Home | History | Annotate | Line # | Download | only in fpu
fpu_div.c revision 1.1
      1  1.1  deraadt /*
      2  1.1  deraadt  * Copyright (c) 1992, 1993
      3  1.1  deraadt  *	The Regents of the University of California.  All rights reserved.
      4  1.1  deraadt  *
      5  1.1  deraadt  * This software was developed by the Computer Systems Engineering group
      6  1.1  deraadt  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      7  1.1  deraadt  * contributed to Berkeley.
      8  1.1  deraadt  *
      9  1.1  deraadt  * All advertising materials mentioning features or use of this software
     10  1.1  deraadt  * must display the following acknowledgement:
     11  1.1  deraadt  *	This product includes software developed by the University of
     12  1.1  deraadt  *	California, Lawrence Berkeley Laboratory.
     13  1.1  deraadt  *
     14  1.1  deraadt  * Redistribution and use in source and binary forms, with or without
     15  1.1  deraadt  * modification, are permitted provided that the following conditions
     16  1.1  deraadt  * are met:
     17  1.1  deraadt  * 1. Redistributions of source code must retain the above copyright
     18  1.1  deraadt  *    notice, this list of conditions and the following disclaimer.
     19  1.1  deraadt  * 2. Redistributions in binary form must reproduce the above copyright
     20  1.1  deraadt  *    notice, this list of conditions and the following disclaimer in the
     21  1.1  deraadt  *    documentation and/or other materials provided with the distribution.
     22  1.1  deraadt  * 3. All advertising materials mentioning features or use of this software
     23  1.1  deraadt  *    must display the following acknowledgement:
     24  1.1  deraadt  *	This product includes software developed by the University of
     25  1.1  deraadt  *	California, Berkeley and its contributors.
     26  1.1  deraadt  * 4. Neither the name of the University nor the names of its contributors
     27  1.1  deraadt  *    may be used to endorse or promote products derived from this software
     28  1.1  deraadt  *    without specific prior written permission.
     29  1.1  deraadt  *
     30  1.1  deraadt  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     31  1.1  deraadt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     32  1.1  deraadt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     33  1.1  deraadt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     34  1.1  deraadt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     35  1.1  deraadt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     36  1.1  deraadt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     37  1.1  deraadt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     38  1.1  deraadt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     39  1.1  deraadt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     40  1.1  deraadt  * SUCH DAMAGE.
     41  1.1  deraadt  *
     42  1.1  deraadt  *	@(#)fpu_div.c	8.1 (Berkeley) 6/11/93
     43  1.1  deraadt  *
     44  1.1  deraadt  * from: Header: fpu_div.c,v 1.3 92/11/26 01:39:47 torek Exp
     45  1.1  deraadt  * $Id: fpu_div.c,v 1.1 1993/10/02 10:22:54 deraadt Exp $
     46  1.1  deraadt  */
     47  1.1  deraadt 
     48  1.1  deraadt /*
     49  1.1  deraadt  * Perform an FPU divide (return x / y).
     50  1.1  deraadt  */
     51  1.1  deraadt 
     52  1.1  deraadt #include <sys/types.h>
     53  1.1  deraadt 
     54  1.1  deraadt #include <machine/reg.h>
     55  1.1  deraadt 
     56  1.1  deraadt #include <sparc/fpu/fpu_arith.h>
     57  1.1  deraadt #include <sparc/fpu/fpu_emu.h>
     58  1.1  deraadt 
     59  1.1  deraadt /*
     60  1.1  deraadt  * Division of normal numbers is done as follows:
     61  1.1  deraadt  *
     62  1.1  deraadt  * x and y are floating point numbers, i.e., in the form 1.bbbb * 2^e.
     63  1.1  deraadt  * If X and Y are the mantissas (1.bbbb's), the quotient is then:
     64  1.1  deraadt  *
     65  1.1  deraadt  *	q = (X / Y) * 2^((x exponent) - (y exponent))
     66  1.1  deraadt  *
     67  1.1  deraadt  * Since X and Y are both in [1.0,2.0), the quotient's mantissa (X / Y)
     68  1.1  deraadt  * will be in [0.5,2.0).  Moreover, it will be less than 1.0 if and only
     69  1.1  deraadt  * if X < Y.  In that case, it will have to be shifted left one bit to
     70  1.1  deraadt  * become a normal number, and the exponent decremented.  Thus, the
     71  1.1  deraadt  * desired exponent is:
     72  1.1  deraadt  *
     73  1.1  deraadt  *	left_shift = x->fp_mant < y->fp_mant;
     74  1.1  deraadt  *	result_exp = x->fp_exp - y->fp_exp - left_shift;
     75  1.1  deraadt  *
     76  1.1  deraadt  * The quotient mantissa X/Y can then be computed one bit at a time
     77  1.1  deraadt  * using the following algorithm:
     78  1.1  deraadt  *
     79  1.1  deraadt  *	Q = 0;			-- Initial quotient.
     80  1.1  deraadt  *	R = X;			-- Initial remainder,
     81  1.1  deraadt  *	if (left_shift)		--   but fixed up in advance.
     82  1.1  deraadt  *		R *= 2;
     83  1.1  deraadt  *	for (bit = FP_NMANT; --bit >= 0; R *= 2) {
     84  1.1  deraadt  *		if (R >= Y) {
     85  1.1  deraadt  *			Q |= 1 << bit;
     86  1.1  deraadt  *			R -= Y;
     87  1.1  deraadt  *		}
     88  1.1  deraadt  *	}
     89  1.1  deraadt  *
     90  1.1  deraadt  * The subtraction R -= Y always removes the uppermost bit from R (and
     91  1.1  deraadt  * can sometimes remove additional lower-order 1 bits); this proof is
     92  1.1  deraadt  * left to the reader.
     93  1.1  deraadt  *
     94  1.1  deraadt  * This loop correctly calculates the guard and round bits since they are
     95  1.1  deraadt  * included in the expanded internal representation.  The sticky bit
     96  1.1  deraadt  * is to be set if and only if any other bits beyond guard and round
     97  1.1  deraadt  * would be set.  From the above it is obvious that this is true if and
     98  1.1  deraadt  * only if the remainder R is nonzero when the loop terminates.
     99  1.1  deraadt  *
    100  1.1  deraadt  * Examining the loop above, we can see that the quotient Q is built
    101  1.1  deraadt  * one bit at a time ``from the top down''.  This means that we can
    102  1.1  deraadt  * dispense with the multi-word arithmetic and just build it one word
    103  1.1  deraadt  * at a time, writing each result word when it is done.
    104  1.1  deraadt  *
    105  1.1  deraadt  * Furthermore, since X and Y are both in [1.0,2.0), we know that,
    106  1.1  deraadt  * initially, R >= Y.  (Recall that, if X < Y, R is set to X * 2 and
    107  1.1  deraadt  * is therefore at in [2.0,4.0).)  Thus Q is sure to have bit FP_NMANT-1
    108  1.1  deraadt  * set, and R can be set initially to either X - Y (when X >= Y) or
    109  1.1  deraadt  * 2X - Y (when X < Y).  In addition, comparing R and Y is difficult,
    110  1.1  deraadt  * so we will simply calculate R - Y and see if that underflows.
    111  1.1  deraadt  * This leads to the following revised version of the algorithm:
    112  1.1  deraadt  *
    113  1.1  deraadt  *	R = X;
    114  1.1  deraadt  *	bit = FP_1;
    115  1.1  deraadt  *	D = R - Y;
    116  1.1  deraadt  *	if (D >= 0) {
    117  1.1  deraadt  *		result_exp = x->fp_exp - y->fp_exp;
    118  1.1  deraadt  *		R = D;
    119  1.1  deraadt  *		q = bit;
    120  1.1  deraadt  *		bit >>= 1;
    121  1.1  deraadt  *	} else {
    122  1.1  deraadt  *		result_exp = x->fp_exp - y->fp_exp - 1;
    123  1.1  deraadt  *		q = 0;
    124  1.1  deraadt  *	}
    125  1.1  deraadt  *	R <<= 1;
    126  1.1  deraadt  *	do  {
    127  1.1  deraadt  *		D = R - Y;
    128  1.1  deraadt  *		if (D >= 0) {
    129  1.1  deraadt  *			q |= bit;
    130  1.1  deraadt  *			R = D;
    131  1.1  deraadt  *		}
    132  1.1  deraadt  *		R <<= 1;
    133  1.1  deraadt  *	} while ((bit >>= 1) != 0);
    134  1.1  deraadt  *	Q[0] = q;
    135  1.1  deraadt  *	for (i = 1; i < 4; i++) {
    136  1.1  deraadt  *		q = 0, bit = 1 << 31;
    137  1.1  deraadt  *		do {
    138  1.1  deraadt  *			D = R - Y;
    139  1.1  deraadt  *			if (D >= 0) {
    140  1.1  deraadt  *				q |= bit;
    141  1.1  deraadt  *				R = D;
    142  1.1  deraadt  *			}
    143  1.1  deraadt  *			R <<= 1;
    144  1.1  deraadt  *		} while ((bit >>= 1) != 0);
    145  1.1  deraadt  *		Q[i] = q;
    146  1.1  deraadt  *	}
    147  1.1  deraadt  *
    148  1.1  deraadt  * This can be refined just a bit further by moving the `R <<= 1'
    149  1.1  deraadt  * calculations to the front of the do-loops and eliding the first one.
    150  1.1  deraadt  * The process can be terminated immediately whenever R becomes 0, but
    151  1.1  deraadt  * this is relatively rare, and we do not bother.
    152  1.1  deraadt  */
    153  1.1  deraadt 
    154  1.1  deraadt struct fpn *
    155  1.1  deraadt fpu_div(fe)
    156  1.1  deraadt 	register struct fpemu *fe;
    157  1.1  deraadt {
    158  1.1  deraadt 	register struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
    159  1.1  deraadt 	register u_int q, bit;
    160  1.1  deraadt 	register u_int r0, r1, r2, r3, d0, d1, d2, d3, y0, y1, y2, y3;
    161  1.1  deraadt 	FPU_DECL_CARRY
    162  1.1  deraadt 
    163  1.1  deraadt 	/*
    164  1.1  deraadt 	 * Since divide is not commutative, we cannot just use ORDER.
    165  1.1  deraadt 	 * Check either operand for NaN first; if there is at least one,
    166  1.1  deraadt 	 * order the signalling one (if only one) onto the right, then
    167  1.1  deraadt 	 * return it.  Otherwise we have the following cases:
    168  1.1  deraadt 	 *
    169  1.1  deraadt 	 *	Inf / Inf = NaN, plus NV exception
    170  1.1  deraadt 	 *	Inf / num = Inf [i.e., return x]
    171  1.1  deraadt 	 *	Inf / 0   = Inf [i.e., return x]
    172  1.1  deraadt 	 *	0 / Inf = 0 [i.e., return x]
    173  1.1  deraadt 	 *	0 / num = 0 [i.e., return x]
    174  1.1  deraadt 	 *	0 / 0   = NaN, plus NV exception
    175  1.1  deraadt 	 *	num / Inf = 0
    176  1.1  deraadt 	 *	num / num = num (do the divide)
    177  1.1  deraadt 	 *	num / 0   = Inf, plus DZ exception
    178  1.1  deraadt 	 */
    179  1.1  deraadt 	if (ISNAN(x) || ISNAN(y)) {
    180  1.1  deraadt 		ORDER(x, y);
    181  1.1  deraadt 		return (y);
    182  1.1  deraadt 	}
    183  1.1  deraadt 	if (ISINF(x) || ISZERO(x)) {
    184  1.1  deraadt 		if (x->fp_class == y->fp_class)
    185  1.1  deraadt 			return (fpu_newnan(fe));
    186  1.1  deraadt 		return (x);
    187  1.1  deraadt 	}
    188  1.1  deraadt 
    189  1.1  deraadt 	/* all results at this point use XOR of operand signs */
    190  1.1  deraadt 	x->fp_sign ^= y->fp_sign;
    191  1.1  deraadt 	if (ISINF(y)) {
    192  1.1  deraadt 		x->fp_class = FPC_ZERO;
    193  1.1  deraadt 		return (x);
    194  1.1  deraadt 	}
    195  1.1  deraadt 	if (ISZERO(y)) {
    196  1.1  deraadt 		fe->fe_cx = FSR_DZ;
    197  1.1  deraadt 		x->fp_class = FPC_INF;
    198  1.1  deraadt 		return (x);
    199  1.1  deraadt 	}
    200  1.1  deraadt 
    201  1.1  deraadt 	/*
    202  1.1  deraadt 	 * Macros for the divide.  See comments at top for algorithm.
    203  1.1  deraadt 	 * Note that we expand R, D, and Y here.
    204  1.1  deraadt 	 */
    205  1.1  deraadt 
    206  1.1  deraadt #define	SUBTRACT		/* D = R - Y */ \
    207  1.1  deraadt 	FPU_SUBS(d3, r3, y3); FPU_SUBCS(d2, r2, y2); \
    208  1.1  deraadt 	FPU_SUBCS(d1, r1, y1); FPU_SUBC(d0, r0, y0)
    209  1.1  deraadt 
    210  1.1  deraadt #define	NONNEGATIVE		/* D >= 0 */ \
    211  1.1  deraadt 	((int)d0 >= 0)
    212  1.1  deraadt 
    213  1.1  deraadt #ifdef FPU_SHL1_BY_ADD
    214  1.1  deraadt #define	SHL1			/* R <<= 1 */ \
    215  1.1  deraadt 	FPU_ADDS(r3, r3, r3); FPU_ADDCS(r2, r2, r2); \
    216  1.1  deraadt 	FPU_ADDCS(r1, r1, r1); FPU_ADDC(r0, r0, r0)
    217  1.1  deraadt #else
    218  1.1  deraadt #define	SHL1 \
    219  1.1  deraadt 	r0 = (r0 << 1) | (r1 >> 31), r1 = (r1 << 1) | (r2 >> 31), \
    220  1.1  deraadt 	r2 = (r2 << 1) | (r3 >> 31), r3 <<= 1
    221  1.1  deraadt #endif
    222  1.1  deraadt 
    223  1.1  deraadt #define	LOOP			/* do ... while (bit >>= 1) */ \
    224  1.1  deraadt 	do { \
    225  1.1  deraadt 		SHL1; \
    226  1.1  deraadt 		SUBTRACT; \
    227  1.1  deraadt 		if (NONNEGATIVE) { \
    228  1.1  deraadt 			q |= bit; \
    229  1.1  deraadt 			r0 = d0, r1 = d1, r2 = d2, r3 = d3; \
    230  1.1  deraadt 		} \
    231  1.1  deraadt 	} while ((bit >>= 1) != 0)
    232  1.1  deraadt 
    233  1.1  deraadt #define	WORD(r, i)			/* calculate r->fp_mant[i] */ \
    234  1.1  deraadt 	q = 0; \
    235  1.1  deraadt 	bit = 1 << 31; \
    236  1.1  deraadt 	LOOP; \
    237  1.1  deraadt 	(x)->fp_mant[i] = q
    238  1.1  deraadt 
    239  1.1  deraadt 	/* Setup.  Note that we put our result in x. */
    240  1.1  deraadt 	r0 = x->fp_mant[0];
    241  1.1  deraadt 	r1 = x->fp_mant[1];
    242  1.1  deraadt 	r2 = x->fp_mant[2];
    243  1.1  deraadt 	r3 = x->fp_mant[3];
    244  1.1  deraadt 	y0 = y->fp_mant[0];
    245  1.1  deraadt 	y1 = y->fp_mant[1];
    246  1.1  deraadt 	y2 = y->fp_mant[2];
    247  1.1  deraadt 	y3 = y->fp_mant[3];
    248  1.1  deraadt 
    249  1.1  deraadt 	bit = FP_1;
    250  1.1  deraadt 	SUBTRACT;
    251  1.1  deraadt 	if (NONNEGATIVE) {
    252  1.1  deraadt 		x->fp_exp -= y->fp_exp;
    253  1.1  deraadt 		r0 = d0, r1 = d1, r2 = d2, r3 = d3;
    254  1.1  deraadt 		q = bit;
    255  1.1  deraadt 		bit >>= 1;
    256  1.1  deraadt 	} else {
    257  1.1  deraadt 		x->fp_exp -= y->fp_exp + 1;
    258  1.1  deraadt 		q = 0;
    259  1.1  deraadt 	}
    260  1.1  deraadt 	LOOP;
    261  1.1  deraadt 	x->fp_mant[0] = q;
    262  1.1  deraadt 	WORD(x, 1);
    263  1.1  deraadt 	WORD(x, 2);
    264  1.1  deraadt 	WORD(x, 3);
    265  1.1  deraadt 	x->fp_sticky = r0 | r1 | r2 | r3;
    266  1.1  deraadt 
    267  1.1  deraadt 	return (x);
    268  1.1  deraadt }
    269