Home | History | Annotate | Line # | Download | only in fpu
fpu_div.c revision 1.2
      1 /*	$NetBSD: fpu_div.c,v 1.2 1994/11/20 20:52:38 deraadt Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This software was developed by the Computer Systems Engineering group
      8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  * contributed to Berkeley.
     10  *
     11  * All advertising materials mentioning features or use of this software
     12  * must display the following acknowledgement:
     13  *	This product includes software developed by the University of
     14  *	California, Lawrence Berkeley Laboratory.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  * 1. Redistributions of source code must retain the above copyright
     20  *    notice, this list of conditions and the following disclaimer.
     21  * 2. Redistributions in binary form must reproduce the above copyright
     22  *    notice, this list of conditions and the following disclaimer in the
     23  *    documentation and/or other materials provided with the distribution.
     24  * 3. All advertising materials mentioning features or use of this software
     25  *    must display the following acknowledgement:
     26  *	This product includes software developed by the University of
     27  *	California, Berkeley and its contributors.
     28  * 4. Neither the name of the University nor the names of its contributors
     29  *    may be used to endorse or promote products derived from this software
     30  *    without specific prior written permission.
     31  *
     32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     42  * SUCH DAMAGE.
     43  *
     44  *	@(#)fpu_div.c	8.1 (Berkeley) 6/11/93
     45  */
     46 
     47 /*
     48  * Perform an FPU divide (return x / y).
     49  */
     50 
     51 #include <sys/types.h>
     52 
     53 #include <machine/reg.h>
     54 
     55 #include <sparc/fpu/fpu_arith.h>
     56 #include <sparc/fpu/fpu_emu.h>
     57 
     58 /*
     59  * Division of normal numbers is done as follows:
     60  *
     61  * x and y are floating point numbers, i.e., in the form 1.bbbb * 2^e.
     62  * If X and Y are the mantissas (1.bbbb's), the quotient is then:
     63  *
     64  *	q = (X / Y) * 2^((x exponent) - (y exponent))
     65  *
     66  * Since X and Y are both in [1.0,2.0), the quotient's mantissa (X / Y)
     67  * will be in [0.5,2.0).  Moreover, it will be less than 1.0 if and only
     68  * if X < Y.  In that case, it will have to be shifted left one bit to
     69  * become a normal number, and the exponent decremented.  Thus, the
     70  * desired exponent is:
     71  *
     72  *	left_shift = x->fp_mant < y->fp_mant;
     73  *	result_exp = x->fp_exp - y->fp_exp - left_shift;
     74  *
     75  * The quotient mantissa X/Y can then be computed one bit at a time
     76  * using the following algorithm:
     77  *
     78  *	Q = 0;			-- Initial quotient.
     79  *	R = X;			-- Initial remainder,
     80  *	if (left_shift)		--   but fixed up in advance.
     81  *		R *= 2;
     82  *	for (bit = FP_NMANT; --bit >= 0; R *= 2) {
     83  *		if (R >= Y) {
     84  *			Q |= 1 << bit;
     85  *			R -= Y;
     86  *		}
     87  *	}
     88  *
     89  * The subtraction R -= Y always removes the uppermost bit from R (and
     90  * can sometimes remove additional lower-order 1 bits); this proof is
     91  * left to the reader.
     92  *
     93  * This loop correctly calculates the guard and round bits since they are
     94  * included in the expanded internal representation.  The sticky bit
     95  * is to be set if and only if any other bits beyond guard and round
     96  * would be set.  From the above it is obvious that this is true if and
     97  * only if the remainder R is nonzero when the loop terminates.
     98  *
     99  * Examining the loop above, we can see that the quotient Q is built
    100  * one bit at a time ``from the top down''.  This means that we can
    101  * dispense with the multi-word arithmetic and just build it one word
    102  * at a time, writing each result word when it is done.
    103  *
    104  * Furthermore, since X and Y are both in [1.0,2.0), we know that,
    105  * initially, R >= Y.  (Recall that, if X < Y, R is set to X * 2 and
    106  * is therefore at in [2.0,4.0).)  Thus Q is sure to have bit FP_NMANT-1
    107  * set, and R can be set initially to either X - Y (when X >= Y) or
    108  * 2X - Y (when X < Y).  In addition, comparing R and Y is difficult,
    109  * so we will simply calculate R - Y and see if that underflows.
    110  * This leads to the following revised version of the algorithm:
    111  *
    112  *	R = X;
    113  *	bit = FP_1;
    114  *	D = R - Y;
    115  *	if (D >= 0) {
    116  *		result_exp = x->fp_exp - y->fp_exp;
    117  *		R = D;
    118  *		q = bit;
    119  *		bit >>= 1;
    120  *	} else {
    121  *		result_exp = x->fp_exp - y->fp_exp - 1;
    122  *		q = 0;
    123  *	}
    124  *	R <<= 1;
    125  *	do  {
    126  *		D = R - Y;
    127  *		if (D >= 0) {
    128  *			q |= bit;
    129  *			R = D;
    130  *		}
    131  *		R <<= 1;
    132  *	} while ((bit >>= 1) != 0);
    133  *	Q[0] = q;
    134  *	for (i = 1; i < 4; i++) {
    135  *		q = 0, bit = 1 << 31;
    136  *		do {
    137  *			D = R - Y;
    138  *			if (D >= 0) {
    139  *				q |= bit;
    140  *				R = D;
    141  *			}
    142  *			R <<= 1;
    143  *		} while ((bit >>= 1) != 0);
    144  *		Q[i] = q;
    145  *	}
    146  *
    147  * This can be refined just a bit further by moving the `R <<= 1'
    148  * calculations to the front of the do-loops and eliding the first one.
    149  * The process can be terminated immediately whenever R becomes 0, but
    150  * this is relatively rare, and we do not bother.
    151  */
    152 
    153 struct fpn *
    154 fpu_div(fe)
    155 	register struct fpemu *fe;
    156 {
    157 	register struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
    158 	register u_int q, bit;
    159 	register u_int r0, r1, r2, r3, d0, d1, d2, d3, y0, y1, y2, y3;
    160 	FPU_DECL_CARRY
    161 
    162 	/*
    163 	 * Since divide is not commutative, we cannot just use ORDER.
    164 	 * Check either operand for NaN first; if there is at least one,
    165 	 * order the signalling one (if only one) onto the right, then
    166 	 * return it.  Otherwise we have the following cases:
    167 	 *
    168 	 *	Inf / Inf = NaN, plus NV exception
    169 	 *	Inf / num = Inf [i.e., return x]
    170 	 *	Inf / 0   = Inf [i.e., return x]
    171 	 *	0 / Inf = 0 [i.e., return x]
    172 	 *	0 / num = 0 [i.e., return x]
    173 	 *	0 / 0   = NaN, plus NV exception
    174 	 *	num / Inf = 0
    175 	 *	num / num = num (do the divide)
    176 	 *	num / 0   = Inf, plus DZ exception
    177 	 */
    178 	if (ISNAN(x) || ISNAN(y)) {
    179 		ORDER(x, y);
    180 		return (y);
    181 	}
    182 	if (ISINF(x) || ISZERO(x)) {
    183 		if (x->fp_class == y->fp_class)
    184 			return (fpu_newnan(fe));
    185 		return (x);
    186 	}
    187 
    188 	/* all results at this point use XOR of operand signs */
    189 	x->fp_sign ^= y->fp_sign;
    190 	if (ISINF(y)) {
    191 		x->fp_class = FPC_ZERO;
    192 		return (x);
    193 	}
    194 	if (ISZERO(y)) {
    195 		fe->fe_cx = FSR_DZ;
    196 		x->fp_class = FPC_INF;
    197 		return (x);
    198 	}
    199 
    200 	/*
    201 	 * Macros for the divide.  See comments at top for algorithm.
    202 	 * Note that we expand R, D, and Y here.
    203 	 */
    204 
    205 #define	SUBTRACT		/* D = R - Y */ \
    206 	FPU_SUBS(d3, r3, y3); FPU_SUBCS(d2, r2, y2); \
    207 	FPU_SUBCS(d1, r1, y1); FPU_SUBC(d0, r0, y0)
    208 
    209 #define	NONNEGATIVE		/* D >= 0 */ \
    210 	((int)d0 >= 0)
    211 
    212 #ifdef FPU_SHL1_BY_ADD
    213 #define	SHL1			/* R <<= 1 */ \
    214 	FPU_ADDS(r3, r3, r3); FPU_ADDCS(r2, r2, r2); \
    215 	FPU_ADDCS(r1, r1, r1); FPU_ADDC(r0, r0, r0)
    216 #else
    217 #define	SHL1 \
    218 	r0 = (r0 << 1) | (r1 >> 31), r1 = (r1 << 1) | (r2 >> 31), \
    219 	r2 = (r2 << 1) | (r3 >> 31), r3 <<= 1
    220 #endif
    221 
    222 #define	LOOP			/* do ... while (bit >>= 1) */ \
    223 	do { \
    224 		SHL1; \
    225 		SUBTRACT; \
    226 		if (NONNEGATIVE) { \
    227 			q |= bit; \
    228 			r0 = d0, r1 = d1, r2 = d2, r3 = d3; \
    229 		} \
    230 	} while ((bit >>= 1) != 0)
    231 
    232 #define	WORD(r, i)			/* calculate r->fp_mant[i] */ \
    233 	q = 0; \
    234 	bit = 1 << 31; \
    235 	LOOP; \
    236 	(x)->fp_mant[i] = q
    237 
    238 	/* Setup.  Note that we put our result in x. */
    239 	r0 = x->fp_mant[0];
    240 	r1 = x->fp_mant[1];
    241 	r2 = x->fp_mant[2];
    242 	r3 = x->fp_mant[3];
    243 	y0 = y->fp_mant[0];
    244 	y1 = y->fp_mant[1];
    245 	y2 = y->fp_mant[2];
    246 	y3 = y->fp_mant[3];
    247 
    248 	bit = FP_1;
    249 	SUBTRACT;
    250 	if (NONNEGATIVE) {
    251 		x->fp_exp -= y->fp_exp;
    252 		r0 = d0, r1 = d1, r2 = d2, r3 = d3;
    253 		q = bit;
    254 		bit >>= 1;
    255 	} else {
    256 		x->fp_exp -= y->fp_exp + 1;
    257 		q = 0;
    258 	}
    259 	LOOP;
    260 	x->fp_mant[0] = q;
    261 	WORD(x, 1);
    262 	WORD(x, 2);
    263 	WORD(x, 3);
    264 	x->fp_sticky = r0 | r1 | r2 | r3;
    265 
    266 	return (x);
    267 }
    268