fpu_div.c revision 1.1 1 1.1 deraadt /*
2 1.1 deraadt * Copyright (c) 1992, 1993
3 1.1 deraadt * The Regents of the University of California. All rights reserved.
4 1.1 deraadt *
5 1.1 deraadt * This software was developed by the Computer Systems Engineering group
6 1.1 deraadt * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7 1.1 deraadt * contributed to Berkeley.
8 1.1 deraadt *
9 1.1 deraadt * All advertising materials mentioning features or use of this software
10 1.1 deraadt * must display the following acknowledgement:
11 1.1 deraadt * This product includes software developed by the University of
12 1.1 deraadt * California, Lawrence Berkeley Laboratory.
13 1.1 deraadt *
14 1.1 deraadt * Redistribution and use in source and binary forms, with or without
15 1.1 deraadt * modification, are permitted provided that the following conditions
16 1.1 deraadt * are met:
17 1.1 deraadt * 1. Redistributions of source code must retain the above copyright
18 1.1 deraadt * notice, this list of conditions and the following disclaimer.
19 1.1 deraadt * 2. Redistributions in binary form must reproduce the above copyright
20 1.1 deraadt * notice, this list of conditions and the following disclaimer in the
21 1.1 deraadt * documentation and/or other materials provided with the distribution.
22 1.1 deraadt * 3. All advertising materials mentioning features or use of this software
23 1.1 deraadt * must display the following acknowledgement:
24 1.1 deraadt * This product includes software developed by the University of
25 1.1 deraadt * California, Berkeley and its contributors.
26 1.1 deraadt * 4. Neither the name of the University nor the names of its contributors
27 1.1 deraadt * may be used to endorse or promote products derived from this software
28 1.1 deraadt * without specific prior written permission.
29 1.1 deraadt *
30 1.1 deraadt * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 1.1 deraadt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 1.1 deraadt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 1.1 deraadt * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 1.1 deraadt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 1.1 deraadt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 1.1 deraadt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 1.1 deraadt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 1.1 deraadt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 1.1 deraadt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 1.1 deraadt * SUCH DAMAGE.
41 1.1 deraadt *
42 1.1 deraadt * @(#)fpu_div.c 8.1 (Berkeley) 6/11/93
43 1.1 deraadt *
44 1.1 deraadt * from: Header: fpu_div.c,v 1.3 92/11/26 01:39:47 torek Exp
45 1.1 deraadt * $Id: fpu_div.c,v 1.1 1993/10/02 10:22:54 deraadt Exp $
46 1.1 deraadt */
47 1.1 deraadt
48 1.1 deraadt /*
49 1.1 deraadt * Perform an FPU divide (return x / y).
50 1.1 deraadt */
51 1.1 deraadt
52 1.1 deraadt #include <sys/types.h>
53 1.1 deraadt
54 1.1 deraadt #include <machine/reg.h>
55 1.1 deraadt
56 1.1 deraadt #include <sparc/fpu/fpu_arith.h>
57 1.1 deraadt #include <sparc/fpu/fpu_emu.h>
58 1.1 deraadt
59 1.1 deraadt /*
60 1.1 deraadt * Division of normal numbers is done as follows:
61 1.1 deraadt *
62 1.1 deraadt * x and y are floating point numbers, i.e., in the form 1.bbbb * 2^e.
63 1.1 deraadt * If X and Y are the mantissas (1.bbbb's), the quotient is then:
64 1.1 deraadt *
65 1.1 deraadt * q = (X / Y) * 2^((x exponent) - (y exponent))
66 1.1 deraadt *
67 1.1 deraadt * Since X and Y are both in [1.0,2.0), the quotient's mantissa (X / Y)
68 1.1 deraadt * will be in [0.5,2.0). Moreover, it will be less than 1.0 if and only
69 1.1 deraadt * if X < Y. In that case, it will have to be shifted left one bit to
70 1.1 deraadt * become a normal number, and the exponent decremented. Thus, the
71 1.1 deraadt * desired exponent is:
72 1.1 deraadt *
73 1.1 deraadt * left_shift = x->fp_mant < y->fp_mant;
74 1.1 deraadt * result_exp = x->fp_exp - y->fp_exp - left_shift;
75 1.1 deraadt *
76 1.1 deraadt * The quotient mantissa X/Y can then be computed one bit at a time
77 1.1 deraadt * using the following algorithm:
78 1.1 deraadt *
79 1.1 deraadt * Q = 0; -- Initial quotient.
80 1.1 deraadt * R = X; -- Initial remainder,
81 1.1 deraadt * if (left_shift) -- but fixed up in advance.
82 1.1 deraadt * R *= 2;
83 1.1 deraadt * for (bit = FP_NMANT; --bit >= 0; R *= 2) {
84 1.1 deraadt * if (R >= Y) {
85 1.1 deraadt * Q |= 1 << bit;
86 1.1 deraadt * R -= Y;
87 1.1 deraadt * }
88 1.1 deraadt * }
89 1.1 deraadt *
90 1.1 deraadt * The subtraction R -= Y always removes the uppermost bit from R (and
91 1.1 deraadt * can sometimes remove additional lower-order 1 bits); this proof is
92 1.1 deraadt * left to the reader.
93 1.1 deraadt *
94 1.1 deraadt * This loop correctly calculates the guard and round bits since they are
95 1.1 deraadt * included in the expanded internal representation. The sticky bit
96 1.1 deraadt * is to be set if and only if any other bits beyond guard and round
97 1.1 deraadt * would be set. From the above it is obvious that this is true if and
98 1.1 deraadt * only if the remainder R is nonzero when the loop terminates.
99 1.1 deraadt *
100 1.1 deraadt * Examining the loop above, we can see that the quotient Q is built
101 1.1 deraadt * one bit at a time ``from the top down''. This means that we can
102 1.1 deraadt * dispense with the multi-word arithmetic and just build it one word
103 1.1 deraadt * at a time, writing each result word when it is done.
104 1.1 deraadt *
105 1.1 deraadt * Furthermore, since X and Y are both in [1.0,2.0), we know that,
106 1.1 deraadt * initially, R >= Y. (Recall that, if X < Y, R is set to X * 2 and
107 1.1 deraadt * is therefore at in [2.0,4.0).) Thus Q is sure to have bit FP_NMANT-1
108 1.1 deraadt * set, and R can be set initially to either X - Y (when X >= Y) or
109 1.1 deraadt * 2X - Y (when X < Y). In addition, comparing R and Y is difficult,
110 1.1 deraadt * so we will simply calculate R - Y and see if that underflows.
111 1.1 deraadt * This leads to the following revised version of the algorithm:
112 1.1 deraadt *
113 1.1 deraadt * R = X;
114 1.1 deraadt * bit = FP_1;
115 1.1 deraadt * D = R - Y;
116 1.1 deraadt * if (D >= 0) {
117 1.1 deraadt * result_exp = x->fp_exp - y->fp_exp;
118 1.1 deraadt * R = D;
119 1.1 deraadt * q = bit;
120 1.1 deraadt * bit >>= 1;
121 1.1 deraadt * } else {
122 1.1 deraadt * result_exp = x->fp_exp - y->fp_exp - 1;
123 1.1 deraadt * q = 0;
124 1.1 deraadt * }
125 1.1 deraadt * R <<= 1;
126 1.1 deraadt * do {
127 1.1 deraadt * D = R - Y;
128 1.1 deraadt * if (D >= 0) {
129 1.1 deraadt * q |= bit;
130 1.1 deraadt * R = D;
131 1.1 deraadt * }
132 1.1 deraadt * R <<= 1;
133 1.1 deraadt * } while ((bit >>= 1) != 0);
134 1.1 deraadt * Q[0] = q;
135 1.1 deraadt * for (i = 1; i < 4; i++) {
136 1.1 deraadt * q = 0, bit = 1 << 31;
137 1.1 deraadt * do {
138 1.1 deraadt * D = R - Y;
139 1.1 deraadt * if (D >= 0) {
140 1.1 deraadt * q |= bit;
141 1.1 deraadt * R = D;
142 1.1 deraadt * }
143 1.1 deraadt * R <<= 1;
144 1.1 deraadt * } while ((bit >>= 1) != 0);
145 1.1 deraadt * Q[i] = q;
146 1.1 deraadt * }
147 1.1 deraadt *
148 1.1 deraadt * This can be refined just a bit further by moving the `R <<= 1'
149 1.1 deraadt * calculations to the front of the do-loops and eliding the first one.
150 1.1 deraadt * The process can be terminated immediately whenever R becomes 0, but
151 1.1 deraadt * this is relatively rare, and we do not bother.
152 1.1 deraadt */
153 1.1 deraadt
154 1.1 deraadt struct fpn *
155 1.1 deraadt fpu_div(fe)
156 1.1 deraadt register struct fpemu *fe;
157 1.1 deraadt {
158 1.1 deraadt register struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
159 1.1 deraadt register u_int q, bit;
160 1.1 deraadt register u_int r0, r1, r2, r3, d0, d1, d2, d3, y0, y1, y2, y3;
161 1.1 deraadt FPU_DECL_CARRY
162 1.1 deraadt
163 1.1 deraadt /*
164 1.1 deraadt * Since divide is not commutative, we cannot just use ORDER.
165 1.1 deraadt * Check either operand for NaN first; if there is at least one,
166 1.1 deraadt * order the signalling one (if only one) onto the right, then
167 1.1 deraadt * return it. Otherwise we have the following cases:
168 1.1 deraadt *
169 1.1 deraadt * Inf / Inf = NaN, plus NV exception
170 1.1 deraadt * Inf / num = Inf [i.e., return x]
171 1.1 deraadt * Inf / 0 = Inf [i.e., return x]
172 1.1 deraadt * 0 / Inf = 0 [i.e., return x]
173 1.1 deraadt * 0 / num = 0 [i.e., return x]
174 1.1 deraadt * 0 / 0 = NaN, plus NV exception
175 1.1 deraadt * num / Inf = 0
176 1.1 deraadt * num / num = num (do the divide)
177 1.1 deraadt * num / 0 = Inf, plus DZ exception
178 1.1 deraadt */
179 1.1 deraadt if (ISNAN(x) || ISNAN(y)) {
180 1.1 deraadt ORDER(x, y);
181 1.1 deraadt return (y);
182 1.1 deraadt }
183 1.1 deraadt if (ISINF(x) || ISZERO(x)) {
184 1.1 deraadt if (x->fp_class == y->fp_class)
185 1.1 deraadt return (fpu_newnan(fe));
186 1.1 deraadt return (x);
187 1.1 deraadt }
188 1.1 deraadt
189 1.1 deraadt /* all results at this point use XOR of operand signs */
190 1.1 deraadt x->fp_sign ^= y->fp_sign;
191 1.1 deraadt if (ISINF(y)) {
192 1.1 deraadt x->fp_class = FPC_ZERO;
193 1.1 deraadt return (x);
194 1.1 deraadt }
195 1.1 deraadt if (ISZERO(y)) {
196 1.1 deraadt fe->fe_cx = FSR_DZ;
197 1.1 deraadt x->fp_class = FPC_INF;
198 1.1 deraadt return (x);
199 1.1 deraadt }
200 1.1 deraadt
201 1.1 deraadt /*
202 1.1 deraadt * Macros for the divide. See comments at top for algorithm.
203 1.1 deraadt * Note that we expand R, D, and Y here.
204 1.1 deraadt */
205 1.1 deraadt
206 1.1 deraadt #define SUBTRACT /* D = R - Y */ \
207 1.1 deraadt FPU_SUBS(d3, r3, y3); FPU_SUBCS(d2, r2, y2); \
208 1.1 deraadt FPU_SUBCS(d1, r1, y1); FPU_SUBC(d0, r0, y0)
209 1.1 deraadt
210 1.1 deraadt #define NONNEGATIVE /* D >= 0 */ \
211 1.1 deraadt ((int)d0 >= 0)
212 1.1 deraadt
213 1.1 deraadt #ifdef FPU_SHL1_BY_ADD
214 1.1 deraadt #define SHL1 /* R <<= 1 */ \
215 1.1 deraadt FPU_ADDS(r3, r3, r3); FPU_ADDCS(r2, r2, r2); \
216 1.1 deraadt FPU_ADDCS(r1, r1, r1); FPU_ADDC(r0, r0, r0)
217 1.1 deraadt #else
218 1.1 deraadt #define SHL1 \
219 1.1 deraadt r0 = (r0 << 1) | (r1 >> 31), r1 = (r1 << 1) | (r2 >> 31), \
220 1.1 deraadt r2 = (r2 << 1) | (r3 >> 31), r3 <<= 1
221 1.1 deraadt #endif
222 1.1 deraadt
223 1.1 deraadt #define LOOP /* do ... while (bit >>= 1) */ \
224 1.1 deraadt do { \
225 1.1 deraadt SHL1; \
226 1.1 deraadt SUBTRACT; \
227 1.1 deraadt if (NONNEGATIVE) { \
228 1.1 deraadt q |= bit; \
229 1.1 deraadt r0 = d0, r1 = d1, r2 = d2, r3 = d3; \
230 1.1 deraadt } \
231 1.1 deraadt } while ((bit >>= 1) != 0)
232 1.1 deraadt
233 1.1 deraadt #define WORD(r, i) /* calculate r->fp_mant[i] */ \
234 1.1 deraadt q = 0; \
235 1.1 deraadt bit = 1 << 31; \
236 1.1 deraadt LOOP; \
237 1.1 deraadt (x)->fp_mant[i] = q
238 1.1 deraadt
239 1.1 deraadt /* Setup. Note that we put our result in x. */
240 1.1 deraadt r0 = x->fp_mant[0];
241 1.1 deraadt r1 = x->fp_mant[1];
242 1.1 deraadt r2 = x->fp_mant[2];
243 1.1 deraadt r3 = x->fp_mant[3];
244 1.1 deraadt y0 = y->fp_mant[0];
245 1.1 deraadt y1 = y->fp_mant[1];
246 1.1 deraadt y2 = y->fp_mant[2];
247 1.1 deraadt y3 = y->fp_mant[3];
248 1.1 deraadt
249 1.1 deraadt bit = FP_1;
250 1.1 deraadt SUBTRACT;
251 1.1 deraadt if (NONNEGATIVE) {
252 1.1 deraadt x->fp_exp -= y->fp_exp;
253 1.1 deraadt r0 = d0, r1 = d1, r2 = d2, r3 = d3;
254 1.1 deraadt q = bit;
255 1.1 deraadt bit >>= 1;
256 1.1 deraadt } else {
257 1.1 deraadt x->fp_exp -= y->fp_exp + 1;
258 1.1 deraadt q = 0;
259 1.1 deraadt }
260 1.1 deraadt LOOP;
261 1.1 deraadt x->fp_mant[0] = q;
262 1.1 deraadt WORD(x, 1);
263 1.1 deraadt WORD(x, 2);
264 1.1 deraadt WORD(x, 3);
265 1.1 deraadt x->fp_sticky = r0 | r1 | r2 | r3;
266 1.1 deraadt
267 1.1 deraadt return (x);
268 1.1 deraadt }
269