &fe->fe_f2, type, rs2);
526 fpu_compare(fe, 1);
527 cmpdone:
528 /*
529 * The only possible exception here is NV; catch it
530 * early and get out, as there is no result register.
531 */
532 cx = fe->fe_cx;
533 fsr = fe->fe_fsr | (cx << FSR_CX_SHIFT);
534 if (cx != 0) {
535 if (fsr & (FSR_NV << FSR_TEM_SHIFT)) {
536 fs->fs_fsr = (fsr & ~FSR_FTT) |
537 (FSR_TT_IEEE << FSR_FTT_SHIFT);
538 return (FPE);
539 }
540 fsr |= FSR_NV << FSR_AX_SHIFT;
541 }
542 fs->fs_fsr = fsr;
543 return (0);
544
545 case FSMULD >> 2:
546 case FDMULX >> 2:
547 DPRINTF(FPE_INSN, ("fpu_execute: FSMULx\n"));
548 if (type == FTYPE_EXT)
549 return (NOTFPU);
550 fpu_explode(fe, &fe->fe_f1, type, rs1);
551 fpu_explode(fe, &fe->fe_f2, type, rs2);
552 type++; /* single to double, or double to quad */
553 fp = fpu_mul(fe);
554 break;
555
556 #ifdef SUN4U
557 case FXTOS >> 2:
558 case FXTOD >> 2:
559 case FXTOQ >> 2:
560 DPRINTF(FPE_INSN, ("fpu_execute: FXTOx\n"));
561 type = FTYPE_LNG;
562 fpu_explode(fe, fp = &fe->fe_f1, type, rs2);
563 type = opf & 3; /* sneaky; depends on instruction encoding */
564 break;
565
566 case FTOX >> 2:
567 DPRINTF(FPE_INSN, ("fpu_execute: FTOX\n"));
568 fpu_explode(fe, fp = &fe->fe_f1, type, rs2);
569 type = FTYPE_LNG;
570 /* Recalculate destination register */
571 rd = instr.i_opf.i_rd;
572 break;
573
574 #endif /* SUN4U */
575 case FTOI >> 2:
576 DPRINTF(FPE_INSN, ("fpu_execute: FTOI\n"));
577 fpu_explode(fe, fp = &fe->fe_f1, type, rs2);
578 type = FTYPE_INT;
579 /* Recalculate destination register */
580 rd = instr.i_opf.i_rd;
581 break;
582
583 case FTOS >> 2:
584 case FTOD >> 2:
585 case FTOQ >> 2:
586 DPRINTF(FPE_INSN, ("fpu_execute: FTOx\n"));
587 fpu_explode(fe, fp = &fe->fe_f1, type, rs2);
588 /* Recalculate rd with correct type info. */
589 type = opf & 3; /* sneaky; depends on instruction encoding */
590 mask = 0x3 >> (3 - type);
591 rd = instr.i_opf.i_rd;
592 rd = (rd & ~mask) | ((rd & mask & 0x1) << 5);
593 break;
594 }
595
596 /*
597 * ALU operation is complete. Collapse the result and then check
598 * for exceptions. If we got any, and they are enabled, do not
599 * alter the destination register, just stop with an exception.
600 * Otherwise set new current exceptions and accrue.
601 */
602 fpu_implode(fe, fp, type, space);
603 cx = fe->fe_cx;
604 fsr = fe->fe_fsr;
605 if (cx != 0) {
606 mask = (fsr >> FSR_TEM_SHIFT) & FSR_TEM_MASK;
607 if (cx & mask) {
608 /* not accrued??? */
609 fs->fs_fsr = (fsr & ~FSR_FTT) |
610 (FSR_TT_IEEE << FSR_FTT_SHIFT) |
611 (cx_to_trapx[(cx & mask) - 1] << FSR_CX_SHIFT);
612 return (FPE);
613 }
614 fsr |= (cx << FSR_CX_SHIFT) | (cx << FSR_AX_SHIFT);
615 }
616 fs->fs_fsr = fsr;
617 DPRINTF(FPE_REG, ("-> %c%d\n", (type == FTYPE_LNG) ? 'x' :
618 ((type == FTYPE_INT) ? 'i' :
619 ((type == FTYPE_SNG) ? 's' :
620 ((type == FTYPE_DBL) ? 'd' :
621 ((type == FTYPE_EXT) ? 'q' : '?')))),
622 rd));
623 fs->fs_regs[rd] = space[0];
624 if (type >= FTYPE_DBL || type == FTYPE_LNG) {
625 fs->fs_regs[rd + 1] = space[1];
626 if (type > FTYPE_DBL) {
627 fs->fs_regs[rd + 2] = space[2];
628 fs->fs_regs[rd + 3] = space[3];
629 }
630 }
631 return (0); /* success */
632 }
633