1 1.6 rin /* $NetBSD: fpu_div.c,v 1.6 2022/08/28 22:09:26 rin Exp $ */ 2 1.2 deraadt 3 1.1 deraadt /* 4 1.1 deraadt * Copyright (c) 1992, 1993 5 1.1 deraadt * The Regents of the University of California. All rights reserved. 6 1.1 deraadt * 7 1.1 deraadt * This software was developed by the Computer Systems Engineering group 8 1.1 deraadt * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 9 1.1 deraadt * contributed to Berkeley. 10 1.1 deraadt * 11 1.1 deraadt * All advertising materials mentioning features or use of this software 12 1.1 deraadt * must display the following acknowledgement: 13 1.1 deraadt * This product includes software developed by the University of 14 1.1 deraadt * California, Lawrence Berkeley Laboratory. 15 1.1 deraadt * 16 1.1 deraadt * Redistribution and use in source and binary forms, with or without 17 1.1 deraadt * modification, are permitted provided that the following conditions 18 1.1 deraadt * are met: 19 1.1 deraadt * 1. Redistributions of source code must retain the above copyright 20 1.1 deraadt * notice, this list of conditions and the following disclaimer. 21 1.1 deraadt * 2. Redistributions in binary form must reproduce the above copyright 22 1.1 deraadt * notice, this list of conditions and the following disclaimer in the 23 1.1 deraadt * documentation and/or other materials provided with the distribution. 24 1.4 agc * 3. Neither the name of the University nor the names of its contributors 25 1.1 deraadt * may be used to endorse or promote products derived from this software 26 1.1 deraadt * without specific prior written permission. 27 1.1 deraadt * 28 1.1 deraadt * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 1.1 deraadt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 1.1 deraadt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 1.1 deraadt * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 1.1 deraadt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 1.1 deraadt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 1.1 deraadt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 1.1 deraadt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 1.1 deraadt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 1.1 deraadt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 1.1 deraadt * SUCH DAMAGE. 39 1.1 deraadt * 40 1.1 deraadt * @(#)fpu_div.c 8.1 (Berkeley) 6/11/93 41 1.1 deraadt */ 42 1.1 deraadt 43 1.1 deraadt /* 44 1.1 deraadt * Perform an FPU divide (return x / y). 45 1.1 deraadt */ 46 1.3 lukem 47 1.3 lukem #include <sys/cdefs.h> 48 1.6 rin __KERNEL_RCSID(0, "$NetBSD: fpu_div.c,v 1.6 2022/08/28 22:09:26 rin Exp $"); 49 1.1 deraadt 50 1.1 deraadt #include <sys/types.h> 51 1.1 deraadt 52 1.1 deraadt #include <machine/reg.h> 53 1.1 deraadt 54 1.1 deraadt #include <sparc/fpu/fpu_arith.h> 55 1.1 deraadt #include <sparc/fpu/fpu_emu.h> 56 1.1 deraadt 57 1.1 deraadt /* 58 1.1 deraadt * Division of normal numbers is done as follows: 59 1.1 deraadt * 60 1.1 deraadt * x and y are floating point numbers, i.e., in the form 1.bbbb * 2^e. 61 1.1 deraadt * If X and Y are the mantissas (1.bbbb's), the quotient is then: 62 1.1 deraadt * 63 1.1 deraadt * q = (X / Y) * 2^((x exponent) - (y exponent)) 64 1.1 deraadt * 65 1.1 deraadt * Since X and Y are both in [1.0,2.0), the quotient's mantissa (X / Y) 66 1.1 deraadt * will be in [0.5,2.0). Moreover, it will be less than 1.0 if and only 67 1.1 deraadt * if X < Y. In that case, it will have to be shifted left one bit to 68 1.1 deraadt * become a normal number, and the exponent decremented. Thus, the 69 1.1 deraadt * desired exponent is: 70 1.1 deraadt * 71 1.1 deraadt * left_shift = x->fp_mant < y->fp_mant; 72 1.1 deraadt * result_exp = x->fp_exp - y->fp_exp - left_shift; 73 1.1 deraadt * 74 1.1 deraadt * The quotient mantissa X/Y can then be computed one bit at a time 75 1.1 deraadt * using the following algorithm: 76 1.1 deraadt * 77 1.1 deraadt * Q = 0; -- Initial quotient. 78 1.1 deraadt * R = X; -- Initial remainder, 79 1.1 deraadt * if (left_shift) -- but fixed up in advance. 80 1.1 deraadt * R *= 2; 81 1.1 deraadt * for (bit = FP_NMANT; --bit >= 0; R *= 2) { 82 1.1 deraadt * if (R >= Y) { 83 1.1 deraadt * Q |= 1 << bit; 84 1.1 deraadt * R -= Y; 85 1.1 deraadt * } 86 1.1 deraadt * } 87 1.1 deraadt * 88 1.1 deraadt * The subtraction R -= Y always removes the uppermost bit from R (and 89 1.1 deraadt * can sometimes remove additional lower-order 1 bits); this proof is 90 1.1 deraadt * left to the reader. 91 1.1 deraadt * 92 1.1 deraadt * This loop correctly calculates the guard and round bits since they are 93 1.1 deraadt * included in the expanded internal representation. The sticky bit 94 1.1 deraadt * is to be set if and only if any other bits beyond guard and round 95 1.1 deraadt * would be set. From the above it is obvious that this is true if and 96 1.1 deraadt * only if the remainder R is nonzero when the loop terminates. 97 1.1 deraadt * 98 1.1 deraadt * Examining the loop above, we can see that the quotient Q is built 99 1.1 deraadt * one bit at a time ``from the top down''. This means that we can 100 1.1 deraadt * dispense with the multi-word arithmetic and just build it one word 101 1.1 deraadt * at a time, writing each result word when it is done. 102 1.1 deraadt * 103 1.1 deraadt * Furthermore, since X and Y are both in [1.0,2.0), we know that, 104 1.1 deraadt * initially, R >= Y. (Recall that, if X < Y, R is set to X * 2 and 105 1.1 deraadt * is therefore at in [2.0,4.0).) Thus Q is sure to have bit FP_NMANT-1 106 1.1 deraadt * set, and R can be set initially to either X - Y (when X >= Y) or 107 1.1 deraadt * 2X - Y (when X < Y). In addition, comparing R and Y is difficult, 108 1.1 deraadt * so we will simply calculate R - Y and see if that underflows. 109 1.1 deraadt * This leads to the following revised version of the algorithm: 110 1.1 deraadt * 111 1.1 deraadt * R = X; 112 1.1 deraadt * bit = FP_1; 113 1.1 deraadt * D = R - Y; 114 1.1 deraadt * if (D >= 0) { 115 1.1 deraadt * result_exp = x->fp_exp - y->fp_exp; 116 1.1 deraadt * R = D; 117 1.1 deraadt * q = bit; 118 1.1 deraadt * bit >>= 1; 119 1.1 deraadt * } else { 120 1.1 deraadt * result_exp = x->fp_exp - y->fp_exp - 1; 121 1.1 deraadt * q = 0; 122 1.1 deraadt * } 123 1.1 deraadt * R <<= 1; 124 1.1 deraadt * do { 125 1.1 deraadt * D = R - Y; 126 1.1 deraadt * if (D >= 0) { 127 1.1 deraadt * q |= bit; 128 1.1 deraadt * R = D; 129 1.1 deraadt * } 130 1.1 deraadt * R <<= 1; 131 1.1 deraadt * } while ((bit >>= 1) != 0); 132 1.1 deraadt * Q[0] = q; 133 1.1 deraadt * for (i = 1; i < 4; i++) { 134 1.1 deraadt * q = 0, bit = 1 << 31; 135 1.1 deraadt * do { 136 1.1 deraadt * D = R - Y; 137 1.1 deraadt * if (D >= 0) { 138 1.1 deraadt * q |= bit; 139 1.1 deraadt * R = D; 140 1.1 deraadt * } 141 1.1 deraadt * R <<= 1; 142 1.1 deraadt * } while ((bit >>= 1) != 0); 143 1.1 deraadt * Q[i] = q; 144 1.1 deraadt * } 145 1.1 deraadt * 146 1.1 deraadt * This can be refined just a bit further by moving the `R <<= 1' 147 1.1 deraadt * calculations to the front of the do-loops and eliding the first one. 148 1.1 deraadt * The process can be terminated immediately whenever R becomes 0, but 149 1.1 deraadt * this is relatively rare, and we do not bother. 150 1.1 deraadt */ 151 1.1 deraadt 152 1.1 deraadt struct fpn * 153 1.5 uwe fpu_div(struct fpemu *fe) 154 1.1 deraadt { 155 1.6 rin struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2; 156 1.6 rin u_int q, bit; 157 1.6 rin u_int r0, r1, r2, r3, d0, d1, d2, d3, y0, y1, y2, y3; 158 1.1 deraadt FPU_DECL_CARRY 159 1.1 deraadt 160 1.1 deraadt /* 161 1.1 deraadt * Since divide is not commutative, we cannot just use ORDER. 162 1.1 deraadt * Check either operand for NaN first; if there is at least one, 163 1.1 deraadt * order the signalling one (if only one) onto the right, then 164 1.1 deraadt * return it. Otherwise we have the following cases: 165 1.1 deraadt * 166 1.1 deraadt * Inf / Inf = NaN, plus NV exception 167 1.1 deraadt * Inf / num = Inf [i.e., return x] 168 1.1 deraadt * Inf / 0 = Inf [i.e., return x] 169 1.1 deraadt * 0 / Inf = 0 [i.e., return x] 170 1.1 deraadt * 0 / num = 0 [i.e., return x] 171 1.1 deraadt * 0 / 0 = NaN, plus NV exception 172 1.1 deraadt * num / Inf = 0 173 1.1 deraadt * num / num = num (do the divide) 174 1.1 deraadt * num / 0 = Inf, plus DZ exception 175 1.1 deraadt */ 176 1.1 deraadt if (ISNAN(x) || ISNAN(y)) { 177 1.1 deraadt ORDER(x, y); 178 1.1 deraadt return (y); 179 1.1 deraadt } 180 1.1 deraadt if (ISINF(x) || ISZERO(x)) { 181 1.1 deraadt if (x->fp_class == y->fp_class) 182 1.1 deraadt return (fpu_newnan(fe)); 183 1.1 deraadt return (x); 184 1.1 deraadt } 185 1.1 deraadt 186 1.1 deraadt /* all results at this point use XOR of operand signs */ 187 1.1 deraadt x->fp_sign ^= y->fp_sign; 188 1.1 deraadt if (ISINF(y)) { 189 1.1 deraadt x->fp_class = FPC_ZERO; 190 1.1 deraadt return (x); 191 1.1 deraadt } 192 1.1 deraadt if (ISZERO(y)) { 193 1.1 deraadt fe->fe_cx = FSR_DZ; 194 1.1 deraadt x->fp_class = FPC_INF; 195 1.1 deraadt return (x); 196 1.1 deraadt } 197 1.1 deraadt 198 1.1 deraadt /* 199 1.1 deraadt * Macros for the divide. See comments at top for algorithm. 200 1.1 deraadt * Note that we expand R, D, and Y here. 201 1.1 deraadt */ 202 1.1 deraadt 203 1.1 deraadt #define SUBTRACT /* D = R - Y */ \ 204 1.1 deraadt FPU_SUBS(d3, r3, y3); FPU_SUBCS(d2, r2, y2); \ 205 1.1 deraadt FPU_SUBCS(d1, r1, y1); FPU_SUBC(d0, r0, y0) 206 1.1 deraadt 207 1.1 deraadt #define NONNEGATIVE /* D >= 0 */ \ 208 1.1 deraadt ((int)d0 >= 0) 209 1.1 deraadt 210 1.1 deraadt #ifdef FPU_SHL1_BY_ADD 211 1.1 deraadt #define SHL1 /* R <<= 1 */ \ 212 1.1 deraadt FPU_ADDS(r3, r3, r3); FPU_ADDCS(r2, r2, r2); \ 213 1.1 deraadt FPU_ADDCS(r1, r1, r1); FPU_ADDC(r0, r0, r0) 214 1.1 deraadt #else 215 1.1 deraadt #define SHL1 \ 216 1.1 deraadt r0 = (r0 << 1) | (r1 >> 31), r1 = (r1 << 1) | (r2 >> 31), \ 217 1.1 deraadt r2 = (r2 << 1) | (r3 >> 31), r3 <<= 1 218 1.1 deraadt #endif 219 1.1 deraadt 220 1.1 deraadt #define LOOP /* do ... while (bit >>= 1) */ \ 221 1.1 deraadt do { \ 222 1.1 deraadt SHL1; \ 223 1.1 deraadt SUBTRACT; \ 224 1.1 deraadt if (NONNEGATIVE) { \ 225 1.1 deraadt q |= bit; \ 226 1.1 deraadt r0 = d0, r1 = d1, r2 = d2, r3 = d3; \ 227 1.1 deraadt } \ 228 1.1 deraadt } while ((bit >>= 1) != 0) 229 1.1 deraadt 230 1.1 deraadt #define WORD(r, i) /* calculate r->fp_mant[i] */ \ 231 1.1 deraadt q = 0; \ 232 1.1 deraadt bit = 1 << 31; \ 233 1.1 deraadt LOOP; \ 234 1.1 deraadt (x)->fp_mant[i] = q 235 1.1 deraadt 236 1.1 deraadt /* Setup. Note that we put our result in x. */ 237 1.1 deraadt r0 = x->fp_mant[0]; 238 1.1 deraadt r1 = x->fp_mant[1]; 239 1.1 deraadt r2 = x->fp_mant[2]; 240 1.1 deraadt r3 = x->fp_mant[3]; 241 1.1 deraadt y0 = y->fp_mant[0]; 242 1.1 deraadt y1 = y->fp_mant[1]; 243 1.1 deraadt y2 = y->fp_mant[2]; 244 1.1 deraadt y3 = y->fp_mant[3]; 245 1.1 deraadt 246 1.1 deraadt bit = FP_1; 247 1.1 deraadt SUBTRACT; 248 1.1 deraadt if (NONNEGATIVE) { 249 1.1 deraadt x->fp_exp -= y->fp_exp; 250 1.1 deraadt r0 = d0, r1 = d1, r2 = d2, r3 = d3; 251 1.1 deraadt q = bit; 252 1.1 deraadt bit >>= 1; 253 1.1 deraadt } else { 254 1.1 deraadt x->fp_exp -= y->fp_exp + 1; 255 1.1 deraadt q = 0; 256 1.1 deraadt } 257 1.1 deraadt LOOP; 258 1.1 deraadt x->fp_mant[0] = q; 259 1.1 deraadt WORD(x, 1); 260 1.1 deraadt WORD(x, 2); 261 1.1 deraadt WORD(x, 3); 262 1.1 deraadt x->fp_sticky = r0 | r1 | r2 | r3; 263 1.1 deraadt 264 1.1 deraadt return (x); 265 1.1 deraadt } 266