fpu.c revision 1.7 1 /* $NetBSD: fpu.c,v 1.7 2000/06/18 06:54:17 mrg Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 *
44 * @(#)fpu.c 8.1 (Berkeley) 6/11/93
45 */
46
47 #include <sys/param.h>
48 #include <sys/proc.h>
49 #include <sys/signal.h>
50 #include <sys/systm.h>
51 #include <sys/syslog.h>
52 #include <sys/signalvar.h>
53
54 #include <machine/instr.h>
55 #include <machine/reg.h>
56
57 #include <sparc/fpu/fpu_emu.h>
58 #include <sparc/fpu/fpu_extern.h>
59
60 /*
61 * fpu_execute returns the following error numbers (0 = no error):
62 */
63 #define FPE 1 /* take a floating point exception */
64 #define NOTFPU 2 /* not an FPU instruction */
65
66 /*
67 * Translate current exceptions into `first' exception. The
68 * bits go the wrong way for ffs() (0x10 is most important, etc).
69 * There are only 5, so do it the obvious way.
70 */
71 #define X1(x) x
72 #define X2(x) x,x
73 #define X4(x) x,x,x,x
74 #define X8(x) X4(x),X4(x)
75 #define X16(x) X8(x),X8(x)
76
77 static char cx_to_trapx[] = {
78 X1(FSR_NX),
79 X2(FSR_DZ),
80 X4(FSR_UF),
81 X8(FSR_OF),
82 X16(FSR_NV)
83 };
84 static u_char fpu_codes[] = {
85 X1(FPE_FLTINEX_TRAP),
86 X2(FPE_FLTDIV_TRAP),
87 X4(FPE_FLTUND_TRAP),
88 X8(FPE_FLTOVF_TRAP),
89 X16(FPE_FLTOPERR_TRAP)
90 };
91
92 /*
93 * The FPU gave us an exception. Clean up the mess. Note that the
94 * fp queue can only have FPops in it, never load/store FP registers
95 * nor FBfcc instructions. Experiments with `crashme' prove that
96 * unknown FPops do enter the queue, however.
97 */
98 void
99 fpu_cleanup(p, fs)
100 register struct proc *p;
101 #ifndef SUN4U
102 register struct fpstate *fs;
103 #else /* SUN4U */
104 register struct fpstate64 *fs;
105 #endif /* SUN4U */
106 {
107 register int i, fsr = fs->fs_fsr, error;
108 union instr instr;
109 struct fpemu fe;
110
111 switch ((fsr >> FSR_FTT_SHIFT) & FSR_FTT_MASK) {
112
113 case FSR_TT_NONE:
114 panic("fpu_cleanup: No fault"); /* ??? */
115 break;
116
117 case FSR_TT_IEEE:
118 /* XXX missing trap address! */
119 if ((i = fsr & FSR_CX) == 0)
120 panic("fpu ieee trap, but no exception");
121 trapsignal(p, SIGFPE, fpu_codes[i - 1]);
122 break; /* XXX should return, but queue remains */
123
124 case FSR_TT_UNFIN:
125 #ifdef SUN4U
126 if (fs->fs_qsize == 0) {
127 printf("fpu_cleanup: unfinished fpop");
128 /* The book sez reexecute or emulate. */
129 return;
130 }
131 break;
132
133 #endif /* SUN4U */
134 case FSR_TT_UNIMP:
135 if (fs->fs_qsize == 0)
136 panic("fpu_cleanup: unimplemented fpop");
137 break;
138
139 case FSR_TT_SEQ:
140 panic("fpu sequence error");
141 /* NOTREACHED */
142
143 case FSR_TT_HWERR:
144 log(LOG_ERR, "fpu hardware error (%s[%d])\n",
145 p->p_comm, p->p_pid);
146 uprintf("%s[%d]: fpu hardware error\n", p->p_comm, p->p_pid);
147 trapsignal(p, SIGFPE, -1); /* ??? */
148 goto out;
149
150 default:
151 printf("fsr=0x%x\n", fsr);
152 panic("fpu error");
153 }
154
155 /* emulate the instructions left in the queue */
156 fe.fe_fpstate = fs;
157 for (i = 0; i < fs->fs_qsize; i++) {
158 instr.i_int = fs->fs_queue[i].fq_instr;
159 if (instr.i_any.i_op != IOP_reg ||
160 (instr.i_op3.i_op3 != IOP3_FPop1 &&
161 instr.i_op3.i_op3 != IOP3_FPop2))
162 panic("bogus fpu queue");
163 error = fpu_execute(&fe, instr);
164 switch (error) {
165
166 case 0:
167 continue;
168
169 case FPE:
170 trapsignal(p, SIGFPE,
171 fpu_codes[(fs->fs_fsr & FSR_CX) - 1]);
172 break;
173
174 case NOTFPU:
175 #ifdef SUN4U
176 #ifdef DEBUG
177 printf("fpu_cleanup: not an FPU error -- sending SIGILL\n", p);
178 Debugger();
179 #endif
180 #endif /* SUN4U */
181 trapsignal(p, SIGILL, 0); /* ??? code? */
182 break;
183
184 default:
185 panic("fpu_cleanup 3");
186 /* NOTREACHED */
187 }
188 /* XXX should stop here, but queue remains */
189 }
190 out:
191 fs->fs_qsize = 0;
192 }
193
194 #ifdef notyet
195 /*
196 * If we have no FPU at all (are there any machines like this out
197 * there!?) we have to emulate each instruction, and we need a pointer
198 * to the trapframe so that we can step over them and do FBfcc's.
199 * We know the `queue' is empty, though; we just want to emulate
200 * the instruction at tf->tf_pc.
201 */
202 fpu_emulate(p, tf, fs)
203 struct proc *p;
204 register struct trapframe *tf;
205 #ifndef SUN4U
206 register struct fpstate *fs;
207 #else /* SUN4U */
208 register struct fpstate64 *fs;
209 #endif /* SUN4U */
210 {
211
212 do {
213 fetch instr from pc
214 decode
215 if (integer instr) {
216 /*
217 * We do this here, rather than earlier, to avoid
218 * losing even more badly than usual.
219 */
220 if (p->p_addr->u_pcb.pcb_uw) {
221 write_user_windows();
222 if (rwindow_save(p))
223 sigexit(p, SIGILL);
224 }
225 if (loadstore) {
226 do_it;
227 pc = npc, npc += 4
228 } else if (fbfcc) {
229 do_annul_stuff;
230 } else
231 return;
232 } else if (fpu instr) {
233 fe.fe_fsr = fs->fs_fsr &= ~FSR_CX;
234 error = fpu_execute(&fe, fs, instr);
235 switch (error) {
236 etc;
237 }
238 } else
239 return;
240 if (want to reschedule)
241 return;
242 } while (error == 0);
243 }
244 #endif
245
246 /*
247 * Execute an FPU instruction (one that runs entirely in the FPU; not
248 * FBfcc or STF, for instance). On return, fe->fe_fs->fs_fsr will be
249 * modified to reflect the setting the hardware would have left.
250 *
251 * Note that we do not catch all illegal opcodes, so you can, for instance,
252 * multiply two integers this way.
253 */
254 int
255 fpu_execute(fe, instr)
256 register struct fpemu *fe;
257 union instr instr;
258 {
259 register struct fpn *fp;
260 #ifndef SUN4U
261 register int opf, rs1, rs2, rd, type, mask, fsr, cx;
262 register struct fpstate *fs;
263 #else /* SUN4U */
264 register int opf, rs1, rs2, rd, type, mask, fsr, cx, i, cond;
265 register struct fpstate64 *fs;
266 #endif /* SUN4U */
267 u_int space[4];
268
269 /*
270 * `Decode' and execute instruction. Start with no exceptions.
271 * The type of any i_opf opcode is in the bottom two bits, so we
272 * squish them out here.
273 */
274 opf = instr.i_opf.i_opf;
275 type = opf & 3;
276 mask = "\0\0\1\3"[type];
277 rs1 = instr.i_opf.i_rs1 & ~mask;
278 rs2 = instr.i_opf.i_rs2 & ~mask;
279 rd = instr.i_opf.i_rd & ~mask;
280 #ifdef notdef
281 if ((rs1 | rs2 | rd) & mask)
282 return (BADREG);
283 #endif
284 fs = fe->fe_fpstate;
285 fe->fe_fsr = fs->fs_fsr & ~FSR_CX;
286 fe->fe_cx = 0;
287 #ifdef SUN4U
288 /*
289 * Check to see if we're dealing with a fancy cmove and handle
290 * it first.
291 */
292 if (instr.i_op3.i_op3 == IOP3_FPop2 && (opf&0xff0) != (FCMP&0xff0)) {
293 switch (opf >>= 2) {
294 case FMVFC0 >> 2:
295 cond = (fs->fs_fsr>>FSR_FCC_SHIFT)&FSR_FCC_MASK;
296 if (instr.i_fmovcc.i_cond != cond) return(0); /* success */
297 rs1 = fs->fs_regs[rs2];
298 goto mov;
299 case FMVFC1 >> 2:
300 cond = (fs->fs_fsr>>FSR_FCC1_SHIFT)&FSR_FCC_MASK;
301 if (instr.i_fmovcc.i_cond != cond) return(0); /* success */
302 rs1 = fs->fs_regs[rs2];
303 goto mov;
304 case FMVFC2 >> 2:
305 cond = (fs->fs_fsr>>FSR_FCC2_SHIFT)&FSR_FCC_MASK;
306 if (instr.i_fmovcc.i_cond != cond) return(0); /* success */
307 rs1 = fs->fs_regs[rs2];
308 goto mov;
309 case FMVFC3 >> 2:
310 cond = (fs->fs_fsr>>FSR_FCC3_SHIFT)&FSR_FCC_MASK;
311 if (instr.i_fmovcc.i_cond != cond) return(0); /* success */
312 rs1 = fs->fs_regs[rs2];
313 goto mov;
314 case FMVIC >> 2:
315 /* Presume we're curproc */
316 cond = (curproc->p_md.md_tf->tf_tstate>>TSTATE_CCR_SHIFT)&PSR_ICC;
317 if (instr.i_fmovcc.i_cond != cond) return(0); /* success */
318 rs1 = fs->fs_regs[rs2];
319 goto mov;
320 case FMVXC >> 2:
321 /* Presume we're curproc */
322 cond = (curproc->p_md.md_tf->tf_tstate>>(TSTATE_CCR_SHIFT+XCC_SHIFT))&PSR_ICC;
323 if (instr.i_fmovcc.i_cond != cond) return(0); /* success */
324 rs1 = fs->fs_regs[rs2];
325 goto mov;
326 case FMVRZ >> 2:
327 /* Presume we're curproc */
328 rs1 = instr.i_fmovr.i_rs1;
329 if (rs1 != 0 && (int64_t)curproc->p_md.md_tf->tf_global[rs1] != 0)
330 return (0); /* success */
331 rs1 = fs->fs_regs[rs2];
332 goto mov;
333 case FMVRLEZ >> 2:
334 /* Presume we're curproc */
335 rs1 = instr.i_fmovr.i_rs1;
336 if (rs1 != 0 && (int64_t)curproc->p_md.md_tf->tf_global[rs1] > 0)
337 return (0); /* success */
338 rs1 = fs->fs_regs[rs2];
339 goto mov;
340 case FMVRLZ >> 2:
341 /* Presume we're curproc */
342 rs1 = instr.i_fmovr.i_rs1;
343 if (rs1 == 0 || (int64_t)curproc->p_md.md_tf->tf_global[rs1] >= 0)
344 return (0); /* success */
345 rs1 = fs->fs_regs[rs2];
346 goto mov;
347 case FMVRNZ >> 2:
348 /* Presume we're curproc */
349 rs1 = instr.i_fmovr.i_rs1;
350 if (rs1 == 0 || (int64_t)curproc->p_md.md_tf->tf_global[rs1] == 0)
351 return (0); /* success */
352 rs1 = fs->fs_regs[rs2];
353 goto mov;
354 case FMVRGZ >> 2:
355 /* Presume we're curproc */
356 rs1 = instr.i_fmovr.i_rs1;
357 if (rs1 == 0 || (int64_t)curproc->p_md.md_tf->tf_global[rs1] <= 0)
358 return (0); /* success */
359 rs1 = fs->fs_regs[rs2];
360 goto mov;
361 case FMVRGEZ >> 2:
362 /* Presume we're curproc */
363 rs1 = instr.i_fmovr.i_rs1;
364 if (rs1 != 0 && (int64_t)curproc->p_md.md_tf->tf_global[rs1] < 0)
365 return (0); /* success */
366 rs1 = fs->fs_regs[rs2];
367 goto mov;
368 case FCMP >> 2:
369 fpu_explode(fe, &fe->fe_f1, type, rs1);
370 fpu_explode(fe, &fe->fe_f2, type, rs2);
371 fpu_compare(fe, 0);
372 goto cmpdone;
373
374 case FCMPE >> 2:
375 fpu_explode(fe, &fe->fe_f1, type, rs1);
376 fpu_explode(fe, &fe->fe_f2, type, rs2);
377 fpu_compare(fe, 1);
378 cmpdone:
379 /*
380 * The only possible exception here is NV; catch it
381 * early and get out, as there is no result register.
382 */
383 cx = fe->fe_cx;
384 fsr = fe->fe_fsr | (cx << FSR_CX_SHIFT);
385 if (cx != 0) {
386 if (fsr & (FSR_NV << FSR_TEM_SHIFT)) {
387 fs->fs_fsr = (fsr & ~FSR_FTT) |
388 (FSR_TT_IEEE << FSR_FTT_SHIFT);
389 return (FPE);
390 }
391 fsr |= FSR_NV << FSR_AX_SHIFT;
392 }
393 fs->fs_fsr = fsr;
394 return (0);
395 default:
396 return (NOTFPU);
397 }
398 }
399 #endif /* SUN4U */
400 switch (opf >>= 2) {
401
402 default:
403 return (NOTFPU);
404
405 case FMOV >> 2: /* these should all be pretty obvious */
406 rs1 = fs->fs_regs[rs2];
407 goto mov;
408
409 case FNEG >> 2:
410 rs1 = fs->fs_regs[rs2] ^ (1 << 31);
411 goto mov;
412
413 case FABS >> 2:
414 rs1 = fs->fs_regs[rs2] & ~(1 << 31);
415 mov:
416 #ifndef SUN4U
417 fs->fs_regs[rd] = rs1;
418 #else /* SUN4U */
419 i = 1<<type;
420 fs->fs_regs[rd++] = rs1;
421 while (--i)
422 fs->fs_regs[rd++] = fs->fs_regs[++rs2];
423 #endif /* SUN4U */
424 fs->fs_fsr = fe->fe_fsr;
425 return (0); /* success */
426
427 case FSQRT >> 2:
428 fpu_explode(fe, &fe->fe_f1, type, rs2);
429 fp = fpu_sqrt(fe);
430 break;
431
432 case FADD >> 2:
433 fpu_explode(fe, &fe->fe_f1, type, rs1);
434 fpu_explode(fe, &fe->fe_f2, type, rs2);
435 fp = fpu_add(fe);
436 break;
437
438 case FSUB >> 2:
439 fpu_explode(fe, &fe->fe_f1, type, rs1);
440 fpu_explode(fe, &fe->fe_f2, type, rs2);
441 fp = fpu_sub(fe);
442 break;
443
444 case FMUL >> 2:
445 fpu_explode(fe, &fe->fe_f1, type, rs1);
446 fpu_explode(fe, &fe->fe_f2, type, rs2);
447 fp = fpu_mul(fe);
448 break;
449
450 case FDIV >> 2:
451 fpu_explode(fe, &fe->fe_f1, type, rs1);
452 fpu_explode(fe, &fe->fe_f2, type, rs2);
453 fp = fpu_div(fe);
454 break;
455
456 #ifndef SUN4U
457 case FCMP >> 2:
458 fpu_explode(fe, &fe->fe_f1, type, rs1);
459 fpu_explode(fe, &fe->fe_f2, type, rs2);
460 fpu_compare(fe, 0);
461 goto cmpdone;
462
463 case FCMPE >> 2:
464 fpu_explode(fe, &fe->fe_f1, type, rs1);
465 fpu_explode(fe, &fe->fe_f2, type, rs2);
466 fpu_compare(fe, 1);
467 cmpdone:
468 /*
469 * The only possible exception here is NV; catch it
470 * early and get out, as there is no result register.
471 */
472 cx = fe->fe_cx;
473 fsr = fe->fe_fsr | (cx << FSR_CX_SHIFT);
474 if (cx != 0) {
475 if (fsr & (FSR_NV << FSR_TEM_SHIFT)) {
476 fs->fs_fsr = (fsr & ~FSR_FTT) |
477 (FSR_TT_IEEE << FSR_FTT_SHIFT);
478 return (FPE);
479 }
480 fsr |= FSR_NV << FSR_AX_SHIFT;
481 }
482 fs->fs_fsr = fsr;
483 return (0);
484
485 #endif /* not SUN4U */
486 case FSMULD >> 2:
487 case FDMULX >> 2:
488 if (type == FTYPE_EXT)
489 return (NOTFPU);
490 fpu_explode(fe, &fe->fe_f1, type, rs1);
491 fpu_explode(fe, &fe->fe_f2, type, rs2);
492 type++; /* single to double, or double to quad */
493 fp = fpu_mul(fe);
494 break;
495
496 #ifdef SUN4U
497 case FXTOS >> 2:
498 case FXTOD >> 2:
499 case FXTOQ >> 2:
500 type = FTYPE_LNG;
501 fpu_explode(fe, fp = &fe->fe_f1, type, rs2);
502 type = opf & 3; /* sneaky; depends on instruction encoding */
503 break;
504
505 case FTOX >> 2:
506 fpu_explode(fe, fp = &fe->fe_f1, type, rs2);
507 type = FTYPE_LNG;
508 #endif /* SUN4U */
509
510 case FTOS >> 2:
511 case FTOD >> 2:
512 #ifndef SUN4U
513 case FTOX >> 2:
514 #else /* SUN4U */
515 case FTOQ >> 2:
516 #endif /* SUN4U */
517 case FTOI >> 2:
518 fpu_explode(fe, fp = &fe->fe_f1, type, rs2);
519 type = opf & 3; /* sneaky; depends on instruction encoding */
520 break;
521 }
522
523 /*
524 * ALU operation is complete. Collapse the result and then check
525 * for exceptions. If we got any, and they are enabled, do not
526 * alter the destination register, just stop with an exception.
527 * Otherwise set new current exceptions and accrue.
528 */
529 fpu_implode(fe, fp, type, space);
530 cx = fe->fe_cx;
531 fsr = fe->fe_fsr;
532 if (cx != 0) {
533 mask = (fsr >> FSR_TEM_SHIFT) & FSR_TEM_MASK;
534 if (cx & mask) {
535 /* not accrued??? */
536 fs->fs_fsr = (fsr & ~FSR_FTT) |
537 (FSR_TT_IEEE << FSR_FTT_SHIFT) |
538 (cx_to_trapx[(cx & mask) - 1] << FSR_CX_SHIFT);
539 return (FPE);
540 }
541 fsr |= (cx << FSR_CX_SHIFT) | (cx << FSR_AX_SHIFT);
542 }
543 fs->fs_fsr = fsr;
544 fs->fs_regs[rd] = space[0];
545 #ifndef SUN4U
546 if (type >= FTYPE_DBL) {
547 #else /* SUN4U */
548 if (type >= FTYPE_DBL || type == FTYPE_LNG) {
549 #endif /* SUN4U */
550 fs->fs_regs[rd + 1] = space[1];
551 if (type > FTYPE_DBL) {
552 fs->fs_regs[rd + 2] = space[2];
553 fs->fs_regs[rd + 3] = space[3];
554 }
555 }
556 return (0); /* success */
557 }
558