Home | History | Annotate | Line # | Download | only in fpu
fpu_div.c revision 1.4
      1 /*	$NetBSD: fpu_div.c,v 1.4 2003/08/07 16:29:37 agc Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This software was developed by the Computer Systems Engineering group
      8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  * contributed to Berkeley.
     10  *
     11  * All advertising materials mentioning features or use of this software
     12  * must display the following acknowledgement:
     13  *	This product includes software developed by the University of
     14  *	California, Lawrence Berkeley Laboratory.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  * 1. Redistributions of source code must retain the above copyright
     20  *    notice, this list of conditions and the following disclaimer.
     21  * 2. Redistributions in binary form must reproduce the above copyright
     22  *    notice, this list of conditions and the following disclaimer in the
     23  *    documentation and/or other materials provided with the distribution.
     24  * 3. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  *	@(#)fpu_div.c	8.1 (Berkeley) 6/11/93
     41  */
     42 
     43 /*
     44  * Perform an FPU divide (return x / y).
     45  */
     46 
     47 #include <sys/cdefs.h>
     48 __KERNEL_RCSID(0, "$NetBSD: fpu_div.c,v 1.4 2003/08/07 16:29:37 agc Exp $");
     49 
     50 #include <sys/types.h>
     51 
     52 #include <machine/reg.h>
     53 
     54 #include <sparc/fpu/fpu_arith.h>
     55 #include <sparc/fpu/fpu_emu.h>
     56 
     57 /*
     58  * Division of normal numbers is done as follows:
     59  *
     60  * x and y are floating point numbers, i.e., in the form 1.bbbb * 2^e.
     61  * If X and Y are the mantissas (1.bbbb's), the quotient is then:
     62  *
     63  *	q = (X / Y) * 2^((x exponent) - (y exponent))
     64  *
     65  * Since X and Y are both in [1.0,2.0), the quotient's mantissa (X / Y)
     66  * will be in [0.5,2.0).  Moreover, it will be less than 1.0 if and only
     67  * if X < Y.  In that case, it will have to be shifted left one bit to
     68  * become a normal number, and the exponent decremented.  Thus, the
     69  * desired exponent is:
     70  *
     71  *	left_shift = x->fp_mant < y->fp_mant;
     72  *	result_exp = x->fp_exp - y->fp_exp - left_shift;
     73  *
     74  * The quotient mantissa X/Y can then be computed one bit at a time
     75  * using the following algorithm:
     76  *
     77  *	Q = 0;			-- Initial quotient.
     78  *	R = X;			-- Initial remainder,
     79  *	if (left_shift)		--   but fixed up in advance.
     80  *		R *= 2;
     81  *	for (bit = FP_NMANT; --bit >= 0; R *= 2) {
     82  *		if (R >= Y) {
     83  *			Q |= 1 << bit;
     84  *			R -= Y;
     85  *		}
     86  *	}
     87  *
     88  * The subtraction R -= Y always removes the uppermost bit from R (and
     89  * can sometimes remove additional lower-order 1 bits); this proof is
     90  * left to the reader.
     91  *
     92  * This loop correctly calculates the guard and round bits since they are
     93  * included in the expanded internal representation.  The sticky bit
     94  * is to be set if and only if any other bits beyond guard and round
     95  * would be set.  From the above it is obvious that this is true if and
     96  * only if the remainder R is nonzero when the loop terminates.
     97  *
     98  * Examining the loop above, we can see that the quotient Q is built
     99  * one bit at a time ``from the top down''.  This means that we can
    100  * dispense with the multi-word arithmetic and just build it one word
    101  * at a time, writing each result word when it is done.
    102  *
    103  * Furthermore, since X and Y are both in [1.0,2.0), we know that,
    104  * initially, R >= Y.  (Recall that, if X < Y, R is set to X * 2 and
    105  * is therefore at in [2.0,4.0).)  Thus Q is sure to have bit FP_NMANT-1
    106  * set, and R can be set initially to either X - Y (when X >= Y) or
    107  * 2X - Y (when X < Y).  In addition, comparing R and Y is difficult,
    108  * so we will simply calculate R - Y and see if that underflows.
    109  * This leads to the following revised version of the algorithm:
    110  *
    111  *	R = X;
    112  *	bit = FP_1;
    113  *	D = R - Y;
    114  *	if (D >= 0) {
    115  *		result_exp = x->fp_exp - y->fp_exp;
    116  *		R = D;
    117  *		q = bit;
    118  *		bit >>= 1;
    119  *	} else {
    120  *		result_exp = x->fp_exp - y->fp_exp - 1;
    121  *		q = 0;
    122  *	}
    123  *	R <<= 1;
    124  *	do  {
    125  *		D = R - Y;
    126  *		if (D >= 0) {
    127  *			q |= bit;
    128  *			R = D;
    129  *		}
    130  *		R <<= 1;
    131  *	} while ((bit >>= 1) != 0);
    132  *	Q[0] = q;
    133  *	for (i = 1; i < 4; i++) {
    134  *		q = 0, bit = 1 << 31;
    135  *		do {
    136  *			D = R - Y;
    137  *			if (D >= 0) {
    138  *				q |= bit;
    139  *				R = D;
    140  *			}
    141  *			R <<= 1;
    142  *		} while ((bit >>= 1) != 0);
    143  *		Q[i] = q;
    144  *	}
    145  *
    146  * This can be refined just a bit further by moving the `R <<= 1'
    147  * calculations to the front of the do-loops and eliding the first one.
    148  * The process can be terminated immediately whenever R becomes 0, but
    149  * this is relatively rare, and we do not bother.
    150  */
    151 
    152 struct fpn *
    153 fpu_div(fe)
    154 	register struct fpemu *fe;
    155 {
    156 	register struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
    157 	register u_int q, bit;
    158 	register u_int r0, r1, r2, r3, d0, d1, d2, d3, y0, y1, y2, y3;
    159 	FPU_DECL_CARRY
    160 
    161 	/*
    162 	 * Since divide is not commutative, we cannot just use ORDER.
    163 	 * Check either operand for NaN first; if there is at least one,
    164 	 * order the signalling one (if only one) onto the right, then
    165 	 * return it.  Otherwise we have the following cases:
    166 	 *
    167 	 *	Inf / Inf = NaN, plus NV exception
    168 	 *	Inf / num = Inf [i.e., return x]
    169 	 *	Inf / 0   = Inf [i.e., return x]
    170 	 *	0 / Inf = 0 [i.e., return x]
    171 	 *	0 / num = 0 [i.e., return x]
    172 	 *	0 / 0   = NaN, plus NV exception
    173 	 *	num / Inf = 0
    174 	 *	num / num = num (do the divide)
    175 	 *	num / 0   = Inf, plus DZ exception
    176 	 */
    177 	if (ISNAN(x) || ISNAN(y)) {
    178 		ORDER(x, y);
    179 		return (y);
    180 	}
    181 	if (ISINF(x) || ISZERO(x)) {
    182 		if (x->fp_class == y->fp_class)
    183 			return (fpu_newnan(fe));
    184 		return (x);
    185 	}
    186 
    187 	/* all results at this point use XOR of operand signs */
    188 	x->fp_sign ^= y->fp_sign;
    189 	if (ISINF(y)) {
    190 		x->fp_class = FPC_ZERO;
    191 		return (x);
    192 	}
    193 	if (ISZERO(y)) {
    194 		fe->fe_cx = FSR_DZ;
    195 		x->fp_class = FPC_INF;
    196 		return (x);
    197 	}
    198 
    199 	/*
    200 	 * Macros for the divide.  See comments at top for algorithm.
    201 	 * Note that we expand R, D, and Y here.
    202 	 */
    203 
    204 #define	SUBTRACT		/* D = R - Y */ \
    205 	FPU_SUBS(d3, r3, y3); FPU_SUBCS(d2, r2, y2); \
    206 	FPU_SUBCS(d1, r1, y1); FPU_SUBC(d0, r0, y0)
    207 
    208 #define	NONNEGATIVE		/* D >= 0 */ \
    209 	((int)d0 >= 0)
    210 
    211 #ifdef FPU_SHL1_BY_ADD
    212 #define	SHL1			/* R <<= 1 */ \
    213 	FPU_ADDS(r3, r3, r3); FPU_ADDCS(r2, r2, r2); \
    214 	FPU_ADDCS(r1, r1, r1); FPU_ADDC(r0, r0, r0)
    215 #else
    216 #define	SHL1 \
    217 	r0 = (r0 << 1) | (r1 >> 31), r1 = (r1 << 1) | (r2 >> 31), \
    218 	r2 = (r2 << 1) | (r3 >> 31), r3 <<= 1
    219 #endif
    220 
    221 #define	LOOP			/* do ... while (bit >>= 1) */ \
    222 	do { \
    223 		SHL1; \
    224 		SUBTRACT; \
    225 		if (NONNEGATIVE) { \
    226 			q |= bit; \
    227 			r0 = d0, r1 = d1, r2 = d2, r3 = d3; \
    228 		} \
    229 	} while ((bit >>= 1) != 0)
    230 
    231 #define	WORD(r, i)			/* calculate r->fp_mant[i] */ \
    232 	q = 0; \
    233 	bit = 1 << 31; \
    234 	LOOP; \
    235 	(x)->fp_mant[i] = q
    236 
    237 	/* Setup.  Note that we put our result in x. */
    238 	r0 = x->fp_mant[0];
    239 	r1 = x->fp_mant[1];
    240 	r2 = x->fp_mant[2];
    241 	r3 = x->fp_mant[3];
    242 	y0 = y->fp_mant[0];
    243 	y1 = y->fp_mant[1];
    244 	y2 = y->fp_mant[2];
    245 	y3 = y->fp_mant[3];
    246 
    247 	bit = FP_1;
    248 	SUBTRACT;
    249 	if (NONNEGATIVE) {
    250 		x->fp_exp -= y->fp_exp;
    251 		r0 = d0, r1 = d1, r2 = d2, r3 = d3;
    252 		q = bit;
    253 		bit >>= 1;
    254 	} else {
    255 		x->fp_exp -= y->fp_exp + 1;
    256 		q = 0;
    257 	}
    258 	LOOP;
    259 	x->fp_mant[0] = q;
    260 	WORD(x, 1);
    261 	WORD(x, 2);
    262 	WORD(x, 3);
    263 	x->fp_sticky = r0 | r1 | r2 | r3;
    264 
    265 	return (x);
    266 }
    267